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Abstract 
Model-based approaches remain an important option for modelling customer demand. While this approach allows to 

analyse demand using a model based on theoretical arguments, each choice of model is associated with specific 

assumptions under which this model is valid. Customer demand in retail is typically modelled as a Poison-type process, 

in particular using a negative binomial distribution. Poisson-type processes are associated with an exponential inter-arrival 

time that describes the probability distribution between subsequent events. Using a public dataset from a large 

supermarket, the analysis of the data shows that while the general assumption of a Poisson-process is reasonable, the 

purchasing behaviour strongly depends on the type of product. Additionally, customers in this supermarket show a strong 

preference for a weekly shopping trip. 

Keywords: Stochastic demand; Demand model; Poisson; Negative binomial. 

1. Introduction  

One of the core operational aspects of retailers is to ensure that sufficient inventory is maintained to satisfy customer 

demand. Conceptually, we can split this task into two aspects: First, we need to estimate the future customer demand to 

then calculate the required new inventory that we need to satisfy the expected demand, taking current stock levels into 

account. The future demand is a random variable that follows a specific probability distribution function. In the context 

of the newsvendor model (Edgeworth, 1888) (see, e.g. Khouja (1999) for a review), the optimal quantile for a known 

probability density function can be calculated exactly. Crucially, this approach already assumes that we have chosen a 

specific probability distribution as our demand model. In many more complex settings in practice, determining the 

optimal quantile directly often proves to be very challenging. Therefore, more tangible key performance indicators (KPIs) 

focusing on directly measurable business objectives are used to define the business strategy, such as the stock-out rate or 

the waste rate of perishable goods. Therefore, if we want to study the effect of different choices of a specific quantile of 

the demand distribution on the operational decisions such as the order quantity as well as the operationally accessible 

KPIs, we need access to the full probability density distribution of the future predicted demand. Further, if we plan a 

deeper analysis on the data-generating process leading to the customer demand, we need access to this variable directly 

as derived operational quantities such as the optimal order quantity are at best a proxy in the sense of a causal analysis. 

A wide range of approaches have been suggested that can be broadly categorized in the following way: In the “data-

driven newsvendor”, the operational quantity is estimated directly from the observable data using, for example, machine 

learning. In this approach, the demand estimation is no longer modelled explicitly but contained implicitly within the 

model that is used to estimate the optimal order quantity for a given product at a specific sales location. Although this 

integrated approach seems at first preferable because it avoids modelling the demand explicitly, this also implies that we 

no longer have access to the probability distribution for the demand. 
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The methods that model demand explicitly can be categorized in model-free and model based approaches. In model-free 

approaches, we do not assume a specific parameterization or theoretical derivation of the underlying demand model, but 

estimate this directly from the data. Typical examples of these approaches are ARIMA, LSTM or smoothing techniques 

that mainly rely on the auto-correlation between observed events to predict future behavior. 

Finally, model-based approaches use either a theoretical or empirical model to describe demand as a random variable. 

This has the advantage that we can base the demand estimate on theoretical considerations as well as obtain a full 

probability distribution instead of point estimates. However, if we rely on theoretical arguments to motivate our choice 

of demand model, we need to verify the assumptions of this model and determine if the data support these. 

The remainder of the paper is organised as follows: 

Sec. 2 summarizes the current status of the relevant literature, sec. 3 discusses the relationship between count data and 

inter-arrival time, i.e. the way the number of observed sales are linked to the distribution of time between subsequent 

purchases. Sec. 4 introduces the dataset used in the analysis described in detail in sec. 5, followed by a discussion in sec. 

6. The paper ends with a conclusion in sec 7. 

1.1. Summary of contributions and goal of the paper 

In a model-based approach we need to choose a specific model to forecast future customer demand. A common choice 

to model customer demand is the negative binomial distribution, also known as a Gamma-Poisson distribution as 

suggested in Ehrenberg (1959); Goodhardt and Ehrenberg (1967); Chatfield and Goodhardt (1973); Schmittlein, 

Bemmaor, and Morrison (1985). Implicitly, this assumes that we can treat the sales of goods, for example in a 

supermarket, as a Poisson process, which in turn implies that the inter-arrival time between subsequent events follows 

an exponential distribution. Using a public dataset from a supermarket chain, we can investigate if this assumption is 

supported by data in this scenario. Since the data used in this analysis are recorded per product group and per household, 

we can investigate the effect of customer heterogeneity on how the purchasing behaviour, and therefore the validity of 

the model assumptions, varies between different types of products. This topic is not widely explored in the literature, in 

particular for fast moving goods. However, for the case of slow-moving goods, the nature of the Poisson - process is 

explored for example for spare part sales in Syntetos, Babai, and Altay (2012); Lengu, Syntetos, and Babai (2014); 

Turrini and Meissner (2019). 

2. Literature Review 

The following section summaries the relevant literature and has been grouped into separate sections to make it easier to 

find the various aspects. 

2.1. Integrated Approaches 

From an operational point of view, the quantity the retailers need to act upon is the optimal order quantity that is 

transmitted to the manufacturer or wholesaler to procure new goods for future selling periods. Instead of first estimating 

the future demand and then derive the optimal order quantity, an integrated approach aims at estimating the operational 

quantity directly. This approach is known as the “data-driven newsvendor” in the recent literature, see e.g. Beutel and 

Minner (2012); Ban and Rudin (2019); Bertsimas and Kallus (2020); Oroojlooyjadid, Snyder, and Takáĉ (2020); Huber, 

Müller, Fleischmann, and Stuckenschmidt (2019). At first glance, this approach seems preferable since we no longer 

need to estimate the probability density function of the future demand as a random variable but can directly estimate the 

operational quantity from the underlying data, such as, e.g., past sales records, pricing information, promotion campaign, 

and others. However, the approach that separates the steps of estimating demand first and then derive the optimal order 

quantity has significant benefits compared to such an integrated approach. If we have access to the full probability 

distribution describing the predicted future demand, we can analyse the impact of choosing different quantiles as the best 

point estimators for our ordering decision on operational KPIs. Since such KPIs, for example, waste and stock-out rate 

in case of perishable food, conflict with each other, analysing the full spectrum of the predicted distribution allows 

mapping the available choices to the overall business strategy. For example, if the management were to decide that the 

stock-out rate must not fall below a certain threshold for a specific product group, we can then investigate which quantile 

we would have to choose to achieve this objective and what the consequences are on, for example, the waste rate. Using 

the order quantity instead implies that we convolve information about operational aspects beyond our (immediate) control 

such as lot-sizes and delivery schedules without being able to analyse separately how large the contributions from demand 

and operational constraints are. Furthermore, from a practitioners perspective, calculating the demand separately from 

the orders has the benefit that longer-term forecasts can be calculated that can be both shared with other business units 

as well as used as a failure - recovery mechanism if the forecasting step fails but new orders need to be calculated based 

on current stock levels and delivery constraints. More importantly, however, the integrated approach does not allow to 
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study the data-generating process, i.e., the mechanism that drives the stochastic behaviour of customer demand. This is 

paramount if, possibly at a later stage, a causal analysis is planned to study the influence of interventions such as pricing, 

advertisement or promotion campaigns, or others in either Pearl’s do-calculus (Pearl, 2009) or Rubin’s potential 

outcomes framework (Rubin, 1974). This is different from studying such effects in terms of Granger causality (Granger, 

1969), which seeks to analyse the effect of one time series on another. While we can, for example, represent the price of 

a product as a time-series, fundamentally, this is an intervention as retailers actively define a specific price. Such an 

analysis is only possible if we have access to the quantity directly affected by these interventions, i.e. the predicted 

demand, as operational quantities such as the optimal order size are, at best, a proxy and do not allow a thorough 

understanding of the underlying causal relationships and likely lead to unnecessary causal pathways that we may not be 

able to control for. 

2.2. Timeseries Based Approaches 

A popular method to estimate future demand is to interpret past sales records, possibly corrected for censored data, as a 

time-series from which the future demand can be estimated. Generally, this method works by building a regression model 

from past observations, i.e. yt+1 = f(yt,yt−1,...). Depending on the approach taken, dedicated components can be introduced 

to model trends, seasonality, or external factors in a variety of ways. Fundamentally, these approaches exploit the auto-

correlation between the variable Y representing the demand at various times t. In this family of approaches, demand is 

estimated, for example, using auto-regressive integrated moving average (ARIMA) (Box, Jenkins, Reinsel, & Ljungl, 

2015) or exponential smoothing methods (Croston, 1972; Holt, 1957; Brown, 1963; Gardner, 1985). A comprehensive 

review can be found in De Gooijer and Hyndman (2006). Within the context of demand forecasting, examples of these 

methods can be found in e.g. Huber, Gossmann, and Stuckenschmidt (2017); Kalchschmidt, Verganti, and Zotteri (2006); 

Fattah, Ezzine, Aman, El Moussami, and Lachhab (2018); Permatasari, Sutopo, and Hisjam (2018). Other approaches 

are based on Kalman filters (Kalman, 1960; G. W. Morrison & Pike, 1977; Mitropoulos, Samouilidis, & Protonotarios, 

1980; Tegene, 1991; Kandananond, 2014; Jacobi, Karimanzira, & Ament, 2007). Building on this concept, state space-

models (R. Hyndman, Koehler, Ord, & Snyder, 2008) relate the observable to the evolution of (unknown) states that 

describe the system of interest, see e.g. Ramos, Santos, and Rebelo (2015) for a comparison of ARIMA vs state-space 

models within a retail context. Structural time-series (Harvey & Peters, 1990; Taylor & Letham, 2018) models take a 

similar approach and decompose the observations into trend, seasonality, and further aspects. 

Using supervised machine learning, neural networks have been used for time-series forecasting for a long time (Zhang, 

2012; Remus & O’Connor, 2001). Machine learning approaches naturally allow to take a wide range of covariates or 

feature variables into account and methods range from regression tress (Breiman, Friedman, Stone, & Olshen, 1984), to 

recurrent neural networks (Rumelhart, Hinton, & Williams, 1986), “long short-term memory” (LSTM) networks 

(Hochreiter & Schmidhuber, 1997), or transformers (Vaswani et al., 2017). The interest in deep learning techniques has 

significantly increased in recent years within the context of demand forecasting, see e.g. Bandara et al. (2019); Yu, Wang, 

Strandhagen, and Wang (2017); Goyal, Kumar, Kulkarni, Krishnamurthy, and Vartak (2018); Helmini, Jihan, Jayasinghe, 

and Perera (2019); Golabek, Senge, and Neumann (2020). A different approach to modelling demand is taken by Alwan, 

Xu, Yao, and Yue (2016) where the authors use an empirical AR(1) time-series approach. 

However, all these methods implicitly or explicitly rely on the auto-correlation between observations of the variable of 

interest at different times ti. In many cases, this may be sufficient, however, since these methods rely on learning or 

exploiting the auto-correlation, they are prone to temporal confounding which may impact both the performance of the 

model as well as its interpretability. Temporal confounding can arise if some external variable X affects the variable we 

wish to forecast, for example, the future demand, at different times t1 and t as illustrated in Fig. 1. If we look at the causal 

dependency in this directed acyclic graph, the variable X takes the role of a (temporal) confounder, creating a backdoor 

path between the variable Y at times t1 and t. Therefore, if we do not control for such a temporal confounder, the auto-

correlation of the variable Y between times t1 and t will at least contain a spurious component introduced by the backdoor 

path, even if there is a genuine auto-correlation. Neither traditional time-series methods such as ARIMA nor smoothing 

methods, nor recurrent neural networks or modern LSTM-based can disentangle these effects as they rely on the 

assumption that the correlations found in the data are genuine. 

The methods discussed so far calculate a point estimate, meaning that they forecast a single number as the prediction. 

While business operations can be based on a single number, this does not allow to estimate the uncertainty on this number. 

Since the implicit model parameters of, for example, an ARIMA or machine learning model need to be estimated from 

the available data, these models are intrinsically associated with an uncertainty. A range of approaches has been 

developed, see e.g. Chatfield (1993) for a review of the methods available at the time. In particular, bootstrapping 

methods have been studied in detail for time-series forecasting (Masarotto, 1990; McCullough, 1994, 1996; Grigoletto, 

1998; Thombs & Schucany, 1990; Clements & Taylor, 2001; Angus, 1994; Pascual, Romo, & Ruiz, 2004, 2001, 2005). 

However, as already pointed out in Chatfield (1993), estimating the uncertainty is only one aspect of why generally the 
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full probability distribution function of the variable of interest, in our case, the future customer demand, is required 

because only then can we evaluate the outcome of alternative scenarios described by the quantiles of this distribution on 

the business strategy. In particular, if we do not wish to make the assumption that the demand follows a Gaussian 

distribution we either need to assume a specific functional form or estimate the complete distribution directly. 

 

Figure 1: Origin of temporal confounding: An external variable X affects the prediction variable Y at different times t1 and t, 

creating a backdoor path between yt1 and yt. The auto-correlation from Yt1 to Yt is therefore a mixture of the true causal effect from Yt1 

to Yt as well as the spurious correlation via the backdoor path Yt1 via Xt1,t to Yt. 

2.3. Model-Free Approaches 

In model-free approaches, we generally do not assume that the variable of interest such as the future customer demand 

can be described by a specific functional form but estimate this from data. This approach is also called quantile regression 

(Koenker & Hallock, 2001) and can be implemented in several ways. For time-series in particular, a simulation or 

bootstrapping framework has been developed (R. J. Hyndman, 1995). Methods based on neural networks have also been 

explored for this purpose (Feindt & Kerzel, 2006; Wen, Torkkola, Narayanaswamy, & Madeka, 2017; Lim, Arik, Loeff, 

& Pfister, 2019). 

2.4. Model-Based Approaches 

In model-based approaches, we first choose the underlying probability distribution function that we use to model the 

variable of interest. Then, for each forecasting step, we need to estimate the model parameters, possibly with their 

associated uncertainties. Empirically, we could estimate the best fitting function at each forecast step given the current 

data (Adan, van Eenige, & Resing, 1995), however, due to the stochastic nature of demand, such an approach is not 

expected to be stable as each new data record may result in a different “optimal” distribution function. 

It is therefore advisable to base the choice of probability distribution function on theoretical arguments and then use 

suitable algorithms such as e.g. Salinas, Flunkert, Gasthaus, and Januschowski (2020) for the modelling. However, each 

choice for an underlying model is associated with a specific set of assumptions. Even if these models work well in day-

to-day operations, it is crucial to verify these assumptions to determine if the assumptions on which the model is built 

are justified by the observable data. 

The count distribution of product sales is typically modelled as a negative binomial distribution (NBD), also known as a 

Gamma-Poisson distribution. This distribution arises if the parameter λ of is not fixed but a random variable itself that 

follows a Gamma distribution, i.e. the NBD can be seen of a mixture of Poisson distributions. Compared to the Poisson 

distribution, the NBD is over-dispersed, i.e. shows a larger variance (σ2 > µ) than the Poisson distribution for which µ = 

σ2. The model was first developed by Ehrenberg (1959) and discussed further subsequently by e.g. Goodhardt and 
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Ehrenberg (1967); Chatfield and Goodhardt (1973). Schmittlein et al. (1985) point out why this approach generally works 

for consumer purchases: Each consumer makes their purchase according to a Poisson process with rate λ and the rates 

are specific to the individual consumers and follow a Gamma distribution. D. G. Morrison (1969) allows for a large 

fraction of non-buyers where the peak at zero is inflated beyond the value by a Poisson or NBD model. 

Ehrenberg (1959) lists two assumptions: The successive purchase periods are both of equal time and similar to each 

other, as well as not too short such that purchases in one period do not affect the ones in the next period. However, as 

Chatfield and Goodhardt (1973) points out, a pure Poisson process leads to an exponential distribution as inter-arrival 

time which implies that the next likely purchase time is immediate, whereas in practice one would expect a dead-time of 

no purchase after a purchase has been made. This is related to the second assumption by Ehrenberg that the intervals 

considered should not be too short. In practical situations, too short is not very specific and depends on the type of product 

considered. Alternatively, compound Poisson distributions are used, see e.g. Prak et al. (2018) and references therein. 

2.5. Customer Heterogeneity 

Customer heterogeneity is one of the key drivers that can lead to large demand fluctuations (Bartezzaghi, Verganti, & 

Zotteri, 1999) as well as demand patterns that are specific to a particular market. This can lead to an effect known as 

“lumpy demand”, see e.g. Wemmerĺov (1986); Wemmerlōv and Whybark (1984); Ho (1995); Bartezzaghi and Verganti 

(1995). In these cases, periods of high and low demand alternate in an irregular fashion resulting in “clusters” of customer 

demand. This behaviour is observed in a range of application areas from, for example, fashion (Fisher, Hammond, 

Obermeyer, & Raman, 1994) to manufacturing (Brandolese & Cigolini, 1999). 

In Kalchschmidt et al. (2006), for example, the authors analyse the impact on business operations in three case studies 

from spare parts, retail and fresh food and recommend identifying the root causes of customer heterogeneity, define 

homogeneous groups and then use specific forecasting approaches within each group. 

Unlike many case - studies focusing on specific domains, larger supermarkets, in particular, are expected to show a broad 

range of customer behaviour since the products offered can range from fresh and convenience food, canned or frozen 

food with a long shelf-life to electronics, fashion, as well as household items. Therefore, this broad range of products 

sold in supermarkets will likely lead to an equally large range of customer behaviour, since many heterogeneous market 

domains are combined in the same physical or virtual store. Furthermore, in particular for the case of a physical store, 

the customer behaviour that would otherwise be different across the broad range of product categories, can overlap since 

customers may seize the opportunity to buy all items together as a “one-stop-shop”. From an operational point of view, 

supermarket managers in particular are interested in as few operational systems as possible to keep the day-to-day 

complexity low as reasonably possible. In particular, if we want to base the demand forecast on a single model covering 

most if not all product lines, we need to investigate whether the assumptions this model makes can be verified in the data. 

3. Count Data and Inter-arrival Time 

Using a specific model grounded in theoretical arguments is often favourable over model-free, purely data-driven 

methods to forecast customer demand or integrated approaches for inventory control as discussed in sec. 2. In particular, 

customer demand is typically modelled as a negative binomial distribution (NBD). The negative binomial model arises 

if the parameter λ of a Poisson distribution itself is a random variable that is distributed according to a Gamma 

distribution: 

  (1) 

where r is a form parameter and the rate  is chosen from the binomial distribution, indicating that this prior 

describes the total count of r − 1 in  prior observations (Gelman et al., 2013). The Gamma-Poisson model is then 

the convolution: 

                         (2) 
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Inserting the definition of the Poisson and Gamma distribution into Eq. (2), we obtain:

 

Using the identity 

 

we can evaluate the integral 

 

and with Γ(x + 1) = x!, we can then write: 

 

= Negative − Binomial(r,p) 

In most cases, we take the observed sales data as a proxy for the customer demand where we may have to account for 

censored data in case of stockout situations. Fundamentally, therefore, the underlying process behind the observed data 

is a Poisson process. The count distribution of a Poisson or NBD model hence answers the question: How many products 

are being sold? A related question which probes the underlying assumptions of the model is given by What is the time 

between purchases?. For a Poisson-type process, this inter-arrival time is described by a continuous exponential 

distribution which can be seen as follows: The Poisson distribution is given by: 

 

with mean µ. In a Poisson process, i.e. when the events occur at an average rate λ per time interval, λ · t events will have 

happened during time t. The Poisson distribution for this is then 

P(r) = (λt)r e−λt/r! . 

The probability that no events occur, i.e. r = 0, is then given by P(0) = e−λt. The probability for an event to occur in time 

t is given by 

P(T ≤ t) = 1 − P(r = 0|µ = λt) = 1 − e−λt 

which is the cumulative density distribution of the exponential distribution, i.e. the corresponding probability density 

distribution is f(t) = λe−λt. Hence the Poisson-type distributions and the exponential distributions are linked in the 

following way: If the count data of the events can be described by a Poisson-type distribution, the time between two 
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events follows an exponential distribution. If we focus instead of the next purchase on the interval after which multiple 

purchases have occurred, the process can be described by an Erlang distribution as discussed in e.g. Chatfield and 

Goodhardt (1973). 

4. Data 

The data are taken from a public dataset (Venkatesan, 2014). They consist of anonymous transactions at a supermarket 

chain at the level of households and have been collected over a period over two years. In total, data from approximately 

2,500 households were recorded who were frequent shoppers at this retailer. The retailer at which the data were taken is 

not disclosed in this public dataset. However, as product sizes for liquids are given in ounces (OZ) and the data include 

a product hierarchy detailed as “Hispanic”, the data are likely recorded in the Americas. The data contain all purchases 

of the households across all product categories and are organised in a range of tables that describe the details of the 

product, transaction data (when was which product bought by which household), as well as further data tables that contain 

details to marketing campaigns. In this analysis, the data tables relating to transactional data and product details are 

relevant. The product details include department, product group name, sub-group name and its size, for example: 

(department = grocery, product group = household cleaning needs, product sub-group = ammonia) or (department = 

grocery, product group = fluid milk products, product sub-group = fluid milk white only). This means that while the 

individual product or brand cannot be specified, the type of item which the consumer bought can be identified to a fine 

granularity. This implies that we cannot identify aspects such as brand loyalty for individual products and neither the 

demographics and shopping preferences of customers within a single household. 

The table containing these data can be joined with the table holding the transactional data which allows to identify what 

a member of a specific household has bought when. These transactional data contain an identifier of the household that 

has bought the relevant product that in turn is linked to the table holding the product information using a product ID, as 

well as the quantity bought and an identification detailing the purchase time. After the join, the relevant data looks like: 

   Day Quantity Household ID Department Product Group Product Sub-Group 

 

217        1  1675       GROCERY HOUSEHOLD CLEANG NEEDS  AMMONIA  

46        1  1476       GROCERY FLUID MILK PRODUCTS            FLUID MILK WHITE ONLY 

 

A further field indicates the product ID that identifies a specific SKU even though a clear-text description of this product 

is not provided. 

Because the data are recorded at the level of households, we cannot distinguish between the shopping behaviour of, say, 

children and parents within the same household. We can, however, analyse how the purchasing behaviour of individual 

household changes across product groups which is sufficient to achieve our objective to determine if the assumptions 

that underlay the negative binomial model typically used in model-based forecasting approaches are fulfilled across a 

range of product types with very different characteristics. 
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Figure 2. Count data for an individual product well described by both a Poisson and a NBD model. 

5. Analysis 

Following the discussion in Sec. 2 and 3, we expect that the count data of individual products can be described by a 

Poisson or more generally by a negative binomial model. Apart from theoretical arguments, we expect that in most cases 

the NBD model will describe the data better as the negative binomial distribution is over-dispersed, i.e. σ2 > µ compared 

to the Poisson distribution, for which σ2 = µ. This means that in practice the additional parameter allows for longer tails. 

Figs. 2 and 3 show two examples for the overall count data of the sales of individual products. Overlaid on the data 

(histogram, green) are curves for a Poisson (triangle, blue) and Gamma-Poisson or NBD (circle, red) which have been 

computed using scikit-learn (Pedregosa et al., 2011). The curves were generated in the following way: In the first step, 

the mean and variance were determined from the data. The mean is used directly for the Poisson model, the parameters 

p and r for the NBD are calculated according to Eqn. (3). 

 p = µ/σ2 and r = µ2/(σ2 − µ) (3) 

Since the number of count data are limited, bin-to-bin fluctuations are expected when comparing the data to the models 

in a fit. In order to estimate the spread of distributions generated using these parameters, 50 toy experiments were 

performed for both the Poisson and the NBD model with the same parameters, using the total number of observed count 

data as the sample size in each experiment. Then, the average of these values in each bin was taken to represent the 

central point in the figure, denoted by a triangle for the Poisson model and a circle for the NBD model. The error bars in 

each bin reflect the spread (σ =  √𝑣𝑎𝑟) of the generated distributions. As we can see from Figs. 2 and 3, the NBD is able 

to describe the observed data quite well, whereas a pure Poisson model may fit in some cases but has typically too narrow 

tails to capture the observed sales patterns. Since the NBD Model belongs to the family of Poisson models, we expect in 

general that the inter-arrival time between two subsequent events follows an exponential model, as already discussed in 

Sec. 3. Looking at the customer behaviour from a bird’s eye view across all products, stores and households, Fig. 4 

describes this assumption reasonably well. 
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Figure 3. Count data for an individual product well described by a NBD model but overdispersed for a Poisson model. 

 

 

Figure 4. Inter-arrival time of all items bought by individual households. The data are fitted with an exponential curve. 

 

The fit to the function f(t) = ae−λt describes the data well except for two areas at day 7 and around day 14 where the data 

points deviate from the expected exponential distribution: If 7 or multiples of 7 days have passed between shopping trips, 

customers are in general slightly more likely to go shopping compared to any other interval. The effect is most 

pronounced for a 7-day interval and becomes less distinct for 14, 21, ... days. This means that overall the shopping 

patterns are compatible with the assumption of a Poisson process when we look at the data aggregated across all 

customers and all products. However, the deviations at day 7 and around day 14 already indicate that the underlying 

process is not quite as random as assumed in a Poisson-type process but customers have a preferred day on which they 

do the bulk of their shopping. 

The dataset contains shopping records for individual households as well as detailed information about the product 

hierarchy. While this does not allow to determine which specific product has been bought by a particular individual 

customer, this data does allow detailed insights into the shopping behaviour related to different types of products. Rather 

than looking at the bird’s eye view from the perspective of the retailer, the data can be analysed from the perspective of 

single households: How often do members of this household go shopping and how does this depend on the product 

category? A typical supermarket has a large number of different products (up to tens of thousands for large super- or 

hypermarkets across a wide range of product categories), leading to a large number of product categories and sub-
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categories. In the public dataset analysed here, products are grouped into 1000 different sub-categories. In the following, 

three representative sub-categories have been chosen which each represent very different items bought by a typical 

household in the area where the supermarkets are located: 

 Milk (Fluid milk products: aseptic & milk drinks, fluid milk white only, premium pints) 

 Deli & Prepared Food 

 Household Cleaning Items 

The first category (milk products) is representative of fresh food that has a shelf-life of typically a few days, whereas the 

category “Deli & Prepared Food” typically consists of convenience food intended for immediate or same-day 

consumption. The final category (household cleaning items) represents products with a long shelf-life that are typically 

not prone to impulsive buying patterns. 

Whereas Fig. 4 showed that the overall assumption that purchases in a supermarket follow the expected pattern from a 

Poisson process, we can see from Fig. 5 that the shopping behaviour depends strongly on the product sub-category. 

For example, the inter-arrival time of products in the sub-category Deli & Prepared Food follow an almost exponential 

behaviour as expected by the Poisson nature of the shopping process. The 7-day periodicity is visible but not very 

pronounced. This can be explained by the fact that products in this category are made for (almost) immediate 

consumption, such as pre-prepared lunch or dinners: Customers buy a ready-made meal and may do so again on the next 

day. 

On the other hand, the purchasing behaviour for household cleaning items is completely different: Since these products 

last typically a week or more, the corresponding inter-arrival time shows a strong 7-day periodicity where the peaks at 

7 and 14 days have almost the same height, falling off gently towards higher periods such as 21 and 28 days. There is 

no underlying exponential decay in the observed inter-arrival times, i.e. products from these and similar categories are 

never bought “randomly” as expected by a Poisson-type model but mostly on fixed and regular shopping days. 

Most other products and sub-categories are between these extremes. A suitable example is milk products recorded in the 

data: The time between subsequent purchases show a strong. 7 day period and a weaker 14,21,28 day period owing to 

the fact that (processed) milk will typically last a few days once opened. Notably, from about 7 days onward the 

distribution shows an exponential decay in the inter-arrival time indicating a Poisson-type contribution to the shopping 

pattern. However, the time between purchases in the regime day 1-6 does not follow an exponential function but shows 

an “activation curve” specific to the types of products sold. In this case, the supermarket likely doesn’t stock fresh milk 

which only lasts for a day or two but only processed milk with a longer shelf life. However, the exact behaviour depends 

on the specific properties of the individual product. 

 

Figure 5. Inter-arrival times for different Product sub-groups for individual households. The lines connect the data points and are 

added to guide the eye. 
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6. Discussion 

The key decision for any model-based demand forecasting approach is to decide which model should be used to describe 

the future sales of products. Typically, a Gamma-Poisson or negative binomial distribution is used to express the 

probability distribution governing the future demand (Ehrenberg, 1959; Goodhardt & Ehrenberg, 1967; Chatfield & 

Goodhardt, 1973). This assumes that the purchase process as such is a Poisson process (Schmittlein et al., 1985), which 

in turn implies that the interarrival time between subsequent purchases follows an exponential distribution (Chatfield & 

Goodhardt, 1973). 

When looking at the sales of all products bought by individual households, we can see that this expectation is generally 

well reproduced in the actual data as shown in Fig. 4. The time between subsequent purchases can generally be described 

by a single exponential function as expected from the theoretical motivation. However, there are notable exceptions: At 

day 7, day 14 and, to a lesser extend, day 21 the number of purchases increases and deviates visibly from the expectation 

of a single exponential function. This means that most households have a fixed “shopping day” at which they so most of 

their weekly shopping. 

However, when looking at the granularity of sub-categories, a more nuanced picture emerges as shown in Fig. 5. The 

time between purchases of products with a very short shelf-life that perish very quickly follow the expected exponential 

function. This means that the purchase of these products is dominated by the stochastic aspect of demand and can be 

interpreted as a pure Poisson process. 

The other extreme are products with a very long shelf-life that also last a long time once purchased. The sub-category of 

household cleaning items can be used to illustrate this purchasing behaviour: The time between purchases does not show 

the expected exponential function but instead, purchasing events are separated by clearly visible 7-day intervals. This 

means that these products are bought almost exclusively at regular shopping trips and will last at least until the next 

planned trip. 

Most products are between the extremes of a pure Poisson process and an almost regular pattern which is illustrated by 

the sub-category of milk: The longer shelf-life allows for a more regular pattern whereas the visible exponential behaviour 

highlights the presence of the underlying Poisson process. The purchasing behaviour for these products also exhibits the 

expected dead-time (Chatfield & Goodhardt, 1973), during which no immediate repeat purchase is required. 

Overall, the data show that choosing the popular negative binomial model to describe customer demand are well founded 

in theoretical arguments. In particular, products with a short shelf-life intended for immediate consumption show the 

exponential behaviour expected from a pure Poisson-type process. However, the longer the shelf-life and the less the 

products are intended for immediate consumption, the more the the purchase of these products is dominated by a more 

predictable weekly pattern. Retailers need to take this into account in their demand forecast, for example, by adding a 

adding a weekly seasonal component that reflects the shopping habits of their customers. This behaviour is similar to the 

arrival process in queuing theory, combining scheduled arrivals with a varying degree of random arrivals, where the 

mixture depends on the product type. However, typically queuing theory is used to optimise, for example, the check-out 

waiting times as in Priyangika and Cooray (2015). 

The relation between the count data and arrival times is not widely explored in the literature. Syntetos et al. (2012), Lengu 

et al. (2014) and Turrini and Meissner (2019) investigate the demand arrival process for slow moving spare parts. These 

studies also find that a Poisson-type process provides a good description of the data, however, compared to the data in 

this study, slow moving spare parts are characterised by inter-arrival times of weeks and months rather than days. 

7. Conclusion 

Demand forecasting continues to be of vital interest for retailers and academic research. Model based approaches can 

offer substantial benefits compared to model-free or purely data-driven approaches. However, each specific model chosen 

is associated with a set of underlying assumptions. 

Retail demand is typically modelled using a negative binomial distribution which implies that the underlying process is 

a Poisson-type process. Using a public dataset recording the shopping patterns of individual households in a large 

supermarket, the underlying assumptions of the Poisson process, in particular, the exponential distribution of the inter-

arrival time between subsequent purchasing events has been probed across multiple product categories. Looking at an 

aggregate level across all product categories, the time between two purchases can be described by an exponential model 

as expected, with significant deviations at a 7 and 14 day period. This indicates that customers generally have a preferred 



Kerzel 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.10, NO.1 100 

 

weekly shopping day at which the bulk of their shopping is done. When looking at product categories with very different 

characteristics such as convenience food and cleaning items, the data show that the purchasing behaviour is very different 

across these categories. Whereas convenience food tends to follow the exponential distribution expected from a Poisson 

- type process, cleaning items are typically bought on regular weekly shopping trips. 

This implies that while the negative binomial model can give a good description of customer demand in retail and its 

underlying assumptions are well or approximately fulfilled for some types of products, this is not necessarily the case 

across all product types and categories. The shopping behaviour of individual household does not generally follow a 

Poisson - type process, even if this approach can give good results as an effective model in practice. 

The data used in this study are recorded at the level of households and product sub-group. This allows a detailed 

understanding of the implicit assumptions of the Poisson-type process that is typically assumed in modelling the 

underlying probability distribution describing the demand. In particular, this allows to understand whether using the 

commonly used negative binomial model is suitable for modelling the demand of this product category. This granularity 

of the data is also sufficient to target households with specific marketing approaches at this level. For example, the 

marketing department could use this information to issue coupons or smartphone notifications pertaining the purchase 

behaviour of this households for specific product groups. However, a even more detailed customer targeting at the level 

of individuals and specific products (as opposed to the product sub-category) the granularity of the recorded data would 

have to be increased. Before implementing a demand forecasting and replenishment solution for a specific retail chain it 

should be checked if equivalent data for this retailer is available and use this to tailor the models more specifically towards 

this retailer. If no such data are available, the conclusions from this study can be used but it should be investigated 

whether obtaining similar data in the future is possible. Retailers will typically have access to the sales data at SKU level 

but customer tracking at the level of individual purchases are more difficult in most countries. Further avenues of research 

could investigate who methods from queuing theory can be integrated in demand forecasting models. 
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