A New Hestenes-Stiefel and Fletcher-Reeves Conjugate Gradient Method with Descent Properties for Optimization Models

Document Type: Research Paper

Authors

1 Faculty of Informatics and Computing, Sultan Zainal Abidin University, Kuala Terengganu, Malaysia

2 Department of Mathematics, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Indonesia

3 bDepartment of Mathematics, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Indonesia

Abstract

The conjugate gradient (CG) scheme is regarded as among the efficient methods for large-scale optimization problems. Several versions of CG methods have been presented recently owing to their rapid convergence, simplicity, and their less memory requirements. In this article, we construct a new CG algorithm via the combination of the classical methods of Fletcher-Reeves (FR), and Hestenes-Stiefel (HS). The new CG method possesses the descent properties and converge globally provided the exact minimization condition is satisfied. The tests of the new CG method using MATLAB are analysed in terms of iteration number and CPU time. Numerical results have been reported which shows that the proposed CG method performs better compare to other CG methods.

Keywords


Ali, S., Mohammad, M., and Hadi, M. (2018). A Multi-objective Competitive Location Problem within Queuing Framework. Int J Supply Oper Manage (IJSOM), Vol.5 (1), pp. 42-65.

Andrei N. (2008). An unconstrained optimization test functions collection, Adv. Model. Optim, Vol. 10(1), pp. 147–161.

Dai Y. H and Yuan Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., Vol. 10(1), pp. 177–182.

Dolan E. D and Moré J. J. (2002). Benchmarking optimization software with performance profiles, Math. Program., Vol. 91(2), pp. 201–213.

Fletcher R. (1980). Practical Methods Of Optimization: Vol. 1 Unconstrained Optimization. John Wiley & Sons.

Fletcher R and Reeves C M. (1964). Function minimization by conjugate gradients, Comput. J., Vol. 7(2), pp. 149–154.

Hamid, S. and Farhad, H. (2019). Optimizing Total Delay and Average Queue Length Based on on Fuzzy Logic Controller in Urban Intersections. International Journal of Supply and Operations Management, Vol. 6(2), pp. 142-158.

Hamoda M, Rivaie M, Mamat M and Salleh Z. (2015). A new nonlinear conjugate gradient coefficient for unconstrained optimization, Appl. Math. Sci., Vol. 9(37), pp. 1813–1822.

Hestenes M. R and Stiefel E. (1952). Methods of conjugate gradients for solving linear systems, NBS Washington, DC. Vol.49, (1), pp. 409-436.

Hillstrom K. E. (1977). Simulation test approach to the evaluation of nonlinear optimization algorithms, ACM Trans. Math. Software ;( United States), Vol. 3(4), pp. 305-315.

Kazem, F. and Mohammad, R. G. (2019). Optimizing the Safety Stock with Guaranteed Service Model in Reverse Logistics Considering Internal and External Returns. International Journal of Supply and Operations Management, Vol. 6 (3), pp. 188-199.

Liu Y and Storey C. (1991). Efficient generalized conjugate gradient algorithms, part 1: theory, J. Optim. Theory Appl., Vol. 69(1), pp. 129–137.

Mamat, M., Sulaiman, I.M., Maulana, M., Sukono, Zakaria, Z.A. (2020). An efficient spectral conjugate gradient parameter with descent condition for unconstrained optimization. Journal of Advanced Research in Dynamical and Control Systems. Vol. 12(2), pp. 12(02), pp. 2487-2493.

Molga M. and Smutnicki C. (2005). Test functions for optimization needs, Test Funct. Optim. needs, Vol. 101, pp. 1-43.

Polak E and Ribiere G. (1969). Note sur la convergence de méthodes de directions conjuguées, ESAIM Math. Model. Numer. Anal. Mathématique Anal. Numérique, Vol. 3(R1), pp. 35–43.

Rivaie M, Mamat M, June L. W and Mohd I. (2012). A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., Vol. 218(22), pp. 11323–11332.

Sulaiman, I. M., Sukono, Sudradjat, S., and Mamat, M. (2019). New   class   of   hybrid   conjugate gradient coefficients with guaranteed descent and efficient line search. IOP Conf. Ser.: Mater. Sci. Eng. 621(012021).

Sulaiman I. M, Mamat M, Abashar A, Zabidin S. (2015a). A Modified Nonlinear Conjugate Gradient Method for Unconstrained Optimization, Applied Mathematical Science Vol. 9(54) pp. 2671–2682.

Sulaiman I. M, Mamat M, Abashar A, and Rivaie M. (2015b). The global convergence properties of an improved conjugate gradient method Applied Mathematical Science, Vol 9(38), pp. 1857-1868.

Sulaiman, I.M., Mamat, M., Owoyemi, A.E., Olowo, S.E., Zamri, N. (2020a). A class of spectral conjugate gradient method with descent condition for unconstrained optimization. Journal of Advanced Research in Dynamical and Control Systems, Vol. 12(02), pp. 2480-2486.

Sulaiman, I.M., Usman, A. Y., and Mamat, M. (2020b). Application of Spectral Conjugate Gradient Methods for Solving Unconstrained Optimization Problems. An International Journal of Optimization and Control: Theories & Applications, Vol.10 (2), pp. 198-205.

Umar, A.O., Mamat, M., Sulaiman, I.M., Waziri, M.Y., and Mandara, A.V. (2020). A new modification of conjugate gradient parameter with efficient line search for nonconvex function. International Journal of Scientific and Technology Research. Vol. 9(03), pp. 6572- 6575.

Yuan Y and Sun W. (1999). Theory and methods of optimization. Science Press of China, Beijing.

Zainal Abidin N, Mamat M, Dangerfield B, Zulkepli JH, Baten MA, Wibowo A (2014). Combating Obesity through Healthy Eating Behavior: A Call for System Dynamics Optimization. PLoS ONE Vol. 9(12): e114135. https://doi.org/10.1371/journal.pone.0114135.