Demand Models For Supermarket Demand Forecasting

Document Type : Research Paper


Department of IT and technology, IU international University of applied sciences, Erfurt, Germany


Model-based approaches remain an important option for modelling customer demand. While this approach allows to analyse demand using a model based on theoretical arguments, each choice of model is associated with specific  assumptions under which this model is valid. Customer demand in retail is typically modelled as a Poison-type process, in particular using a negative binomial distribution. Poisson-type processes are associated with an exponential inter-arrival time that describes the probability distribution between subsequent events. Using a public dataset from a large  supermarket, the analysis of the data shows that while the general assumption of a Poisson process is reasonable, the purchasing behaviour strongly depends on the type of product. Additionally, customers in this supermarket show a
strong preference for a weekly shopping trip.


Adan, I., van Eenige, M., and Resing, J. (1995). Fitting discrete distributions on the first two moments. Probability in the engineering and informational sciences, Vol. 9(4), pp. 623–632.
Alwan, L. C., Xu, M., Yao, D., and Yue, X. (2016). The dynamic newsvendor model with correlated demand. Decision Sciences, Vol.  47(1), pp. 11-30.
Angus, J. E. (1994). The probability integral transform and related results. SIAM Review, 36(4), pp. 652–654.
Ban, G.-Y., and Rudin, C. (2019). The big data newsvendor: Practical insights from machine learning. Operations Research, Vol. 67(1), pp. 90–108.
Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., and Seaman, B. (2019). Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In International conference on neural information processing (pp. 462–474).
Bartezzaghi, E., and Verganti, R. (1995). Managing demand uncertainty through order overplanning. International Journal of Production Economics, Vol. 40(2-3), pp. 107–120.
Bartezzaghi, E., Verganti, R., and Zotteri, G. (1999). A simulation framework for forecasting uncertain lumpy demand. International Journal of Production Economics, Vol. 59(1-3), pp. 499– 510.
Bertsimas, D., and Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, Vol. 66(3), pp. 1025–1044.
Beutel, A.-L., and Minner, S. (2012). Safety stock planning under causal demand forecasting. International Journal of Production Economics, Vol. 140(2), pp. 637–645.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljungl, G. M. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley.
Brandolese, A., and Cigolini, R. (1999). A new model for the strategic management of inventories subject to peaks in market demand. International Journal of Production Research, Vol. 37(8), pp. 1859–1880.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression trees. CRC press.
Brown, R. G. (1963). Smoothing forecasting and prediction of discrete time series. Prentice-Hall International, Inc. London, UK.
Chatfield, C. (1993). Calculating interval forecasts. Journal of Business & Economic Statistics, 11(2), pp. 121–135.
Chatfield, C., and Goodhardt, G. J. (1973). A consumer purchasing model with erlang interpurchase time. Journal of the American Statistical Association, 68(344), pp. 828-835.
Clements, M. P., and Taylor, N. (2001). Bootstrapping prediction intervals for autoregressive models. International Journal of Forecasting, Vol. 17(2), pp. 247–267.
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, Vol. 23(3), pp. 289–303.
De Gooijer, J. G., and Hyndman, R. J. (2006). 25 years of time series forecasting. International journal of forecasting, Vol. 22(3), pp. 443–473.
Edgeworth, F. (1888). The mathematical theory of banking. Journal of the Royal Statistical Society, Vol. 53, pp. 113-127.
Ehrenberg, A.S., 1959. The pattern of consumer purchases. Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 8(1), pp.26-41.
Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., and Lachhab, A. (2018). Forecasting of demand using arima model. International Journal of Engineering Business Management, Vol. 10, pp. 1-9.
Feindt, M., and Kerzel, U. (2006). The neurobayes neural network package. NIM A, Vol. 559(1), pp. 190–194.
Fisher, M. L., Hammond, J. H., Obermeyer, W. R., and Raman, A. (1994). Making supply meet demand in an uncertain world. Harvard business review, Vol. 72, pp. 83–83.
Gardner, E. S. (1985). Exponential smoothing: the state of the art. Journal of Forecasting, Vol. 4, pp. 1–28.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. CRC press.
Golabek, M., Senge, R., and Neumann, R. (2020). Demand forecasting using long short-term memory neural networks. Preprint on ArXiv. arXiv: 2008.08522
Goodhardt, G. J., and Ehrenberg, A. (1967, May). Conditional trend analysis: A breakdown by initial purchasing level. Journal of Marketing Research, Vol. IV, pp. 155-161.
Goyal, A., Kumar, R., Kulkarni, S., Krishnamurthy, S., and Vartak, M. (2018). A solution to forecast demand using long short-term memory recurrent neural networks for time series forecasting. In Midwest decision sciences institute conference. pp. 12-14.
Granger, C. W. J. (1969, August). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, Vol. 37(3), pp. 424.
Grigoletto, M. (1998). Bootstrap prediction intervals for autoregressions: some alternatives. International Journal of Forecasting, Vol. 14(4), pp. 447–456.
Harvey, A., and Peters, S. (1990). Estimation procedures for structural time series models. Journal of Forecasting, Vol. 9, pp. 89–108.
Helmini, S., Jihan, N., Jayasinghe, M., and Perera, S. (2019). Sales forecasting using multivariate long short term memory network models. PeerJ PrePrints, Vol. 7, pp. e27712v1.
Ho, C.-J. (1995). Examining the impact of demand lumpiness on the lot-sizing performance in mrp systems. International Journal of Production Research, Vol. 33(9), pp. 2579–2599.
Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural computation, Vol. 9(8), pp. 1735–1780.
Holt, C. C. (1957). Forecasting trends and seasonal by exponentially weighted moving averages. ONR Memorandum, Vol.  52, pp. 5-10.
Huber, J., Gossmann, A., and Stuckenschmidt, H. (2017). Cluster-based hierarchical demand forecasting for perishable goods. Expert systems with applications, Vol. 76, pp. 140–151.
Huber, J., Mu¨ller, S., Fleischmann, M., and Stuckenschmidt, H. (2019). A data-driven newsvendor problem: From data to decision. European Journal of Operational Research, Vol. 278(3), pp. 904–915.
Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.
Hyndman, R. J. (1995). Highest-density forecast regions for nonlinear and non-normal time series models. Journal of Forecasting, Vol. 14(5), pp. 431–441.
Jacobi, M., Karimanzira, D., and Ament, C. (2007). Water demand forecasting using Kalman filtering. In Proceedings of the 16th iasted international conference on applied simulation and modelling (pp. 199–202).
Kalchschmidt, M., Verganti, R., and Zotteri, G. (2006). Forecasting demand from heterogeneous customers. International Journal of operations & Production management. Vol. 26 (6), pp. 619-638.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, Vol. 82(1), pp. 35-45.
Kandananond, K. (2014). Applying Kalman filter for correlated demand forecasting. Applied mechanics and materials Vol. 619, pp. 381–384.
Khouja, M. (1999). The single-period (news-vendor) problem: literature review and suggestions for future research. Omega, Vol. 27(5), pp. 537 - 553.
Koenker, R., and Hallock, K. F. (2001). Quantile regression. Journal of economic perspectives, Vol. 15(4), pp. 143–156.
Lengu, D., Syntetos, A. A., and Babai, M. Z. (2014). Spare parts management: Linking distributional assumptions to demand classification. European Journal of Operational Research, Vol. 235(3), pp. 624–635.
Lim, B., Arik, S. O., Loeff, N., and Pfister, T. (2019). Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of forecasting, Vol. 37(4), pp. 1748-1764.
Masarotto, G. (1990). Bootstrap prediction intervals for autoregressions. International Journal of Forecasting, Vol. 6(2), pp. 229–239.
McCullough, B. (1994). Bootstrapping forecast intervals: an application to AR(p) models. Journal of Forecasting, Vol. 13(1), pp. 51–66.
McCullough, B. (1996). Consistent forecast intervals when the forecast-period exogenous variables are stochastic. Journal of Forecasting, Vol. 15(4), pp. 293–304.
Mitropoulos, C., Samouilidis, J., and Protonotarios, E. (1980). Using Kalman filtering for energy forecasting. IFAC Proceedings Volumes, Vol. 13(5), pp. 317–324.
Morrison, D. G. (1969). Conditional trend analysis: A model that allows for nonusers. Journal of Marketing Research, Vol. 6(3), pp. 342-346.
Morrison, G. W., and Pike, D. H. (1977). Kalman filtering applied to statistical forecasting. Management Science, Vol. 23(7), pp. 768–774.
Oroojlooyjadid, A., Snyder, L. V., and Taka´ˇc, M. (2020). Applying deep learning to the newsvendor problem. IISE Transactions, Vol. 52(4), pp. 444–463.
Pascual, L., Romo, J., and Ruiz, E. (2001). Effects of parameter estimation on prediction densities: a bootstrap approach. International Journal of Forecasting, Vol. 17(1), pp. 83–103.
Pascual, L., Romo, J., and Ruiz, E. (2004). Bootstrap predictive inference for arima processes. Journal of Time Series Analysis, Vol. 25(4), pp. 449–465.
Pascual, L., Romo, J., and Ruiz, E. (2005). Bootstrap prediction intervals for power-transformed time series. International Journal of Forecasting, Vol. 21(2), pp. 219–235.
Pearl, J. (2009). Causality: Models, reasoning and inference (2nd ed.). Cambridge University Press.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, Vol. 12, pp. 2825–2830.
Permatasari, C. I., Sutopo, W., and Hisjam, M. (2018). Sales forecasting newspaper with arima: A case study. In Aip conference proceeding, Vol. 1931, p. 030017.
Prak, D., Teunter, R. H., Babai, M. Z., Syntetos, A. A., Boylan, J.E. (2018). Forecasting and inventory control with compound poisson demand using periodic demand data. SOM Research Reports, Vol. 10.
Priyangika, J., & Cooray, T. (2015). Analysis of the sales checkout operation in supermarket using queuing theory. Universal journal of management, Vol. 4(7), pp. 393-396.
Ramos, P., Santos, N., and Rebelo, R. (2015). Performance of state space and arima models for consumer retail sales forecasting. Robotics and computer-integrated manufacturing, Vol. 34, pp. 151–163.
Remus, W., and O’Connor, M. (2001). Neural networks for time-series forecasting. In Principles of forecasting (pp. 245–256). Springer.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, Vol. 66(5), pp. 688–701.
Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by back-propagating errors. Nature, Vol. 323, pp. 533–536.
Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). Deepar: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, Vol. 36(3), pp. 1181–1191.
Schmittlein, D. C., Bemmaor, A. C., and Morrison, D. G. (1985). Technical note—why does the nbd model work? robustness in representing product purchases, brand purchases and imperfectly recorded purchases. Marketing Science, Vol. 4(3), pp. 255-266.
Syntetos, A. A., Babai, M. Z., and Altay, N. (2012). On the demand distributions of spare parts. International Journal of Production Research, Vol. 50(8), pp. 2101–2117.
Taylor, S. J., and Letham, B. (2018). Forecasting at scale. The American Statistician, Vol. 72(1), pp. 37–45.
Tegene, A. (1991). Kalman filter and the demand for cigarettes. Applied Economics, Vol. 23(7), pp. 1175–1182.
Thombs, L. A., and Schucany, W. R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, Vol. 85(410), pp. 486–492.
Turrini, L., and Meissner, J. (2019). Spare parts inventory management: New evidence from distribution fitting. European Journal of Operational Research, Vol. 273(1), pp. 118–130.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., and Polosukhin, I. (2017). Attention is all you need. In I. Guyon et al. (Eds.), Advances in neural information processing systems, Vol. 30 (pp. 5998–6008). Curran Associates, Inc.
Venkatesan, R. (2014). The complete journey. engineering/sourcefiles. (Visited on 2019-Sep-10)
Wemmerĺov, U. (1986). A time-phased order-point system in environments with and without demand uncertainty: a comparative analysis of non-monetary performance variables. International journal of production research, Vol. 24(2), pp. 343–358.
Wemmerĺov, U., and Whybark, D. C. (1984). Lot-sizing under uncertainty in a rolling schedule environment. The International Journal Of Production Research, Vol. 22(3), pp. 467–484.
Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka, D. (2017). A multi-horizon quantile recurrent forecaster. 31st conference on Neural information processing systems (NIPS) arXv:1711-11053.
Yu, Q., Wang, K., Strandhagen, J. O., and Wang, Y. (2017). Application of long short-term memory neural network to sales forecasting in retail—a case study. In International workshop of advanced manufacturing and automation (pp. 11–17).
Zhang, G. (2012). Neural networks for time-series forecasting. In Handbook of natural computing (pp. 461–477). Springer Berlin, Heidelberg.