Abalkina, A. (2024). Challenges posed by hijacked journals in Scopus.
Journal of the Association for Information Science and Technology,
75(4), 395-422.
https://doi.org/10.1002/asi.24855
Alexopoulos, K., Nikolakis, N., Bakopoulos, E., Siatras, V., & Mavrothalassitis, P. (2023). Machine learning agents augmented by digital twinning for smart production scheduling.
IFAC-PapersOnLine,
56(2), 2963-2968.
https://doi.org/10.1016/j.ifacol.2023.10.1420
Anaba, D. C., Kess-Momoh, A. J., & Ayodeji, S. A. (2024). Digital transformation in oil and gas production: Enhancing efficiency and reducing costs.
International Journal of Management & Entrepreneurship Research,
6(7), 2153-2161.
https://doi.org/10.51594/ijmer.v6i7.1263
Andrés, M., Álvaro, G., & Julián, M. (2019, March). Advantages of learning factories for production planning based on shop floor simulation: A step towards smart factories in industry 4.0. In
2019 IEEE World Conference on Engineering Education (EDUNINE) (pp. 1-5). IEEE. https://doi.org/
10.1109/EDUNINE.2019.8875782
Atibodhi, N., Toprasert, P., Thienthanukit, W., Supha-Kitti, D., Pongsripian, W., Wang, F., ... & Mijares, G. (2023, October). Application of a Digital Twin for Asset-Wide Production Planning and Optimization–A Case Study. In
Abu Dhabi International Petroleum Exhibition and Conference (p. D031S108R007). SPE.
https://doi.org/10.2118/216698-MS
Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies.
Quantitative science studies,
1(1), 377-386.
https://doi.org/10.1162/qss_a_00019.
Bai, C., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective.
International journal of production economics,
229, 107776.
https://doi.org/10.1016/j.ijpe.2020.107776.
Behrendt, S., Wurster, M., May, M. C., & Lanza, G. (2023). Extended Production Planning of Reconfigurable Manufacturing Systems by Means of Simulation-based Optimization.
ESSN: 2701-6277, 210-220.
https://doi.org/10.15488/13440
Berlak, J., Berg, J., Stangl, M., & Baumgart, L. (2019, February). Real-Time IoT-Based Production Planning and Control of Industrial Robots in an Automated Cyber-Physical Production System Under Dynamic Conditions: Lessons Learned from a Make-to-Order Usage Case. In
International Conference on Computer Aided Systems Theory (pp. 485-492). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-45096-0_59
Biesinger, F., Meike, D., Kraß, B., & Weyrich, M. (2019). A digital twin for production planning based on cyber-physical systems: A Case Study for a Cyber-Physical System-Based Creation of a Digital Twin.
procedia CIRP,
79, 355-360.
https://doi.org/10.1016/j.procir.2019.02.087
Bojic, S., Maslaric, M., Mircetic, D., Nikolicic, S., & Todorovic, S. (2023). Simulation and Genetic Algorithm-based approach for multi-objective optimization of production planning: A case study in industry.
Advances in Production Engineering & Management,
18(2), 250-262. https://doi.org/
10.14743/apem2023.2.471
Bueno, A., Godinho Filho, M., & Frank, A. G. (2020). Smart production planning and control in the Industry 4.0 context: A systematic literature review.
Computers & industrial engineering,
149, 106774.
https://doi.org/10.1016/j.cie.2020.106774.
Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review: A quick guide for computer science research.
MethodsX,
9, 101895.
https://doi.org/10.1016/j.mex.2022.101895.
Chai, X., Zhao, L., & Li, X. (2020). Production scheduling and management of industrial product based on computer simulation technology. Academic Journal of Manufacturing Engineering, 18(2), 124-129.
Chen, J., Shi, H., Sivakumar, B., & Peart, M. R. (2016). Population, water, food, energy and dams.
Renewable and Sustainable Energy Reviews,
56, 18-28.
http://dx.doi.org/10.1016/j.rser.2015.11.043
Chen, Y., Zhou, Y., & Zhang, Y. (2020, November). Collaborative production planning with unknown parameters using model predictive control and machine learning. In
2020 Chinese Automation Congress (CAC) (pp. 2185-2190). IEEE. https://doi.org/
10.1109/CAC51589.2020.9326614.
Chen, Y., Zhou, Y., & Zhang, Y. (2021). Machine learning-based model predictive control for collaborative production planning problem with unknown information.
Electronics, 10(15), 1818.
https://doi.org/10.3390/electronics10151818
Chiadamrong, N., & Tangchaisuk, C. (2021). Hybrid simulation-based optimization for production planning of a dedicated remanufacturing system. International Journal of Knowledge and Systems Science (IJKSS), 12(3), 53-79. https://doi.org/10.4018/IJKSS.2021070103
Chiurco, A., Elbasheer, M., Longo, F., Nicoletti, L., & Solina, V. (2023). Data modelling and ML practice for enabling intelligent digital twins in adaptive production planning and control.
Procedia Computer Science,
217, 1908-1917.
https://doi.org/10.1016/j.procs.2022.12.391
Chu, C. H., & Baroroh, D. K. (2024). Production planning and simulation in mixed reality for human work performance variations.
Computers & Industrial Engineering,
193, 110327 .
https://doi.org/10.1016/j.cie.2024.110327.
Cruz, J. A. D., Salles-Neto, L. L. D., & Schenekemberg, C. M. (2024). An integrated production planning and inventory management problem for a perishable product: optimization and Monte Carlo simulation as a tool for planning in scenarios with uncertain demands.
Top, 32(2), 263-303.
https://doi.org/10.1007/s11750-024-00667-x
Barreto, B. D. S., Sagawa, J. K., & Silva, M. S. (2021). Use of workload control in production planning and control: modeling on a simulation software.
Gestão & Produção,
28(2), e5744.
https://doi.org/10.1590/1806-9649-2021v28e5744
Dcoutho, J. F., Eisenbart, B., & Kulkarni, A. (2023, November). Hierarchy Priortization and Dynamic Simulation for Low Volume Production Planning. In 2023 IEEE Engineering Informatics (pp. 1-10). IEEE. https://doi.org/10.1109/IEEECONF58110.2023.10520413
Dimoudis, D., Vafeiadis, T., Nizamis, A., Musiari, E., Ziliotti, L., Ioannidis, D., & Tzovaras, D. (2023, June). A holistic framework for production scheduling in Industry 4.0. In
2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT) (pp. 269-276). IEEE. https://doi.org/
10.1109/DCOSS-IoT58021.2023.00053
Ding, J., Liu, Y., Zeng, F., Huang, Y., & Li, X. (2023, June). Simulation of Production Scheduling System in Automated Manufacturing Workshop Based on Markov Model. In
2023 International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII) (pp. 621-626). IEEE.
https://doi.ieeecomputersociety.org/10.1109/ICMIII58949.2023.00130
Elbasheer, M., Longo, F., Mirabelli, G., Padovano, A., Solina, V., & Talarico, S. (2022). Integrated prescriptive maintenance and production planning: a machine learning approach for the development of an autonomous decision support agent.
IFAC-PapersOnLine,
55(10), 2605-2610.
https://doi.org/10.1016/j.ifacol.2022.10.102
El-Garaihy, W. H. (2021). Analysis of supply chain operations reference (SCOR) and balanced scorecard (BSC) in measuring supply chains efficiency using DEMATEL and DEA techniques.
Journal of Global Operations and Strategic Sourcing,
14(4), 680-700.
https://doi.org/10.1108/JGOSS-07-2020-0034
El Jaouhari, A., Alhilali, Z., Arif, J., Fellaki, S., Amejwal, M., & Azzouz, K. (2022). Demand forecasting application with regression and iot based inventory management system: a case study of a semiconductor manufacturing company.
International journal of engineering research in Africa,
60, 189-210.
https://doi.org/10.4028/p-8ntq24.
Fabianova, J., Kacmary, P., & Janekova, J. (2019). Operative production planning utilising quantitative forecasting and Monte Carlo simulations.
Open Engineering,
9(1), 613-622.
https://doi.org/10.1515/eng-2019-0071.
Fani, V., Antomarioni, S., Bandinelli, R., & Bevilacqua, M. (2023). Data-driven decision support tool for production planning: a framework combining association rules and simulation.
Computers in Industry,
144, 103800. https://doi.org/
10.1016/j.compind.2022.103800
Fülöp, M. T., Gubán, M., Gubán, Á., & Avornicului, M. (2022). Application research of soft computing based on machine learning production scheduling.
Processes,
10(3), 520.
https://doi.org/10.3390/pr10030520.
Garcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C., & Garcia-Lopez, Y. J. (2023). Improving demand forecasting by implementing machine learning in poultry production company.
Learning,
71(2), 39-45.
https://doi.org/10.14445/22315381/IJETT-V71I2P205
Garg, K., Goswami, C., Chhatrawat, R. S., Dhakar, S. K., & Kumar, G. (2022). Internet of things in manufacturing: A review.
Materials Today: Proceedings,
51, 286-288.
https://doi.org/10.1016/j.matpr.2021.05.321
Ghaleb, M., Zolfagharinia, H., & Taghipour, S. (2020). Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns.
Computers & Operations Research,
123, 105031.
https://doi.org/10.1016/j.cor.2020.10503
Ghasemi, A., Yeganeh, Y. T., Matta, A., Kabak, K. E., & Heavey, C. (2023, December). Deep Learning Enabling Digital Twin Applications in Production Scheduling: Case of Flexible Job Shop Manufacturing Environment.
In 2023 Winter Simulation Conference (WSC) (pp. 2148-2159). IEEE.
https://doi.org/10.1109/WSC60868.2023.10407811
González Rodríguez, G., Gonzalez-Cava, J. M., & Méndez Pérez, J. A. (2020). An intelligent decision support system for production planning based on machine learning.
Journal of Intelligent Manufacturing,
31(5), 1257-1273.
https://doi.org/10.1007/s10845-019-01510-y
Guo, K., Yang, M., & Zhu, H. (2020). Application research of improved genetic algorithm based on machine learning in production scheduling.
Neural Computing and Applications,
32, 1857-1868.
https://doi.org/10.1007/s00521-019-04571-5.
Hatami-Marbini, A., Sajadi, S. M., & Malekpour, H. (2020). Optimal control and simulation for production planning of network failure-prone manufacturing systems with perishable goods.
Computers & Industrial Engineering,
146, 106614.
https://doi.org/10.1016/j.cie.2020.106614
Heesch, R., Ehrhardt, J., Niggemann, O. (2024). Integrating Machine Learning into an SMT-Based Planning Approach for Production Planning in Cyber-Physical Production Systems.
Communications in Computer and Information Science, 318-331.
https://doi.org/10.1007/978-3-031-50485-3_33.
Hong, H., Zhang, X., Ren, K., Bei, H., Deng, C., & Wang, H. (2023, September). Modelling and Simulation of Ship Block Production Scheduling Optimization Problem Considering the Multiple Resources Constraints. In
2023 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS) (pp. 1379-1384). IEEE.
https://doi.ieeecomputersociety.org/10.1109/EIECS59936.2023.10435431
Ikeziri, L. M., Souza, F. B. D., Gupta, M. C., & de Camargo Fiorini, P. (2019). Theory of constraints: review and bibliometric analysis.
International Journal of Production Research,
57(15-16), 5068-5102.
https://doi.org/10.1080/00207543.2018.1518602.
Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024). Research trends of computational thinking in mathematics learning: A bibliometric analysis from 2009 to 2023.
EURASIA Journal of Mathematics, Science and Technology Education,
20(3), em2417.
https://doi.org/10.29333/ejmste/14343.
Jamwal, A., Agrawal, R., Sharma, M., & Giallanza, A. (2021). Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions.
Applied Sciences,
11(12), 5725.
https://doi.org/10.3390/app11125725
Jayant, A., Agarwal, A., Gupta, V. (2021). Application of Machine Learning Technique for Demand Forecasting: A Case Study of the Manufacturing Industry. In: Pandey, P.M., Kumar, P., Sharma, V. (eds)
Advances in Production and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore.
https://doi.org/10.1007/978-981-15-5519-0_31
Kim, B., & Maravelias, C. T. (2022). Supervised machine learning for understanding and improving the computational performance of chemical production scheduling MIP models.
Industrial & Engineering Chemistry Research,
61(46), 17124-17136.
https://doi.org/10.1021/acs.iecr.2c02734.
Kocsi, B., Matonya, M. M., Pusztai, L. P., & Budai, I. (2020). Real-time decision-support system for high-mix low-volume production scheduling in industry 4.0.
Processes,
8(8), 912.
https://doi.org/10.3390/pr8080912
Kuo, H. A., Hong, T. Y., & Chien, C. F. A Deep Reinforcement Learning Based Digital Twin Framework for Resilient Production Planning in Semiconductor Wafer Fabrication. (2023). International Conference on Computers and Industrial Engineering, CIE, (1),287-296.
Lan, X., & Chen, H. (2023). Simulation analysis of production scheduling algorithm for intelligent manufacturing cell based on artificial intelligence technology.
Soft Computing,
27(9), 6007-6017.
https://doi.org/10.1007/s00500-023-08074-3
Lanzini, M., Adami, N., Benini, S., Ferretti, I., Schieppati, G., Spoto, C., & Zanoni, S. (2023). Implementation and integration of a Digital Twin for production planning in manufacturing. In
Proceedings of the 35th European Modeling & Simulation Symposium, EMSS. CALTEK srl. https://doi.org/10.46354/i3m
Laroque, C., Leißau, M., Scholl, W., & Schneider, G. (2021, December). Backward Simulation for Production Planning–Recent Advances in a Real-World Use-Case. In
2021 Winter Simulation Conference (WSC) (pp. 1-10). IEEE.
https://doi.org/10.1109/WSC52266.2021.9715490
Li, Y., Tao, Z., Wang, L., Du, B., Guo, J., & Pang, S. (2023). Digital twin-based job shop anomaly detection and dynamic scheduling.
Robotics and Computer-Integrated Manufacturing,
79, 102443.
https://doi.org/10.1016/j.rcim.2022.102443
Liu, J., Yu, D., Hu, Y., Yu, H., He, W., & Zhang, L. (2021, December). Digital Twin-driven Multi-objective Optimization Production Scheduling with Restraint Tool Resources. In
2021 7th International Conference on Computer and Communications (ICCC) (pp. 1228-1233). IEEE.
https://doi.org/10.1109/ICCC54389.2021.9674414
Liu, Y., Ma, C., & Huang, Y. (2024). An Internet of Things-Based Production Scheduling for Distributed Two-Stage Assembly Manufacturing with Mold Sharing.
Machines,
12(5), 310.
https://doi.org/10.3390/machines12050310
Magnanini, M. C., Melnychuk, O., Yemane, A., Strandberg, H., Ricondo, I., Borzi, G., & Colledani, M. (2021). A Digital Twin-based approach for multi-objective optimization of short-term production planning.
IFAC-PapersOnLine,
54(1), 140-145.
https://doi.org/10.1016/j.ifacol.2021.08.077
Makazhe, E. C., & Maramura, T. C. (2023, November). The Role of Fourth Industrial Revolution (4IR) Technologies in Achieving Sustainable Development Goals. In
The Global Conference on Entrepreneurship and the Economy in an Era of Uncertainty (pp. 985-998). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-0996-0_58
Mohamed Shaffril, H. A., Samsuddin, S. F., & Abu Samah, A. (2021). The ABC of systematic literature review: the basic methodological guidance for beginners.
Quality & quantity,
55, 1319-1346.
https://doi.org/10.1007/s11135-020-01059-6
Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: state of the art and new trends.
International Journal of Production Research,
58(7), 1927-1949.
https://doi.org/10.1080/00207543.2019.1636321
Muehlbauer, K., Rissmann, L., & Meissner, S. (2022, October). Machine Learning Decision Support for Production Planning and Control Based on Simulation-Generated Data. In
International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management (pp. 257-279). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-43471-6_12
Müller, R., Hörauf, L., Speicher, C., Koch, J., & Drieß, M. (2019). Simulation based online production planning.
Procedia Manufacturing,
38, 1473-1480.
https://doi.org/10.1016/j.promfg.2020.01.140
Nakao, J., & Nishi, T. (2022). A bilevel production planning using machine learning-based customer modeling.
Journal of Advanced Mechanical Design, Systems, and Manufacturing,
16(4),
https://doi.org/10.1299/jamdsm.2022jamdsm0037
Negri, E., Cattaneo, L., Pandhare, V., Macchi, M., & Lee, J. (2022). Integrating PHM into production scheduling through a Digital Twin-based framework.
IFAC-PapersOnLine,
55(19), 31-36.
https://doi.org/10.1016/j.ifacol.2022.09.180
Negri, E., Pandhare, V., Cattaneo, L., Singh, J., Macchi, M., & Lee, J. (2021). Field-synchronized digital twin framework for production scheduling with uncertainty.
Journal of Intelligent Manufacturing,
32(4), 1207-1228.
https://doi.org/10.1007/s10845-020-01685-9
Okubo, Y., & Mitsuyuki, T. (2022). Ship production planning using shipbuilding system modeling and discrete time process simulation.
Journal of Marine Science and Engineering,
10(2), 176.
https://doi.org/10.3390/jmse10020176
Olanrele, O. O., Ismaila, S. O., Adeaga, O. A., Adeyemi, O. A., & Akintaro, A. S. (2023, April). Managing Uncertainty in Production Planning for Fast-Moving Consumer Goods: A Linear Programming and Monte Carlo Simulation Framework. In
2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG) (Vol. 1, pp. 01-08). IEEE.
https://doi.org/10.1109/SEB-SDG57117.2023.10124567
Panasri, J., Samattapapong, N., & Sangthong, S. (2022, December). Production scheduling for parallel machines using simulation techniques: case study of plastic packaging factory. In
2022 Winter Simulation Conference (WSC) (pp. 1876-1887). IEEE.
https://doi.org/10.1109/WSC57314.2022.10015428
Pandhare, V., Negri, E., Ragazzini, L., Cattaneo, L., Macchi, M., & Lee, J. (2024). Digital twin-enabled robust production scheduling for equipment in degraded state.
Journal of Manufacturing Systems,
74, 841-857.
https://doi.org/10.1016/j.jmsy.2024.04.027
Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR‐4‐SLR).
International Journal of Consumer Studies,
45(4), 1-16.
https://doi.org/10.1111/ijcs.12695
Pereira, D. F., Oliveira, J. F., & Carravilla, M. A. (2020). Tactical sales and operations planning: A holistic framework and a literature review of decision-making models.
International Journal of Production Economics,
228, 107695.
https://doi.org/10.1016/j.ijpe.2020.107695
Pereira, M. S., Aquino, P. T., De Mattos, C. A., & Lima, F. (2024). Energy Estimation and Production Scheduling in Job shop Using Machine Learning.
IEEE Access,
12, 104477-1041189.
https://doi.org/10.1109/ACCESS.2024.3430218
Phoong, S. W., Phoong, S. Y., & Khek, S. L. (2022). Systematic literature review with bibliometric analysis on Markov switching model: Methods and applications.
Sage Open,
12(2).
https://doi.org/10.1177/21582440221093
Pirola, F., Zambetti, M., & Cimini, C. (2021). Applying simulation for sustainable production scheduling: a case study in the textile industry.
IFAC-PapersOnLine,
54(1), 373-378.
https://doi.org/10.1016/j.ifacol.2021.08.041
Rad, F. F., Oghazi, P., Palmié, M., Chirumalla, K., Pashkevich, N., Patel, P. C., & Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies.
Industrial Marketing Management,
105, 268-293.
https://doi.org/10.1016/j.indmarman.2022.06.009
Rai, R., Tiwari, M. K., Ivanov, D., & Dolgui, A. (2021). Machine learning in manufacturing and industry 4.0 applications.
International Journal of Production Research,
59(16), 4773-4778.
https://doi.org/10.1080/00207543.2021.1956675
Ramirez Lozano, J. P., Peñaflor Guerra, R., & Sanagustin-Fons, M. V. (2024). Responsible consumption trend in Generation Z and millennials its impact on SDG 12. A Peruvian case study.
Academia Revista Latinoamericana de Administración,
37(3), 483-508.
https://doi.org/10.1108/ARLA-07-2022-0142
Rashidifar, R., Chen, F. F., & Tran, T. (2022). Simulation and analysis of production scheduling in eyeglasses industry for productivity improvement.
IISE Annual Conference and Expo 2022. https://doi.org/10.31224/2561.
Rodrigues, R. P., de Pinho, A. F., & Sena, D. C. (2020). Application of Hybrid Simulation in production scheduling in job shop systems.
Simulation,
96(3), 253-268.
https://doi.org/10.1177/0037549719861724
Russkikh, P. A., & Kapulin, D. V. (2020, November). Simulation modeling for optimal production planning using Tecnomatix software. In
Journal of Physics: Conference Series (Vol. 1661, No. 1, p. 012188). IOP Publishing.
https://doi.org/10.1088/1742-6596/1661/1/012188
Ryback, T., Lukas, L., Gaal, A., Gallina, V., & Gyulai, D. (2019). Improving the planning quality in production planning and control with machine learning. 16th IMEKO TC10 Conference 2019. 131 -136.
Sabah, B., Nikolay, T., & Sylverin, K. T. (2019, September). Production planning under demand uncertainty using Monte Carlo simulation approach: a case study in fertilizer industry. In
2019 International Conference on Industrial Engineering and Systems Management (IESM) (pp. 1-6). IEEE.
https://doi.org/10.1109/IESM45758.2019.8948112
Santander, O., Kuppuraj, V., Harrison, C. A., & Baldea, M. (2023). A machine learning framework for improving refinery production planning.
AIChE Journal, 69(8), e18109.
https://doi.org/10.1002/aic.18109
Sobottka, T., Kamhuber, F., Faezirad, M., & Sihn, W. (2019). Potential for machine learning in optimized production planning with hybrid simulation.
Procedia Manufacturing,
39, 1844-1853.
https://doi.org/10.1016/j.promfg.2020.01.254
Song, J., Xie, H., & Rou, J. (2019). Simulation of batch production scheduling in discrete manufacturing workshop based on improved genetic algorithm. Academic Journal of Manufacturing Engineering, 17(2), 153-159.
Togo, H., Asanuma, K., Nishi, T., & Liu, Z. (2022). Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems.
Applied sciences,
12(19), 9472.
https://doi.org/10.3390/app12199472
United Nations (2024).
The 17 Sustainable Development Goals. [online] United Nations. Available at:
https://sdgs.un.org/goals
Vaz, L. V., Gonçalves, M. C., Dias, I. C. P., & Nara, E. O. B. (2024). Application of a production planning model based on linear programming and machine learning techniques.
ITEGAM-JETIA,
10(45), 17-29.
https://doi.org/10.5935/jetia.v10i45.920
Vithitsoontorn, C., & Chongstitvatana, P. (2022, March). Demand forecasting in production planning for dairy products using machine learning and statistical method. In
2022 international electrical engineering congress (iEECON) (pp. 1-4). IEEE.
https://doi.org/10.1109/iEECON53204.2022.9741683
Wang, D., Liu, X., Hu, L., & Hu, F. (2022, March). Optimization Simulation of Hybrid Assembly Line Production Scheduling in Garment Enterprises. In
2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC) (Vol. 6, pp. 1375-1379). IEEE.
https://doi.org/10.1109/ITOEC53115.2022.9734580
Wang, Y., & Wu, Z. (2022). Digital twin-based production scheduling system for heavy truck frame shop.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
236(4), 1931-1942.
https://doi.org/10.1177/0954406220913306.
Woschank, M., Dallasega, P., König, A., & Hoffelner, M. (2024). Potentials of using real-time data to increase the update frequency of production planning and control strategies in MTO: a discrete event simulation study.
Flexible Services and Manufacturing Journal, 1-20.
https://doi.org/10.1007/s10696-024-09550-0
Xu, L. Z., & Xie, Q. S. (2021). Dynamic Production Scheduling of Digital Twin Job-Shop Based on Edge Computing.
Journal of Information Science & Engineering,
37(1).
http://doi:10.6688/JISE.202101_37(1).0007
Yu, Y., Guan, Z., Zhang, Z., & Yue, L. (2023, January). Application of Multi-Dimensional Clearing Functions Estimated by Machine Learning to Production Planning Problems: Clearing Functions Estimated by Machine Learning. In
Proceedings of the 2023 10th International Conference on Industrial Engineering and Applications (pp. 289-294).
https://doi.org/10.1145/3587889.3588213.
Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., ... & Chen, E. (2020). A bibliometric analysis using VOSviewer of publications on COVID-19.
Annals of translational medicine,
8(13), 816.
http://dx.doi.org/10.21037/atm-20-4235.
Zhang, F., Song, J., Dai, Y., & Xu, J. (2020). Semiconductor wafer fabrication production planning using multi-fidelity simulation optimization.
International Journal of Production Research,
58(21), 6585-6600.
https://doi.org/10.1080/00207543.2019.1683252
Zhang, S., Tang, F., Li, X., Liu, J., & Zhang, B. (2021). A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context.
Computers & Operations Research,
132, 105267.
https://doi.org/10.1016/j.cor.2021.105267
Ziarnetzky, T., Mönch, L., & Uzsoy, R. (2019). Simulation-based performance assessment of production planning models with safety stock and forecast evolution in semiconductor wafer fabrication.
IEEE Transactions on Semiconductor Manufacturing,
33(1), 1-12.
https://doi.org/10.1109/TSM.2019.2958526