Alshraideh, H., & Abu Qdais, H. (2017). Stochastic modeling and optimization of medical waste collection in Northern Jordan. Journal of Material Cycles and Waste Management, 19(2), 743–753. https://doi.org/10.1007/s10163-016-0474-3
Alumur, S., & Kara, B. Y. (2007). A new model for the hazardous waste location-routing problem. Computers & Operations Research, 34(5), 1406–1423. https://doi.org/10.1016/j.cor.2005.06.012
Amani Bani, E., Fallahi, A., Varmazyar, M., & Fathi, M. (2022). Designing a sustainable reverse supply chain network for COVID-19 vaccine waste under uncertainty. Computers & Industrial Engineering, 174, 108808. https://doi.org/10.1016/j.cie.2022.108808
Ardjmand, E., Weckman, G., Park, N., Taherkhani, P., & Singh, M. (2015). Applying genetic algorithm to a new location and routing model of hazardous materials. International Journal of Production Research, 53(3), 916–928. https://doi.org/10.1080/00207543.2014.942010
Asgari, N., Rajabi, M., Jamshidi, M., Khatami, M., & Farahani, R. Z. (2017). A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study. Annals of Operations Research, 250(2), 279–308. https://doi.org/10.1007/s10479-016-2248-7
Baati, D., Mellouli, M., & Hachicha, W. (2014). Designing a new infectious healthcare-waste management system in sfax governorate, tunisia. 2014 International Conference on Advanced Logistics and Transport (ICALT), 350–355. https://doi.org/10.1109/ICAdLT.2014.6866337
Berglund, P. G., & Kwon, C. (2014). Robust Facility Location Problem for Hazardous Waste Transportation. Networks and Spatial Economics, 14(1), 91–116. https://doi.org/10.1007/s11067-013-9208-4
Bertsimas, D., Digalakis Jr, V., Jacquillat, A., Li, M. L., & Previero, A. (2022). Where to locate COVID ‐19 mass vaccination facilities? Naval Research Logistics (NRL), 69(2), 179–200. https://doi.org/10.1002/nav.22007
Budak, A., & Ustundag, A. (2017). Reverse logistics optimisation for waste collection and disposal in health institutions: the case of Turkey. International Journal of Logistics Research and Applications, 20(4), 322–341. https://doi.org/10.1080/13675567.2016.1234595
Cao, C., Liu, J., Liu, Y., Wang, H., & Liu, M. (2023). Digital twin-driven robust bi-level optimisation model for COVID-19 medical waste location-transport under circular economy. Computers & Industrial Engineering, 109107. https://doi.org/10.1016/j.cie.2023.109107
Cao, C., Xie, Y., Liu, Y., Liu, J., & Zhang, F. (2023). Two-phase COVID-19 medical waste transport optimisation considering sustainability and infection probability. Journal of Cleaner Production, 389, 135985. https://doi.org/10.1016/j.jclepro.2023.135985
Charnes, A., & Cooper, W. W. (1957). Management Models and Industrial Applications of Linear Programming. Management Science, 4(1), 38–91. https://doi.org/10.1287/mnsc.4.1.38
Chauhan, A., & Singh, A. (2016). A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility. Journal of Cleaner Production, 139, 1001–1010. https://doi.org/10.1016/j.jclepro.2016.08.098
Crommelin, D. J. A., Volkin, D. B., Hoogendoorn, K. H., Lubiniecki, A. S., & Jiskoot, W. (2021). The Science is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines. Journal of Pharmaceutical Sciences, 110(2), 627–634. https://doi.org/10.1016/j.xphs.2020.11.015
Das, A., Mazumder, T. N., & Gupta, A. K. (2012). Pareto frontier analyses based decision making tool for transportation of hazardous waste. Journal of Hazardous Materials, 227–228, 341–352. https://doi.org/10.1016/j.jhazmat.2012.05.068
Debnath, B., Bari, A. B. M. M., Ali, S. M., Ahmed, T., Ali, I., & Kabir, G. (2023). Modelling the barriers to sustainable waste management in the plastic-manufacturing industry: An emerging economy perspective. Sustainability Analytics and Modeling, 3, 100017. https://doi.org/10.1016/j.samod.2023.100017
Emek, E., & Kara, B. Y. (2007). Hazardous waste management problem: The case for incineration. Computers & Operations Research, 34(5), 1424–1441. https://doi.org/10.1016/j.cor.2005.06.011
Eren, E., & Rıfat Tuzkaya, U. (2021). Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19 pandemic. Computers & Industrial Engineering, 157, 107328. https://doi.org/10.1016/j.cie.2021.107328
Farrokhi-Asl, H., Tavakkoli-Moghaddam, R., Asgarian, B., & Sangari, E. (2017). Metaheuristics for a bi-objective location-routing-problem in waste collection management. Journal of Industrial and Production Engineering, 34(4), 239–252. https://doi.org/10.1080/21681015.2016.1253619
Flavell, R. (1976). A new goal programming formulation. Omega, 4(6), 731–732. https://doi.org/10.1016/0305-0483(76)90099-2
Gergin, Z., Tunçbilek, N., & Esnaf, Ş. (2019). Clustering Approach Using Artificial Bee Colony Algorithm for Healthcare Waste Disposal Facility Location Problem. International Journal of Operations Research and Information Systems, 10(1), 56–75. https://doi.org/10.4018/IJORIS.2019010104
Govindan, K., Nasr, A. K., Mostafazadeh, P., & Mina, H. (2021). Medical waste management during coronavirus disease 2019 (COVID-19) outbreak: A mathematical programming model. Computers & Industrial Engineering, 162, 107668. https://doi.org/10.1016/j.cie.2021.107668
Haque, M. S., Uddin, S., Sayem, S. M., & Mohib, K. M. (2021). Coronavirus disease 2019 (COVID-19) induced waste scenario: A short overview. Journal of Environmental Chemical Engineering, 9(1), 104660. https://doi.org/10.1016/j.jece.2020.104660
Hasija, V., Patial, S., Raizada, P., Thakur, S., Singh, P., & Hussain, C. M. (2022). The environmental impact of mass coronavirus vaccinations: A point of view on huge COVID-19 vaccine waste across the globe during ongoing vaccine campaigns. Science of The Total Environment, 813, 151881. https://doi.org/10.1016/j.scitotenv.2021.151881
Ho, H.-P. (2019). The supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and MINMAX multi-choice goal programming. Applied Mathematical Modelling, 75, 819–836. https://doi.org/10.1016/j.apm.2019.06.001
Kargar, S., Paydar, M. M., & Safaei, A. S. (2020). A reverse supply chain for medical waste: A case study in Babol healthcare sector. Waste Management, 113, 197–209. https://doi.org/10.1016/j.wasman.2020.05.052
Kargar, S., Pourmehdi, M., & Paydar, M. M. (2020). Reverse logistics network design for medical waste management in the epidemic outbreak of the novel coronavirus (COVID-19). Science of The Total Environment, 746, 141183. https://doi.org/10.1016/j.scitotenv.2020.141183
Lee, C. K. M., Yeung, C. L., Xiong, Z. R., & Chung, S. H. (2016). A mathematical model for municipal solid waste management – A case study in Hong Kong. Waste Management, 58, 430–441. https://doi.org/10.1016/j.wasman.2016.06.017
Li, L., Wang, S., Lin, Y., Liu, W., & Chi, T. (2015). A covering model application on Chinese industrial hazardous waste management based on integer program method. Ecological Indicators, 51, 237–243. https://doi.org/10.1016/j.ecolind.2014.05.001
Manning, M. Lou, Gerolamo, A. M., Marino, M. A., Hanson-Zalot, M. E., & Pogorzelska-Maziarz, M. (2021). COVID-19 Vaccination Readiness among Nurse Faculty and Student Nurses. Nursing Outlook. https://doi.org/10.1016/j.outlook.2021.01.019
Mantzaras, G., & Voudrias, E. A. (2017). An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: Application to a Greek region. Waste Management, 69, 518–534. https://doi.org/10.1016/j.wasman.2017.08.037
Matete, N., & Trois, C. (2008). Towards Zero Waste in emerging countries – A South African experience. Waste Management, 28(8), 1480–1492. https://doi.org/10.1016/j.wasman.2007.06.006
Nema, A. K., & Gupta, S. K. (2003). Multiobjective Risk Analysis and Optimization of Regional Hazardous Waste Management System. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(2), 69–77. https://doi.org/10.1061/(ASCE)1090-025X(2003)7:2(69)
Nolz, P. C., Absi, N., & Feillet, D. (2014). A stochastic inventory routing problem for infectious medical waste collection. Networks, 63(1), 82–95. https://doi.org/10.1002/net.21523
Osaba, E., Yang, X.-S., Fister, I., Del Ser, J., Lopez-Garcia, P., & Vazquez-Pardavila, A. J. (2019). A Discrete and Improved Bat Algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm and Evolutionary Computation, 44, 273–286. https://doi.org/10.1016/j.swevo.2018.04.001
Paredes-Belmar, G., Bronfman, A., Marianov, V., & Latorre-Núñez, G. (2017). Hazardous materials collection with multiple-product loading. Journal of Cleaner Production, 141, 909–919. https://doi.org/10.1016/j.jclepro.2016.09.163
Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Production, 170, 227–241. https://doi.org/10.1016/j.jclepro.2017.09.029
Rattanawai, N., Arunyanart, S., & Pathumnakul, S. (2024). Optimizing municipal solid waste collection vehicle routing with a priority on infectious waste in a mountainous city landscape context. Transportation Research Interdisciplinary Perspectives, 24, 101066. https://doi.org/10.1016/j.trip.2024.101066
Shahparvari, S., Hassanizadeh, B., Mohammadi, A., Kiani, B., Lau, K. H., Chhetri, P., & Abbasi, B. (2022). A decision support system for prioritised COVID-19 two-dosage vaccination allocation and distribution. Transportation Research Part E: Logistics and Transportation Review, 159, 102598. https://doi.org/10.1016/j.tre.2021.102598
Shih, L.-H., & Lin, Y.-T. (2003). Multicriteria Optimization for Infectious Medical Waste Collection System Planning. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(2), 78–85. https://doi.org/10.1061/(ASCE)1090-025X(2003)7:2(78)
Taghipour, H., & Mosaferi, M. (2009). Characterization of medical waste from hospitals in Tabriz, Iran. Science of The Total Environment, 407(5), 1527–1535. https://doi.org/10.1016/j.scitotenv.2008.11.032
Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111(3), 569–581. https://doi.org/10.1016/S0377-2217(97)00317-2
Tasouji Hassanpour, S., Ke, G. Y., Zhao, J., & Tulett, D. M. (2023). Infectious waste management during a pandemic: A stochastic location-routing problem with chance-constrained time windows. Computers & Industrial Engineering, 177, 109066. https://doi.org/10.1016/j.cie.2023.109066
Tirkolaee, E. B., Abbasian, P., & Weber, G.-W. (2021). Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak. Science of The Total Environment, 756, 143607. https://doi.org/10.1016/j.scitotenv.2020.143607
Trivedi, A., & Singh, A. (2017). A hybrid multi-objective decision model for emergency shelter location-relocation projects using fuzzy analytic hierarchy process and goal programming approach. International Journal of Project Management, 35(5), 827–840. https://doi.org/10.1016/j.ijproman.2016.12.004
Tushar, S. R., Alam, M. F. Bin, Bari, A. B. M. M., & Karmaker, C. L. (2023). Assessing the challenges to medical waste management during the COVID-19 pandemic: Implications for the environmental sustainability in the emerging economies. Socio-Economic Planning Sciences, 87, 101513. https://doi.org/10.1016/j.seps.2023.101513
Valizadeh, J., Hafezalkotob, A., Seyed Alizadeh, S. M., & Mozafari, P. (2021). Hazardous infectious waste collection and government aid distribution during COVID-19: A robust mathematical leader-follower model approach. Sustainable Cities and Society, 69, 102814. https://doi.org/10.1016/j.scs.2021.102814
Valizadeh, J., & Mozafari, P. (2022). A novel cooperative model in the collection of infectious waste in COVID-19 pandemic. Journal of Modelling in Management, 17(1), 363–401. https://doi.org/10.1108/JM2-07-2020-0189
van Straten, B., Dankelman, J., van der Eijk, A., & Horeman, T. (2021). A Circular Healthcare Economy; a feasibility study to reduce surgical stainless steel waste. Sustainable Production and Consumption, 27, 169–175. https://doi.org/10.1016/j.spc.2020.10.030
WHO. (2021). World Health Organization. https://covid19.who.int/
Willis, H. H., Morral, A. R., Kelly, T. K., & Medby, J. J. (2006). Estimating Terrorism Risk. Rand Corporation.
Xin, L., Xi, C., Sagir, M., & Wenbo, Z. (2023). How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method. Technological Forecasting and Social Change, 187, 122188. https://doi.org/10.1016/j.techfore.2022.122188
Yazdani, M., Tavana, M., Pamučar, D., & Chatterjee, P. (2020). A rough based multi-criteria evaluation method for healthcare waste disposal location decisions. Computers & Industrial Engineering, 143, 106394. https://doi.org/10.1016/j.cie.2020.106394
Yu, H., Sun, X., Solvang, W. D., Laporte, G., & Lee, C. K. M. (2020). A stochastic network design problem for hazardous waste management. Journal of Cleaner Production, 277, 123566. https://doi.org/10.1016/j.jclepro.2020.123566
Yu, H., Sun, X., Solvang, W. D., & Zhao, X. (2020). Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China). International Journal of Environmental Research and Public Health, 17(5), 1770. https://doi.org/10.3390/ijerph17051770
Zografos, K. G., & Androutsopoulos, K. N. (2008). A decision support system for integrated hazardous materials routing and emergency response decisions. Transportation Research Part C: Emerging Technologies, 16(6), 684–703. https://doi.org/10.1016/j.trc.2008.01.004