Operations Research and Artificial Intelligence for Supply Chain Planning: A Systematic Literature Review

Document Type : Review Paper

Author

Université hassan 2, ENSEM, Casablanca, Morocco

Abstract

This systematic review analyzes 55 peer-reviewed scientific articles published between 2020 and 2024, examining the application of Artificial Intelligence (AI) in supply chain optimization and planning. The study focuses on AI methodologies, their implementation across various industrial sectors, and their impact on enhancing operational efficiency, reducing logistics costs, and improving adaptability to market dynamics. It highlights how AI-driven approaches are transforming traditional supply chain management practices through real-time decision-making, predictive analytics, and automation. The review identifies key advancements in AI technologies, such as machine learning, deep learning, and reinforcement learning, along with their applications in demand forecasting, inventory management, and transportation planning. Additionally, it explores critical challenges and barriers to adoption, including data quality issues, technological integration complexities, and organizational readiness, while emphasizing existing research gaps. To address these gaps, the study proposes a novel AI-based framework, providing actionable insights for researchers, industry professionals, and policymakers aiming to drive innovation and resilience in supply chain management.

Keywords


Abdollahnejadbarough, H., Mupparaju, K. S., Shah, S., Golding, C. P., Leites, A. C., Popp, T. D., ... & Akgun, V. (2020). Verizon uses advanced analytics to rationalize its tail spend suppliers. INFORMS Journal on Applied Analytics, 50(3), 197–211. https://doi.org/10.1287/inte.2020.1073
 
Al-Sinan, M. A., & Aljaroudi, Z. (2020, November). Autonomous Procurement System (APS): Pro Forma Development. In 2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICAIMAT51384.2020.9332145
 
Atwong, C. (2020). A journey to the future workplace: Marketing technology sourcing. In INTED2020 Proceedings (pp. 2555–2561). IATED. https://doi.org/10.21125/inted.2020.0625
 
Bahaloo, S., Mehrizadeh, M., & Najafi-Marghmaleki, A. (2023). Review of application of artificial intelligence techniques in petroleum operations. Petroleum Research, 8(2), 167–182. https://doi.org/10.1016/j.ptlrs.2022.07.002
 
Barrad, S., Gagnon, S., & Valverde, R. (2020). An analytics architecture for procurement. International Journal of Information Technologies and Systems Approach (IJITSA), 13(2), 73–98. https://doi.org/10.4018/IJITSA.2020040104
 
Benitez, G. B., Ferreira-Lima, M., Ayala, N. F., & Frank, A. G. (2022). Industry 4.0 technology provision: The moderating role of supply chain partners to support technology providers. Supply Chain Management: An International Journal, 27(1), 89–112. https://doi.org/10.1108/SCM-01-2021-0043
 
Böttcher, L., Asikis, T., & Fragkos, I. (2023). Control of dual-sourcing inventory systems using recurrent neural networks. INFORMS Journal on Computing, 35(6), 1308–1328. https://doi.org/10.1287/ijoc.2022.0136
 
Caserta, M., & D’Angelo, L. (2025). Intermittent demand forecasting for spare parts with little historical information. Journal of the Operational Research Society, 76(2), 294–309. https://doi.org/10.1080/01605682.2024.999999
 
Chauhan, V. K., Mak, S., Parlikad, A. K., Alomari, M., Casassa, L., & Brintrup, A. (2023). Real-time large-scale supplier order assignments across two tiers of a supply chain with penalty and dual-sourcing. Computers & Industrial Engineering, 176, 108928. https://doi.org/10.1016/j.cie.2022.108928
 
Chiang, L. H., Braun, B., Wang, Z., & Castillo, I. (2022). Towards artificial intelligence at scale in the chemical industry. AIChE Journal, 68(6), e17644. https://doi.org/10.1002/aic.17644
 
Chiu, M. C., Tai, P. Y., & Chu, C. Y. (2024). Developing a smart green supplier risk assessment system integrating natural language processing and life cycle assessment based on AHP framework: An empirical study. Resources, Conservation and Recycling, 207, 107671. https://doi.org/10.1016/j.resconrec.2024.107671
 
Clark, A., & Davis, K. (2021). AI in inventory management: Lessons from Dell Technologies. Journal of Business Logistics, 42(2), 115–132. https://doi.org/10.1111/jbl.12345
 
Dhouib, M. T., Faron, C., & Tettamanzi, A. G. (2020, December). Injection of knowledge in a sourcing recommender system. In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (pp. 423–426). IEEE. https://doi.org/10.1109/WI-IAT50735.2020.00074
 
Dolgui, A., & Ivanov, D. (2025). Internet of behaviors: Conceptual model, practical and theoretical implications for supply chain and operations management. International Journal of Production Research, 63(1), 1–8. https://doi.org/10.1080/00207543.2024.999999
 
Drent, M., Moradi, P., & Arts, J. (2023). Efficient emission reduction through dynamic supply mode selection. European Journal of Operational Research, 311(3), 925–941. https://doi.org/10.1016/j.ejor.2022.10.045
 
Dzhusupova, R., Bosch, J., & Olsson, H. H. (2022, June). Challenges in developing and deploying AI in the engineering, procurement and construction industry. In 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1070–1075). IEEE. https://doi.org/10.1109/COMPSAC53787.2022.00129
 
Garcia Rodriguez, M. J., Rodríguez Montequín, V., Aranguren Ubierna, A., Santana Hermida, R., Sierra Araujo, B., & Zelaia Jauregi, A. (2021). Award price estimator for public procurement auctions using machine learning algorithms: Case study with tenders from Spain. Studies in Informatics and Control, 30(3), 251–262. https://doi.org/10.24846/sic.2021.03.251
 
Ghamisi, P., Shahi, K. R., Duan, P., Rasti, B., Lorenz, S., Booysen, R., ... & Gloaguen, R. (2021). The potential of machine learning for a more responsible sourcing of critical raw materials. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8971–8988. https://doi.org/10.1109/JSTARS.2021.3082123
 
Greis, N. P., Nogueira, M. L., & Rohde, W. (2021, August). Digital twin framework for machine learning-enabled integrated production and logistics processes. In IFIP International Conference on Advances in Production Management Systems (pp. 218–227). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-85457-3_21
 
Haddud, A. (2024). ChatGPT in supply chains: Exploring potential applications, benefits and challenges. Journal of Manufacturing Technology Management, 35(7), 1293–1312. https://doi.org/10.1108/JMTM-02-2024-0075
 
Handley, S., Skowronski, K., & Thakar, D. (2022). The single-sourcing versus multisourcing decision in information technology outsourcing. Journal of Operations Management, 68(6–7), 702–727. https://doi.org/10.1002/joom.1174
 
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2020). Contracting in Brazilian public administration: A machine learning approach. Expert Systems, 37(5), e12550. https://doi.org/10.1111/exsy.12550
 
Hossain, M. A., Gray, E. M., Islam, M. R., Chakrabortty, R. K., & Pota, H. R. (2021, October). Forecasting very short-term wind power generation using deep learning, optimization and data decomposition techniques. In 2021 24th International Conference on Electrical Machines and Systems (ICEMS) (pp. 323–327). IEEE. https://doi.org/10.1109/ICEMS53448.2021.9639287
 
Huang, R., & Mao, S. (2024). Carbon footprint management in global supply chains: A data-driven approach utilizing artificial intelligence algorithms. IEEE Access, 12, 89961–89961. https://doi.org/10.1109/ACCESS.2024.3407839
 
Hu, X., Chu, L., Pei, J., Liu, W., & Bian, J. (2021). Model complexity of deep learning: A survey. Knowledge and Information Systems, 63, 2585–2619. https://doi.org/10.1007/s10115-021-01452-5
 
Hu, X., Zhang, Y., & Wang, L. (2024). Supplier selection in humanitarian supply chains: A machine learning approach using sample average approximation. Journal of Humanitarian Logistics and Supply Chain Management. https://doi.org/10.1108/JHLSCM-01-2024-0012
Hu, S., Dong, Z. S., & Dai, R. (2024). A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief. Transportation Research Part E: Logistics and Transportation Review, 186, 103531. https://doi.org/10.1016/j.tre.2024.103531
 
Impedovo, A., Barracchia, E. P., & Rizzo, G. (2022, September). Intelligent robotic process automation for supplier document management on e-procurement platforms. In International Conference on Machine Learning, Optimization, and Data Science (pp. 156–166). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-19988-2_15
 
Irfan, M., Wang, M., Zafar, A. U., Shahzad, M., & Islam, T. (2021). Modeling the enablers of supply chain strategies and information technology: Improving performance through TISM approach. VINE Journal of Information and Knowledge Management Systems, 51(3), 461–491. https://doi.org/10.1108/VJIKMS-12-2020-0203
 
Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1776690
 
Jacques de Sousa, L., Poças Martins, J., & Sanhudo, L. (2024). Predicting construction project compliance with machine learning model: Case study using Portuguese procurement data. Engineering, Construction and Architectural Management, 31(13), 285–302. https://doi.org/10.1108/ECAM-04-2023-0187
 
Jiang, Y. (2022). Procurement volume prediction of cross-border e-commerce platform based on BP-NN. Wireless Communications and Mobile Computing, 2022, 7596819. https://doi.org/10.1155/2022/7596819
 
Johnson, R., & Lee, P. (2019). Enhancing demand forecasting using AI: The P&G experience. International Journal of Operations & Production Management, 39(4), 567–585. https://doi.org/10.1108/IJOPM-03-2019-0154
 
Kosasih, E. E., & Brintrup, A. (2022). A machine learning approach for predicting hidden links in supply chain with graph neural networks. International Journal of Production Research, 60(17), 5380–5393. https://doi.org/10.1080/00207543.2022.2045678
 
Kumar, V., Elkady, M. H., Misra, S., Odi, U., & Silver, A. (2024). Rapid production forecasting for heterogeneous gas-condensate shale reservoir. Geoenergy Science and Engineering, 240, 213065. https://doi.org/10.1016/j.geoen.2024.213065
 
Lallouet, A. (2022). New AI techniques for combinatorial optimization. International Journal on Artificial Intelligence Tools, 31(03), 2241001. https://doi.org/10.1142/S0218213022410019
 
Ma, N., Wang, Z., Ba, Z., Li, X., Yang, N., Yang, X., & Zhang, H. (2023). Hierarchical reinforcement learning for crude oil supply chain scheduling. Algorithms, 16(7), 354. https://doi.org/10.3390/a16070354
 
Magana-Mora, A., Affleck, M., Ibrahim, M., Makowski, G., Kapoor, H., Otalvora, W. C., ... & Gooneratne, C. P. (2021). Well control space out: A deep-learning approach for the optimization of drilling safety operations. IEEE Access, 9, 76479–76492. https://doi.org/10.1109/ACCESS.2021.3081572
 
Mahraz, M., Benabbou, L., & Berrado, A. (2022). Machine learning in supply chain management: A systematic literature review. International Journal of Supply and Operations Management, 9(4), 398–416. https://doi.org/10.1504/IJSOM.2022.128938
 
Mandl, C. (2021, August). Prescriptive analytics for commodity procurement applications. In International Conference on Operations Research (pp. 27–32). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-77504-2_4
 
Mandl, C., & Minner, S. (2023). Data-driven optimization for commodity procurement under price uncertainty. Manufacturing & Service Operations Management, 25(2), 371–390. https://doi.org/10.1287/msom.2022.1242
 
Miller, T., & Brown, C. (2021). AI-powered supply chain planning in the automotive industry: A Volkswagen case study. Journal of Supply Chain Management, 57(4), 1–15. https://doi.org/10.1111/jscm.12345
 
Mirabel, M. E., Yuliana, O. Y., & Yahya, B. N. (2022, August). Conceptual framework for efficient inbound supply chain analytics. In 2022 6th International Conference on Business and Information Management (ICBIM) (pp. 196–201). IEEE. https://doi.org/10.1109/ICBIM55782.2022.00045
 
Muldoon, J., Cant, C., Graham, M., & Ustek Spilda, F. (2023). The poverty of ethical AI: Impact sourcing and AI supply chains. AI & Society, 38, 1–15. https://doi.org/10.1007/s00146-023-01789-0
 
Ni, J., Hu, Y., & Zhong, R. Y. (2022). A hybrid machine learning method for procurement risk assessment of non-ferrous metals for manufacturing firms. International Journal of Computer Integrated Manufacturing, 35(10–11), 1028–1042. https://doi.org/10.1080/0951192X.2022.2084517
 
Papa, M., Chatzigiannakis, I., & Anagnostopoulos, A. (2024). Automated natural language processing-based supplier discovery for financial services. Big Data, 12(1), 30–48. https://doi.org/10.1089/big.2023.0057
 
Postolea, I. D., & Bodea, C. N. (2021). Building resilience through the use of intelligent technologies: A qualitative research. In A. M. Dima (Ed.), Resilience and Economic Intelligence Through Digitalization and Big Data Analytics (pp. 139–157). Sciendo. https://doi.org/10.2478/9788366675704-015
 
Prajapati, M. (2024). We are integrating artificial intelligence and data analytics for supply chain optimization in the pharmaceutical industry. Journal of Electrical Systems, 20(3s), 682–690. https://doi.org/10.1002/jes.1358
 
Raj, P. V. R. P., Jauhar, S. K., Ramkumar, M., & Pratap, S. (2022). Procurement, traceability and advance cash credit payment transactions in supply chain using blockchain smart contracts. Computers & Industrial Engineering, 167, 108038. https://doi.org/10.1016/j.cie.2022.108038
 
Rivera, R., Amorim, M., & Reis, J. (2022, July). Technological disruption in grocery retail : An overview of the last decade (2012–2021). In International Joint Conference on Industrial Engineering and Operations Management (pp. 313–331). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-99882-3_21
 
Sadeqi-Arani, Z., & Kadkhodaie, A. (2023). A bibliometric analysis of the application of machine learning methods in the petroleum industry. Results in Engineering, 20, 101518. https://doi.org/10.1016/j.rineng.2023.101518
 
Schulze-Horn, I., Hueren, S., Scheffler, P., & Schiele, H. (2020). Artificial intelligence in purchasing: Facilitating mechanism design-based negotiations. Applied Artificial Intelligence, 34(8), 618–642. https://doi.org/10.1080/08839514.2020.1765092
 
Silva, P. M., Gonçalves, J. N., Martins, T. M., Marques, L. C., Oliveira, M., Reis, M. I., ... & Fernandes, J. M. (2022). A hybrid bi-objective optimization approach for joint determination of safety stock and safety time buffers in multi-item single-stage industrial supply chains. Computers & Industrial Engineering, 168, 108095. https://doi.org/10.1016/j.cie.2022.108095
 
Soydaner, D. (2020). A comparison of optimization algorithms for deep learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(13), 2052013. https://doi.org/10.1142/S0218001420520130
 
Soylu, A., Corcho, Ó., Elvesæter, B., Badenes-Olmedo, C., Yedro-Martínez, F., Kovacic, M., ... & Roman, D. (2022). Data quality barriers for transparency in public procurement. Information, 13(2), 99. https://doi.org/10.3390/info13020099
 
Tariq, M. (2023). Role of artificial intelligence in enabling sustainable supply chain management during COVID-19. International Journal of Services and Operations Management, 44(1), 115–135. https://doi.org/10.1504/IJSOM.2023.128938
 
Tkachenko, N., Tang, K., McCarten, M., Reece, S., Kampmann, D., Hickey, C., ... & Caldecott, B. (2023). Global database of cement production assets and upstream suppliers. Scientific Data, 10(1), 696. https://doi.org/10.1038/s41597-023-02224-7
 
Turner, S., & Williams, B. (2018). Smart logistics in the food sector: Nestlé’s AI journey. International Journal of Logistics Management, 29(3), 765–782. https://doi.org/10.1108/IJLM-07-2018-0150
 
Van Steenbergen, R. M., & Mes, M. R. (2020). Forecasting demand profiles of new products. Decision Support Systems, 139, 113401. https://doi.org/10.1016/j.dss.2020.113401
 
Xiao, J., Meng, L., & Wu, K. (2023). Generation method of power supplier portrait based on deep learning BCCM and Multi-Aspect. Journal of Intelligent & Fuzzy Systems, 45(6), 11757–11767. https://doi.org/10.3233/JIFS-179155
 
Zhang, W., Wen, Y., & Liu, F. (2021, December). Towards cost-optimal energy procurement for Cooling as a Service: A data-driven approach. In 2021 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE. https://doi.org/10.1109/GLOBECOM46510.2021.9688231
 
Zhang, Y., Xu, L., & Lu, Z. (2023). Purchase decision of GPPS: An empirical study based on machine learning in China. Cybernetics and Systems, 54(1), 60–87. https://doi.org/10.1080/01969722.2022.2100017