A Supply Chain Design Problem Integrated Facility Unavailabilities Management

Document Type : ICIE 2016


1 Preparatory school on sciences and techniques, MELT Laboratory, Tlemcen, Algeria

2 Ecole Nationale d’Ingénieurs de Metz (ENIM), Laboratoire de Génie Industriel et de Production de Metz (LGIPM), Metz, France

3 Abou Bekr Belkaid University, MELT Laboratory, Tlemcen, Algeria


A supply chain is a set of facilities connected together in order to provide products to customers. The supply chain is subject to random failures caused by different factors which cause the unavailability of some sites. Given the current economic context, the management of these unavailabilities is becoming a strategic choice to ensure the desired reliability and availability levels of the different supply chain facilities. In this work, we treat two problems related to the field of supply chain, namely the design and unavailabilities management of logistics facilities. Specifically, we consider a stochastic distribution network with consideration of suppliers' selection, distribution centres location (DCs) decisions and DCs’ unavailabilities management. Two resolution approaches are proposed. The first approach called non-integrated consists on define the optimal supply chain structure using an optimization approach based on genetic algorithms (GA), then to simulate the supply chain performance with the presence of DCs failures. The second approach called integrated approach is to consider the design of the supply chain problem and unavailabilities management of DCs in the same model. Note that, we replace each unavailable DC by performing a reallocation using GA in the two approaches. The obtained results of the two approaches are detailed and compared showing their effectiveness.


Main Subjects

Bischoff M. and Kerstin D., 2009. Allocation search methods for a generalized class of location–allocation problems, European Journal of Operational Research, Vol. 192, pp. 793-807.
Brahami M. A., Maliki F., Dahane M. and Sari Z., 2014. Conception et gestion des indisponibilités des sites dans les chaînes logistiques, 10 ème Conférence Francophone de Modélisation, Optimisation et Simulation- MOSIM’14 – 5 au 7 novembre 2014, Nancy, France.
Brahami, M.A., Maliki, F., Dahane, M. & Sari, Z., 2014. Gestion des indisponibilités des sites dans le problème de localisation et sélection des fournisseurs, Proceedings of the 7ème édition du Colloque International de la logistique et du Supply chain Management (LOGISTIQUA 2014), Fès, Maroc.
Brahami, M.A., Maliki, F., Dahane, M. & Sari, Z, 2015. Supply chain design and unavailabilities management, Proceedings of The12th International Conference on Logistics and Sustainable Transport (ICLST).
Daskin M. S., Coullard C. and Shen Z. J. M., 2006. An inventory-Location Model: Formulation, Solution Algorithms and Computational results, Annals of Operations Research, Vol. 110, pp. 83-106.
De Boer L., Labro E. and Morlacchi P., 2001. A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, Vol. 7, pp. 75-89.
Ding H., Benyoucef L. and Xie X., 2008. Simulation-based evolutionary multi-objective optimization approach for integrated decision-making in supplier selection, International Journal of Computer Applications in Technology, Vol. 31(3/4) pp. 144-157.
Jain V., Benyoucef L. and Deshmukh S. G., 2009. Strategic supplier selection: some emerging issues and challenges, Int. J. Logistics Systems and Management, Vol. 5, No. ½, pp. 61-88.
Maliki F. and Sari Z., 2013. Resolution of stochastic supply chain design problem by metaheuristic, The international conference Control, Decision and Information Technologies (CODIT’13), Hammamet, Tunisie, 06 - 08 Mai.
Maliki F. and Sari Z., 2012. Etude comparative des politiques de gestion de stock lors de la conception des chaînes logistiques, 9e conférence internationale de Modélisation, Optimisation et Simulation (MOSIM’12), Bordeaux, France, 06 – 08 Juin.
Maliki F., Benyoucef L. and Sari Z., 2011. Sensivity anlysis for a stochastic multi modal location-allocation integrated suppliers selection problem, the international conference on Industrial Engineering and System Management (IESM 2011), Metz, France, 25–27 May.
Maliki F., Brahami M. A. and Dahane M., 2013. Optimisation du problème de localisation et sélection des fournisseurs sous contrainte de maintenance, 8 éme Conférence internationale de Conception & Production Intégrées, Tlemcen, Algèrie, 21-23 octobre.
Meixell M. J. and Gargeya V. B., 2005. Global supply chain design: A literature review and critique, Transportation Research, Part E, Vol. 41, pp, 531-550.
Shen Z. J. M., Coullard C. and Daskin M. S., 2003. A Joint Location-Inventory Model, Transportation Science, Vol. 37(1), pp. 40-55.
Simchi-Levi D., Snyder L. V. and Watson M., 2002. Strategies for Uncertainty times. Supply Chain management Review, Vol. 6(1), pp. 11-12.
Snyder L. V., 2006. Facility location under uncertainty: a review, IIE Transactions, Vol. 38(7), pp. 547-564.
Snyder L. V. and Daskin M. S., 2003. Reliability Models for Facility Location: the expected failure case, Presented at the INFORMS workshop on Managing Risk in an Uncertain World, Northwestern University, Evaston.
Tanonkou G. A., 2007. Une approche par relaxation lagrangienne pour l’optimisation d’un réseau de distribution : modèles stochastiques et fiables, Thèse de doctorat, université Paul Verlaine de Metz.
Tanonkou G. A., Benyoucef L. and Xie X., 2007. Joint Facility Location and Supplier Selection Decisions of distribution Networks with Random Supply Lead Time, International Conference on Industrial Engineering and Systems Management (IESM 2007), Pékin, Chine, pp. 1-10.
Tanonkou G. A., Benyoucef L. and Xie X., 2006. A Two-Period Stochastic programming Model for Distribution network Design, Proceedings of the 12th IFAC Symposium on Information Control Problems in Manufacturing, St Etienne, France, pp. 377-382, 17-19 Mai.
Tanonkou G. A., Benyoucef L. and Xie X., 2013. Supply chain network design with unreliable suppliers: a Lagrangian relaxation-based approach, International Journal of Production Research, Vol. 51921), pp. 6435-6454.