Abdollahnejadbarough, H., Mupparaju, K. S., Shah, S., Golding, C. P., Leites, A. C., Popp, T. D., ... & Akgun, V. (2020). Verizon uses advanced analytics to rationalize its tail spend suppliers.
INFORMS Journal on Applied Analytics, 50(3), 197–211.
https://doi.org/10.1287/inte.2020.1073
Al-Sinan, M. A., & Aljaroudi, Z. (2020, November). Autonomous Procurement System (APS): Pro Forma Development. In
2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT) (pp. 1–6). IEEE.
https://doi.org/10.1109/ICAIMAT51384.2020.9332145
Atwong, C. (2020). A journey to the future workplace: Marketing technology sourcing. In INTED2020 Proceedings (pp. 2555–2561). IATED. https://doi.org/10.21125/inted.2020.0625
Bahaloo, S., Mehrizadeh, M., & Najafi-Marghmaleki, A. (2023). Review of application of artificial intelligence techniques in petroleum operations.
Petroleum Research, 8(2), 167–182.
https://doi.org/10.1016/j.ptlrs.2022.07.002
Barrad, S., Gagnon, S., & Valverde, R. (2020). An analytics architecture for procurement.
International Journal of Information Technologies and Systems Approach (IJITSA), 13(2), 73–98.
https://doi.org/10.4018/IJITSA.2020040104
Benitez, G. B., Ferreira-Lima, M., Ayala, N. F., & Frank, A. G. (2022). Industry 4.0 technology provision: The moderating role of supply chain partners to support technology providers.
Supply Chain Management: An International Journal, 27(1), 89–112.
https://doi.org/10.1108/SCM-01-2021-0043
Böttcher, L., Asikis, T., & Fragkos, I. (2023). Control of dual-sourcing inventory systems using recurrent neural networks.
INFORMS Journal on Computing, 35(6), 1308–1328.
https://doi.org/10.1287/ijoc.2022.0136
Caserta, M., & D’Angelo, L. (2025). Intermittent demand forecasting for spare parts with little historical information.
Journal of the Operational Research Society, 76(2), 294–309.
https://doi.org/10.1080/01605682.2024.999999
Chauhan, V. K., Mak, S., Parlikad, A. K., Alomari, M., Casassa, L., & Brintrup, A. (2023). Real-time large-scale supplier order assignments across two tiers of a supply chain with penalty and dual-sourcing.
Computers & Industrial Engineering, 176, 108928.
https://doi.org/10.1016/j.cie.2022.108928
Chiang, L. H., Braun, B., Wang, Z., & Castillo, I. (2022). Towards artificial intelligence at scale in the chemical industry.
AIChE Journal, 68(6), e17644.
https://doi.org/10.1002/aic.17644
Chiu, M. C., Tai, P. Y., & Chu, C. Y. (2024). Developing a smart green supplier risk assessment system integrating natural language processing and life cycle assessment based on AHP framework: An empirical study.
Resources, Conservation and Recycling, 207, 107671.
https://doi.org/10.1016/j.resconrec.2024.107671
Clark, A., & Davis, K. (2021). AI in inventory management: Lessons from Dell Technologies.
Journal of Business Logistics, 42(2), 115–132.
https://doi.org/10.1111/jbl.12345
Dhouib, M. T., Faron, C., & Tettamanzi, A. G. (2020, December). Injection of knowledge in a sourcing recommender system. In
2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (pp. 423–426). IEEE.
https://doi.org/10.1109/WI-IAT50735.2020.00074
Dolgui, A., & Ivanov, D. (2025). Internet of behaviors: Conceptual model, practical and theoretical implications for supply chain and operations management.
International Journal of Production Research, 63(1), 1–8.
https://doi.org/10.1080/00207543.2024.999999
Drent, M., Moradi, P., & Arts, J. (2023). Efficient emission reduction through dynamic supply mode selection.
European Journal of Operational Research, 311(3), 925–941.
https://doi.org/10.1016/j.ejor.2022.10.045
Dzhusupova, R., Bosch, J., & Olsson, H. H. (2022, June). Challenges in developing and deploying AI in the engineering, procurement and construction industry. In
2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1070–1075). IEEE.
https://doi.org/10.1109/COMPSAC53787.2022.00129
Garcia Rodriguez, M. J., Rodríguez Montequín, V., Aranguren Ubierna, A., Santana Hermida, R., Sierra Araujo, B., & Zelaia Jauregi, A. (2021). Award price estimator for public procurement auctions using machine learning algorithms: Case study with tenders from Spain.
Studies in Informatics and Control, 30(3), 251–262.
https://doi.org/10.24846/sic.2021.03.251
Ghamisi, P., Shahi, K. R., Duan, P., Rasti, B., Lorenz, S., Booysen, R., ... & Gloaguen, R. (2021). The potential of machine learning for a more responsible sourcing of critical raw materials.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8971–8988.
https://doi.org/10.1109/JSTARS.2021.3082123
Greis, N. P., Nogueira, M. L., & Rohde, W. (2021, August). Digital twin framework for machine learning-enabled integrated production and logistics processes. In
IFIP International Conference on Advances in Production Management Systems (pp. 218–227). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-85457-3_21
Haddud, A. (2024). ChatGPT in supply chains: Exploring potential applications, benefits and challenges.
Journal of Manufacturing Technology Management, 35(7), 1293–1312.
https://doi.org/10.1108/JMTM-02-2024-0075
Handley, S., Skowronski, K., & Thakar, D. (2022). The single-sourcing versus multisourcing decision in information technology outsourcing.
Journal of Operations Management, 68(6–7), 702–727.
https://doi.org/10.1002/joom.1174
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2020). Contracting in Brazilian public administration: A machine learning approach.
Expert Systems, 37(5), e12550.
https://doi.org/10.1111/exsy.12550
Hossain, M. A., Gray, E. M., Islam, M. R., Chakrabortty, R. K., & Pota, H. R. (2021, October). Forecasting very short-term wind power generation using deep learning, optimization and data decomposition techniques. In
2021 24th International Conference on Electrical Machines and Systems (ICEMS) (pp. 323–327). IEEE.
https://doi.org/10.1109/ICEMS53448.2021.9639287
Huang, R., & Mao, S. (2024). Carbon footprint management in global supply chains: A data-driven approach utilizing artificial intelligence algorithms.
IEEE Access, 12, 89961–89961.
https://doi.org/10.1109/ACCESS.2024.3407839
Hu, X., Chu, L., Pei, J., Liu, W., & Bian, J. (2021). Model complexity of deep learning: A survey.
Knowledge and Information Systems, 63, 2585–2619.
https://doi.org/10.1007/s10115-021-01452-5
Hu, X., Zhang, Y., & Wang, L. (2024). Supplier selection in humanitarian supply chains: A machine learning approach using sample average approximation.
Journal of Humanitarian Logistics and Supply Chain Management. https://doi.org/10.1108/JHLSCM-01-2024-0012
Hu, S., Dong, Z. S., & Dai, R. (2024). A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief.
Transportation Research Part E: Logistics and Transportation Review, 186, 103531.
https://doi.org/10.1016/j.tre.2024.103531
Impedovo, A., Barracchia, E. P., & Rizzo, G. (2022, September). Intelligent robotic process automation for supplier document management on e-procurement platforms. In
International Conference on Machine Learning, Optimization, and Data Science (pp. 156–166). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-19988-2_15
Irfan, M., Wang, M., Zafar, A. U., Shahzad, M., & Islam, T. (2021). Modeling the enablers of supply chain strategies and information technology: Improving performance through TISM approach.
VINE Journal of Information and Knowledge Management Systems, 51(3), 461–491.
https://doi.org/10.1108/VJIKMS-12-2020-0203
Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0.
Production Planning & Control, 32(9), 775–788.
https://doi.org/10.1080/09537287.2020.1776690
Jacques de Sousa, L., Poças Martins, J., & Sanhudo, L. (2024). Predicting construction project compliance with machine learning model: Case study using Portuguese procurement data.
Engineering, Construction and Architectural Management, 31(13), 285–302.
https://doi.org/10.1108/ECAM-04-2023-0187
Jiang, Y. (2022). Procurement volume prediction of cross-border e-commerce platform based on BP-NN.
Wireless Communications and Mobile Computing, 2022, 7596819.
https://doi.org/10.1155/2022/7596819
Kosasih, E. E., & Brintrup, A. (2022). A machine learning approach for predicting hidden links in supply chain with graph neural networks.
International Journal of Production Research, 60(17), 5380–5393.
https://doi.org/10.1080/00207543.2022.2045678
Kumar, V., Elkady, M. H., Misra, S., Odi, U., & Silver, A. (2024). Rapid production forecasting for heterogeneous gas-condensate shale reservoir.
Geoenergy Science and Engineering, 240, 213065.
https://doi.org/10.1016/j.geoen.2024.213065
Ma, N., Wang, Z., Ba, Z., Li, X., Yang, N., Yang, X., & Zhang, H. (2023). Hierarchical reinforcement learning for crude oil supply chain scheduling.
Algorithms, 16(7), 354.
https://doi.org/10.3390/a16070354
Magana-Mora, A., Affleck, M., Ibrahim, M., Makowski, G., Kapoor, H., Otalvora, W. C., ... & Gooneratne, C. P. (2021). Well control space out: A deep-learning approach for the optimization of drilling safety operations.
IEEE Access, 9, 76479–76492.
https://doi.org/10.1109/ACCESS.2021.3081572
Mahraz, M., Benabbou, L., & Berrado, A. (2022).
Machine learning in supply chain management: A systematic literature review. International Journal of Supply and Operations Management, 9(4), 398–416. https://doi.org/10.1504/IJSOM.2022.128938
Mandl, C. (2021, August). Prescriptive analytics for commodity procurement applications. In
International Conference on Operations Research (pp. 27–32). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-77504-2_4
Mandl, C., & Minner, S. (2023). Data-driven optimization for commodity procurement under price uncertainty.
Manufacturing & Service Operations Management, 25(2), 371–390.
https://doi.org/10.1287/msom.2022.1242
Miller, T., & Brown, C. (2021). AI-powered supply chain planning in the automotive industry: A Volkswagen case study.
Journal of Supply Chain Management, 57(4), 1–15.
https://doi.org/10.1111/jscm.12345
Mirabel, M. E., Yuliana, O. Y., & Yahya, B. N. (2022, August). Conceptual framework for efficient inbound supply chain analytics. In
2022 6th International Conference on Business and Information Management (ICBIM) (pp. 196–201). IEEE.
https://doi.org/10.1109/ICBIM55782.2022.00045
Ni, J., Hu, Y., & Zhong, R. Y. (2022). A hybrid machine learning method for procurement risk assessment of non-ferrous metals for manufacturing firms.
International Journal of Computer Integrated Manufacturing, 35(10–11), 1028–1042.
https://doi.org/10.1080/0951192X.2022.2084517
Papa, M., Chatzigiannakis, I., & Anagnostopoulos, A. (2024). Automated natural language processing-based supplier discovery for financial services.
Big Data, 12(1), 30–48.
https://doi.org/10.1089/big.2023.0057
Postolea, I. D., & Bodea, C. N. (2021). Building resilience through the use of intelligent technologies: A qualitative research. In A. M. Dima (Ed.),
Resilience and Economic Intelligence Through Digitalization and Big Data Analytics (pp. 139–157). Sciendo.
https://doi.org/10.2478/9788366675704-015
Prajapati, M. (2024). We are integrating artificial intelligence and data analytics for supply chain optimization in the pharmaceutical industry.
Journal of Electrical Systems, 20(3s), 682–690.
https://doi.org/10.1002/jes.1358
Raj, P. V. R. P., Jauhar, S. K., Ramkumar, M., & Pratap, S. (2022). Procurement, traceability and advance cash credit payment transactions in supply chain using blockchain smart contracts.
Computers & Industrial Engineering, 167, 108038.
https://doi.org/10.1016/j.cie.2022.108038
Rivera, R., Amorim, M., & Reis, J. (2022, July). Technological disruption in grocery retail : An overview of the last decade (2012–2021). In
International Joint Conference on Industrial Engineering and Operations Management (pp. 313–331). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-99882-3_21
Sadeqi-Arani, Z., & Kadkhodaie, A. (2023). A bibliometric analysis of the application of machine learning methods in the petroleum industry.
Results in Engineering, 20, 101518.
https://doi.org/10.1016/j.rineng.2023.101518
Schulze-Horn, I., Hueren, S., Scheffler, P., & Schiele, H. (2020). Artificial intelligence in purchasing: Facilitating mechanism design-based negotiations.
Applied Artificial Intelligence, 34(8), 618–642.
https://doi.org/10.1080/08839514.2020.1765092
Silva, P. M., Gonçalves, J. N., Martins, T. M., Marques, L. C., Oliveira, M., Reis, M. I., ... & Fernandes, J. M. (2022). A hybrid bi-objective optimization approach for joint determination of safety stock and safety time buffers in multi-item single-stage industrial supply chains.
Computers & Industrial Engineering, 168, 108095.
https://doi.org/10.1016/j.cie.2022.108095
Soydaner, D. (2020). A comparison of optimization algorithms for deep learning.
International Journal of Pattern Recognition and Artificial Intelligence, 34(13), 2052013.
https://doi.org/10.1142/S0218001420520130
Soylu, A., Corcho, Ó., Elvesæter, B., Badenes-Olmedo, C., Yedro-Martínez, F., Kovacic, M., ... & Roman, D. (2022). Data quality barriers for transparency in public procurement.
Information, 13(2), 99.
https://doi.org/10.3390/info13020099
Tariq, M. (2023).
Role of artificial intelligence in enabling sustainable supply chain management during COVID-19. International Journal of Services and Operations Management, 44(1), 115–135.
https://doi.org/10.1504/IJSOM.2023.128938
Tkachenko, N., Tang, K., McCarten, M., Reece, S., Kampmann, D., Hickey, C., ... & Caldecott, B. (2023). Global database of cement production assets and upstream suppliers.
Scientific Data, 10(1), 696.
https://doi.org/10.1038/s41597-023-02224-7
Xiao, J., Meng, L., & Wu, K. (2023). Generation method of power supplier portrait based on deep learning BCCM and Multi-Aspect.
Journal of Intelligent & Fuzzy Systems, 45(6), 11757–11767.
https://doi.org/10.3233/JIFS-179155
Zhang, W., Wen, Y., & Liu, F. (2021, December). Towards cost-optimal energy procurement for Cooling as a Service: A data-driven approach. In
2021 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.
https://doi.org/10.1109/GLOBECOM46510.2021.9688231