Blockchain Applications in Value Added Tax Refund: A Deep Learning-Based Dual-Stage SEM-ANN Analysis

Document Type : Research Paper

Authors

1 Vinh University, Vinh City, Vietnam

2 Ho Chi Minh City University of Foreign Languages-Information Technology

3 Posts and Telecommunications Institute of Technology, PTIT, Tran Phu, Ha Dong, Hanoi, Vietnam

Abstract

This study examines the determinants of businesses' readiness to implement blockchain technology for value-added tax (VAT) refunds. This study enhances Technology Acceptance Model 2 (TAM2) by incorporating the concept of perceived risk into the framework. This study utilized a two-stage approach that integrated Partial Least Squares Structural Equation Modeling (PLS-SEM) with Artificial Neural Network (ANN) predictive analytics to test the proposed hypotheses. The ANN technique was employed to identify and analyze the potential nonlinear effects within the model. A total of 175 self-administered questionnaires were used for the analysis. The study found that a significant relationship between TAM2s’ constructs and intention to use blockchain technology can markedly enhance the efficiency of VAT refund operations from a managerial standpoint. The theoretical implications of blockchain technology are substantial, as it introduces novel concepts of trust and accountability in tax interactions, disrupts traditional intermediaries, modifies the balance of information, and redefines contract enforcement.

Keywords


Ainsworth, R. T., Alwohaibi, M., Cheetham, M., & Tirand, C. (2018). A VATcoin solution to MTIC fraud : past efforts, present technology, and the EU’s 2017 proposal. Boston University School of Law, Tax Analysts, 1–36. https://scholarship.law.bu.edu/faculty_scholarship/1402/
Ajzen, I. (2012). The theory of planned behavior. Handbook of Theories of Social Psychology: Volume 1. https://doi.org/10.1016/0749-5978(91)90020-T
Alkhodre, A., Ali, T., Jan, S., Alsaawy, Y., Khusro, S., & Yasar, M. (2019). A Blockchain-based value added tax (VAT) system: Saudi Arabia as a use-case. International Journal of Advanced Computer Science and Applications, 10(5), 708–716. https://doi.org/10.14569/ijacsa.2019.0100588
Alwabel, A. S. A., & Zeng, X.-J. (2021). Data-driven modeling of technology acceptance: A machine learning perspective. Expert Systems with Applications, 185, 115584. https://doi.org/https://doi.org/10.1016/j.eswa.2021.115584
Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244–254. https://doi.org/10.17705/1jais.00122
Bailey, A. A., Pentina, I., Mishra, A. S., & Ben Mimoun, M. S. (2017). Mobile payments adoption by US consumers: an extended TAM. International Journal of Retail and Distribution Management. https://doi.org/10.1108/IJRDM-08-2016-0144
Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS Quarterly: Management Information Systems, 30(4), 805–825. https://doi.org/10.2307/25148755
Bittner, J. V, & Shipper, J. (2014). Motivational effects and age differences of gamification in product advertising. Journal of Consumer Marketing, 31(5), 391–400. https://doi.org/10.1108/JCM-04-2014-0945
Brunelle, C., & Grossman, H. (2022). Predictors of online compulsive buying: The role of personality and mindfulness. Personality and Individual Differences, 185(September 2021), 111237. https://doi.org/10.1016/j.paid.2021.111237
Chatterjee, S., Moody, G., Lowry, P. B., Chakraborty, S., & Hardin, A. (2020). Information Technology and organizational innovation: Harmonious information technology affordance and courage-based actualization. Journal of Strategic Information Systems, 29(1). https://doi.org/10.1016/j.jsis.2020.101596
Chen, Y. L., Kuo, M. H., Wu, S. Y., & Tang, K. (2009). Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2009.03.002
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. In Statistical Power Analysis for the Behavioral Sciences. https://doi.org/10.4324/9780203771587
Dang, D. T. V., Nguyen, L., & Nguyen, A. H. D. (2022). Extending UTAUT2 in Mobile money adoption and actual use behavior: An empirical research in Vietnam during the Covid-19. Industrielle Beziehungen. Zeitschrift Für Arbeit, Organisation Und Management, 10(4). https://doi.org/10.53384/inbe.101390943.2779.1862003510
Dang, T.-Q., Tran, P.-T., & Nguyen, L.-T. (2023). Are You Ready for Tapping into the Metaverse in Higher Education? Integrated by Dual PLS-SEM and ANN Approach BT  - Current and Future Trends on Intelligent Technology Adoption: Volume 1 (M. A. Al-Sharafi, M. Al-Emran, G. W.-H. Tan, & K.-B. Ooi (eds.); pp. 63–84). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48397-4_4
Dang, T. Q., Nguyen, L.-T., & Thuy, T. N. T. (2023). The capability of E-reviews in online shopping. Integration of the PLS-SEM and ANN method. International Journal of Professional Business Review, 8(7), 1–29. https://doi.org/https://doi.org/10.26668/businessreview/2023.v8i7.2638
Dang, T. Q., Tan, G. W. H., Aw, E. C. X., Ooi, K. B., Metri, B., & Dwivedi, Y. K. (2023). How to generate loyalty in mobile payment services? An integrative dual SEM-ANN analysis. International Journal of Bank Marketing. https://doi.org/10.1108/IJBM-05-2022-0202
Duc, D. T. V., Mai, L. T. V., Dang, T.-Q., Le, T.-T., & Nguyen, L.-T. (2024). Unlocking impulsive buying behavior in the metaverse commerce: a combined analysis using PLS-SEM and ANN. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-05-2024-0266
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems. https://doi.org/10.2307/249008
Dong, L., Zhang, J., Huang, L., & Liu, Y. (2021). Social influence on endorsement in social Q&A community: Moderating effects of temporal and spatial factors. International Journal of Information Management, 61, 102396. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2021.102396
Flovik, S., Moudnib, R. A. R., & Vassilakopoulou, P. (2021). Determinants of Blockchain Technology Introduction in Organizations: an Empirical Study among Experienced Practitioners. Procedia Computer Science, 181, 664–670. https://doi.org/10.1016/J.PROCS.2021.01.216
Giovanis, A., Rizomyliotis, I., Konstantoulaki, K., & Magrizos, S. (2021). Mining the hidden seam of proximity m-payment adoption: A hybrid PLS-artificial neural network analytical approach. European Management Journal, March. https://doi.org/10.1016/j.emj.2021.09.007
Glotrans. (2022). HO CHI MINH CITY LEADS THE COUNTRY IN IMPORT AND EXPORT. https://www.glotransvn.com.vn/market-news/ho-chi-minh-city-leads-the-country-in-import-and-export
Gu, R. (2021). Blockchain and Decentralized Modeling for Corporate Tax Planning. Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, 497–500. https://doi.org/10.1109/ICIRCA51532.2021.9544600
Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130
Hasan, M. K., Akhtaruzzaman, M., Kabir, S. R., Gadekallu, T. R., Islam, S., Magalingam, P., Hassan, R., Alazab, M., & Alazab, M. A. (2022). Evolution of Industry and Blockchain Era: Monitoring Price Hike and Corruption Using BIoT for Smart Government and Industry 4.0. IEEE Transactions on Industrial Informatics, 18(12), 9153–9161. https://doi.org/10.1109/TII.2022.3164066
Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-014-0403-8
Hew, J. J., Leong, L. Y., Tan, G. W. H., Ooi, K. B., & Lee, V. H. (2019). The age of mobile social commerce: An Artificial Neural Network analysis on its resistances. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2017.10.007
Hyvärinen, H., Risius, M., & Friis, G. (2017). A Blockchain-Based Approach Towards Overcoming Financial Fraud in Public Sector Services. Business & Information Systems Engineering, 59(6), 441–456. https://doi.org/10.1007/s12599-017-0502-4
Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods Research: A Research Paradigm Whose Time Has Come. Educational Researcher. https://doi.org/10.3102/0013189X033007014
Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the Blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 57(7), 2009–2033. https://doi.org/10.1080/00207543.2018.1518610
KARAOULANIS, A. (2024). Correlation between Supply Chain Visibility, Supply Chain Sustainability and the Use of New Technologies. International Journal of Supply and Operations Management, 11(2), 132–153. https://doi.org/10.22034/ijsom.2024.110185.2952
Khan, H., & Sukhotu, V. (2020). Influence of media exposure and Corporate Social Responsibility compliance on customer perception: The moderating role of Firm’s reputation risk. Corporate Social Responsibility and Environmental Management. https://doi.org/10.1002/csr.1951
Knoesen, H., & Seymour, L. F. (2019). Mobile enterprise application adoption: A South African insurance study. South African Computer Journal, 31(2), 117–149. https://doi.org/10.18489/sacj.v31i2.690
Komulainen, R., & Nätti, S. (2023). Barriers to blockchain adoption: Empirical observations from securities services value network. Journal of Business Research, 159(February). https://doi.org/10.1016/j.jbusres.2023.113714
Lai, P. (2017). THE LITERATURE REVIEW OF TECHNOLOGY ADOPTION MODELS AND THEORIES FOR THE NOVELTY TECHNOLOGY. Journal of Information Systems and Technology Management. https://doi.org/10.4301/s1807-17752017000100002
Lau, A. J., Tan, G. W.-H., Loh, X.-M., Leong, L.-Y., Lee, V.-H., & Ooi, K.-B. (2021). On the way: Hailing a taxi with a smartphone? A hybrid SEM-neural network approach. Machine Learning with Applications, 4(March), 100034. https://doi.org/10.1016/j.mlwa.2021.100034
Lee, V. H., Dwivedi, Y. K., Tan, G. W. H., Ooi, K. B., & Wong, L. W. (2023). How does information technology capabilities affect business sustainability? The roles of ambidextrous innovation and data-driven culture. R and D Management, 1–25. https://doi.org/10.1111/radm.12596
Lee, V. H., Foo, P. Y., Tan, G. W. H., Ooi, K. B., & Sohal, A. (2021). Supply chain quality management for product innovation performance: insights from small and medium-sized manufacturing enterprises. Industrial Management and Data Systems, 121(10), 2118–2142. https://doi.org/10.1108/IMDS-08-2020-0447
Lee, V. H., Hew, J. J., Leong, L. Y., Tan, G. W. H., & Ooi, K. B. (2020). Wearable payment: A deep learning-based dual-stage SEM-ANN analysis. Expert Systems with Applications, 157, 113477. https://doi.org/10.1016/j.eswa.2020.113477
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191–204. https://doi.org/https://doi.org/10.1016/S0378-7206(01)00143-4
Lew, S., Tan, G. W. H., Loh, X. M., Hew, J. J., & Ooi, K. B. (2020). The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technology in Society, 63. https://doi.org/10.1016/j.techsoc.2020.101430
Lim, A. F., Lee, V. H., Foo, P. Y., Ooi, K. B., & Wei–Han Tan, G. (2021). Unfolding the impact of supply chain quality management practices on sustainability performance: an artificial neural network approach. Supply Chain Management, April. https://doi.org/10.1108/SCM-03-2021-0129
Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2004.03.003
Liu, Y. (2025). Optimizing Sustainability and Risk Management in Intelligent Supply Chains: A Case Study from Thailand. International Journal of Supply and Operations Management, 12(1), 16–27. https://doi.org/10.22034/ijsom.2024.110239.2988
Maleki, H., khademi zare, hasan, Fakhrzad, M. B., & Hosseini Nasab, hasan. (2024). Applying a Safety System Versus the Risky Suppliers. International Journal of Supply and Operations Management, 11(2), 203–215. https://doi.org/10.22034/ijsom.2023.108161.1592
Macrotrends. (2023). Ho Chi Minh City, Vietnam Metro Area Population 1950-2023 | MacroTrends. https://www.macrotrends.net/cities/22458/ho-chi-minh-city/population
Magni, D., & Sestino, A. (2021). Students’ learning outcomes and satisfaction. An investigation of knowledge transfer during social distancing policies. International Journal of Learning and Intellectual Capital, 18(4), 339–351. https://doi.org/10.1504/IJLIC.2021.118401
Marett, K., Pearson, A. W., Pearson, R. A., & Bergiel, E. (2015). Using mobile devices in a high risk context: The role of risk and trust in an exploratory study in Afghanistan. Technology in Society. https://doi.org/10.1016/j.techsoc.2014.11.002
Maruping, L. M., Bala, H., Venkatesh, V., & Brown, S. A. (2017). Going beyond intention: Integrating behavioral expectation into the unified theory of acceptance and use of technology. Journal of the Association for Information Science and Technology, 68(3), 623–637. https://doi.org/10.1002/ASI.23699
Masudin, I., Lau, E., Safitri, N. T., Restuputri, D. P., & Handayani, D. I. (2021). The impact of the traceability of the information systems on humanitarian logistics performance: Case study of Indonesian relief logistics services. Cogent Business and Management, 8(1). https://doi.org/10.1080/23311975.2021.1906052
Montecchi, M., Plangger, K., & Etter, M. (2019). It’s real, trust me! Establishing supply chain provenance using blockchain. Business Horizons, 62(3), 283–293. https://doi.org/10.1016/J.BUSHOR.2019.01.008
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192–222. https://doi.org/10.1287/isre.2.3.192
Namasudra, S., Sharma, P., Crespo, R. G., & Shanmuganathan, V. (2023). Blockchain-Based Medical Certificate Generation and Verification for IoT-Based Healthcare Systems. IEEE Consumer Electronics Magazine, 12(2), 83–93. https://doi.org/10.1109/MCE.2021.3140048
Naritomi, J. (2019). Consumers as tax auditors. American Economic Review, 109(9), 3031–3072. https://doi.org/10.1257/aer.20160658
Nguyen, B.-T. H., Le, T. H., Dang, T. Q., & Nguyen, L.-T. (2023). What Role Does AI Chatbot Perform in the F&B Industry? Perspective from Loyalty and Value Co-Creation: Integrated PLS-SEM and ANN Techniques. Journal of Law and Sustainable Development, 44(4), 1–39. https://doi.org/https://doi.org/10.55908/sdgs.v11i4.794
Nguyen, H.-B., & Nguyen, L.-T. (2021). Factors Influence Blockchain Adoption in Supply Chain Management Among Companies Based in Ho Chi Minh City. Conference Towards ASEAN Chairmanship 2023 (TAC 23 2021), 1–13. https://www.atlantis-press.com/proceedings/t-a-c-23-21/125965535
Nguyen, L.-T., Duc, D. T. V., Dang, T.-Q., & Nguyen, D. P. (2023). Metaverse Banking Service: Are We Ready to Adopt? A Deep Learning-Based Dual-Stage SEM-ANN Analysis. Human Behavior and Emerging Technologies, 2023, 6617371. https://doi.org/10.1155/2023/6617371
Nguyen, L.-T., Nguyen, D., Ngoc, K. N.-N., & Duc, D. T. V. (2023). Blockchain adoption in logistics companies in Ho Chi Minh City. Cogent Business & Management, 10(2), 1–24. https://doi.org/10.1080/23311975.2023.2216436
Nguyen, L.-T., Phan, T.-T. C., Dang, D.-V. T., & Tran, T.-T. T. (2023). Mobile Payment Adoption in Vietnam: A Two-Staged SEM-ANN Approach BT  - Current and Future Trends on Intelligent Technology Adoption: Volume 1 (M. A. Al-Sharafi, M. Al-Emran, G. W.-H. Tan, & K.-B. Ooi (eds.); pp. 209–228). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48397-4_11
Nguyen, V. C., Pham, H. L., Tran, T. H., Huynh, H. T., & Nakashima, Y. (2019). Digitizing invoice and managing vat payment using blockchain smart contract. ICBC 2019 - IEEE International Conference on Blockchain and Cryptocurrency, 74–77. https://doi.org/10.1109/BLOC.2019.8751256
Nguyen, A. H. D., Le, T. T., Dang, T. Q., & Nguyen, L. T. (2024). Understanding metaverse adoption in education: The extended UTAUMT model. Heliyon, 10(19). https://doi.org/10.1016/j.heliyon.2024.e38741
Nguyen, B.-H. T., Dang, T.-Q., Nguyen, L.-T., & Tran, T.-T. T. (2024). Are we ready for education in Metaverse? PLS-SEM analysis. Edelweiss Applied Science and Technology, 8(2), 73–83. https://doi.org/10.55214/25768484.v8i2.693
Nguyen, L.-T., Dang, T.-Q., & Duc, D. T. V. (2024). The Dark Sides of AI Advertising: The Integration of Cognitive Appraisal Theory and Information Quality Theory. Social Science Computer Review. https://doi.org/10.1177/08944393241258760
Nguyen, N. T. T., Tran, P. T., Dang, T. Q., & Nguyen, L. T. (2024). The future of non-contact commerce: the role of voice payments. Journal of Financial Services Marketing. https://doi.org/10.1057/s41264-024-00292-6
Ntaliani, M., & Costopoulou, C. (2018). E-Government for Lowering Administrative Burden: An Empirical Research on European Rural Businesses. International Journal of Public Administration, 41(9), 700–711. https://doi.org/10.1080/01900692.2017.1296865
Ooi, K. B., & Tan, G. W. H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2016.04.015
Phan, L.-G. N., Tri, D. Q., Dang, S.-H., & Nguyen, L.-T. (2025). Hooked on Livestreaming: What Drives Customer Repurchase Intention in E-Commerce? Journal of Creative Communications. https://doi.org/10.1177/09732586241311001
Pal, A., Tiwari, C. K., & Haldar, N. (2021). Blockchain for business management: Applications, challenges and potentials. The Journal of High Technology Management Research, 32(2), 100414. https://doi.org/10.1016/J.HITECH.2021.100414
Paramaeswari, R. P. I., & Sarno, R. (2020). Analysis of E-Commerce (Bukalapak, Shopee, and Tokopedia) Acceptance Models Using TAM2 Method. 2020 International Seminar on Application for Technology of Information and Communication (ISemantic), 505–510. https://doi.org/10.1109/iSemantic50169.2020.9234271
Phadke, A., Medrano, F. A., & Brahmbhatt, J. (2021). A conceptual framework for a Blockchain-based Tax payment financial service. Proceedings - 2021 International Conference on Computational Science and Computational Intelligence, CSCI 2021, 978, 1523–1527. https://doi.org/10.1109/CSCI54926.2021.00296
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. In Journal of Applied Psychology. https://doi.org/10.1037/0021-9010.88.5.879
Prasad, S., Kumar, R., Pandey, S., Gehlot, A., Dhyani, A., & Pandey, P. S. (2023). Imperative Role of Blockchain in The Taxation System. International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), 92–95. https://doi.org/10.1109/cictn57981.2023.10141416
Queiroz, M. M., & Fosso Wamba, S. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2018.11.021
Sharifzadeh, M. S., Damalas, C. A., Abdollahzadeh, G., & Ahmadi-Gorgi, H. (2017). Predicting adoption of biological control among Iranian rice farmers: An application of the extended technology acceptance model (TAM2). Crop Protection, 96, 88–96. https://doi.org/https://doi.org/10.1016/j.cropro.2017.01.014
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing. https://doi.org/10.1080/0965254X.2014.914075
Siddiqui, A., Khan, M. R., Rashid, R. M., & Khan, M. A. (2024). Industry 4.0 Adoption in Transportation: Does Industry 4.0 Adoption Enhance Sustainability? A Systematic Literature Review. International Journal of Supply and Operations Management, 11(2), 231–249. https://doi.org/10.22034/ijsom.2024.110058.2852
Tan, G. W. H., Chong, C. K., Ooi, K. B., & Chong, A. Y. L. (2010). The adoption of online banking in Malaysia: An empirical analysis. In International Journal of Business and Management Science (Vol. 3, Issue 2, pp. 169–193).
Tan, G. W. H., & Ooi, K. B. (2018). Gender and age: Do they really moderate mobile tourism shopping behavior? Telematics and Informatics. https://doi.org/10.1016/j.tele.2018.04.009
Tan, G. W. H., Ooi, K. B., Chong, S. C., & Hew, T. S. (2014). NFC mobile credit card: The next frontier of mobile payment? Telematics and Informatics, 31(2), 292–307. https://doi.org/10.1016/j.tele.2013.06.002
Tew, H.-T., Tan, G. W.-H., Loh, X.-M., Lee, V.-H., Lim, W.-L., & Ooi, K.-B. (2021). Tapping the Next Purchase: Embracing the Wave of Mobile Payment. Journal of Computer Information Systems. https://doi.org/10.1080/08874417.2020.1858731
Tien, P. C. T., Tri, D. Q., & Luan, N. T. (2023). Belief of Customers in Social Commerce Performed via Social Networking Sites : An Empirical Study from Hồ Chí Minh City. Vietnam Social Sciences, 2(214), 61–80. https://doi.org/10.56794/VSSR.2(214).61-80
Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems. https://doi.org/10.2307/41410412
Viet, A., & Huong, L. (2023). An Phat continues to fight for VAT reimbursement. Vietnam Investment Review. https://vir.com.vn/an-phat-continues-to-fight-for-vat-reimbursement-103579.html
Wang, G., Tan, G. W. H., Yuan, Y., Ooi, K. B., & Dwivedi, Y. K. (2022). Revisiting TAM2 in behavioral targeting advertising: A deep learning-based dual-stage SEM-ANN analysis. Technological Forecasting and Social Change, 175(November 2021), 121345. https://doi.org/10.1016/j.techfore.2021.121345
Wang, Q., Qiu, D., He, X., Wu, L., & Zeng, Y. (2021). Conception of Applying Sovereign Blockchain Technology to Improve Tax Credit Management in Guangdong Province, China. Proceedings - 2021 International Conference on Artificial Intelligence and Blockchain Technology, AIBT 2021, 85–89. https://doi.org/10.1109/AIBT53261.2021.00021
Wang, T., Hua, H., Wei, Z., & Cao, J. (2022). Challenges of blockchain in new generation energy systems and future outlooks. International Journal of Electrical Power & Energy Systems, 135, 107499. https://doi.org/10.1016/J.IJEPES.2021.107499
Wang, Y., Singgih, M., Wang, J., & Rit, M. (2019). Making sense of blockchain technology: How will it transform supply chains? International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2019.02.002
Wijaya, D. A., Liu, J. K., Suwarsono, D. A., & Zhang, P. (2017). A New Blockchain-Based Value-Added Tax System BT  - Provable Security (T. Okamoto, Y. Yu, M. H. Au, & Y. Li (eds.); pp. 471–486). Springer International Publishing.
Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2019). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management 10.1016/j.ijinfomgt.2019.08.005. International Journal of Information Management.
Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.08.005
Wong, L. W., Tan, G. W. H., Lee, V. H., Ooi, K. B., & Sohal, A. (2021). Psychological and System-Related Barriers to Adopting Blockchain for Operations Management: An Artificial Neural Network Approach. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2021.3053359
Wong, L. W., Tan, G. W. H., Ooi, K. B., Lin, B., & Dwivedi, Y. K. (2022). Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. International Journal of Production Research, May. https://doi.org/10.1080/00207543.2022.2063089
Wu, M.-Y., Chou, H.-P., Weng, Y.-C., & Huang, Y.-H. (2011). TAM2-based study of website user behavior-using web 2.0 websites as an example. WSEAS Transactions on Business and Economics, 8, 133–151.
Yap, C. K., Samadi, B., & Hakimian, H. (2017). Consumer behaviour towards acceptance of mobile marketing. International Journal of Business and Social Science, 8(4), 92–105. www.ijbssnet.com
Zhong, Y., Oh, S., & Moon, H. C. (2021). Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model. Technology in Society, 64(December 2020), 101515. https://doi.org/10.1016/j.techsoc.2020.101515