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Abstract 

Order acceptance and scheduling problem consist of simultaneously deciding which orders to be selected and how to 

schedule these selected orders. An extension of the sequence-dependent setup times and release dates was introduced in 

2010 and a mathematical formulation was presented. Since then, a few mathematical formulations have appeared in the 

literature by addressing this problem on the basis of sequence-dependent setup times. However, some of the mathematical 

formulations are nonlinear or lack usability. Therefore, the model presented in 2010 is still being considered in recent 

studies. In this paper, we investigated the case in which there are sequence-dependent setup times with no release dates 

for all orders. We developed a new mathematical formulation with O(n2) binary variables and O(n2) constraints. In order 

to see the performance of our formulation, we conducted a computational analysis with CPLEX 12.4 by solving 

benchmark instances available in the literature. To manage the comparison, we reduced the existing formulation to the 

without release dates for all orders. As a result, we observed that the existing formulation can solve the test problems 

with up to 10 orders in a given time limit. On the other hand, our proposed formulation can solve all the available 

instances with up to 100 orders within the same time limit. Our proposed formulation is extremely faster than the existing 

one and can solve small and moderate sized real-life problems in a reasonable time. Thus, the researchers do not need 

any special heuristics for solving such problems. Instead, they can directly use our formulation with an optimizer.  

Keywords: Order acceptance, Single-machine scheduling, Mathematical formulation, Order rejection, Sequence- 

dependent setup times  

1. Introduction 

Over the years, production scheduling has attracted considerable attention in industrial engineering and operation 

management fields. In classical scheduling problems, it is assumed that all orders must be processed. However, in real 

world applications, it may not be possible or profitable to accept all orders. There is a trade-off between the revenue 

brought in by the order and the amount of resources diverted to its processing (Silva, Y.L.T., et al. 2018). Specifically, 

in make-to-order production systems, accepting all orders may cause delays in completion time and tardiness cost 

accordingly (Wang, S. & Ye, B., 2019). More importantly, it may cause customer dissatisfaction or customer loss as 

well. To avoid these circumstances, the firms tend to reject some orders (Sarvestani, H.K., et al., 2019). 

The order acceptance and scheduling (OAS) problem consists of simultaneously deciding which orders to be selected 

and how to schedule these selected orders (Slotnick, S.A., 2011). This problem occurs in make-to-order production 

systems when the capacity for meeting all demand on time is not enough.  Ghosh, J.B. (1997) showed that the problem 

is NP-hard. Most of the studies have focused on heuristics in the related literature. Many papers in the literature do not 

even include mathematical models at the beginning of the study. However, today’s technology enables that well-designed 

mathematical formulations to solve small and moderate sized real-life problems in a reasonable time.  
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In the literature, there are 27 papers related to single-machine order acceptance and scheduling problem. These papers 

are summarized in Table 1. Only 9 of them include mathematical formulations. Stern, H.I., & Avivi, Z. (1990)’s paper 

is considered as the first example. In their paper, an order is rejected if it is not finished before its due date. 

Charnsirisakskul, K., et al. (2004, 2006) considered varying prices and customer chosen due dates. They also took 

inventory costs into account and proposed two formulations. Oğuz, C., et al. (2010) introduced the original problem and 

proposed a formulation. They considered sequence-dependent setup times and release dates simultaneously. The problem 

they introduced has attracted a lot of researchers’ attention. Nobibon, F.T., & Leus, R. (2011) considered the problem in 

which there are obligatory orders and proposed two mathematical formulations. In another study, Garcia, C. (2016) 

addressed the OAS problem considering resource limits and due windows and proposed a formulation. In his study, an 

order is rejected if it cannot be finished within its due window. Trigos, F., & Lopez, E.M. (2017) addressed the problem 

by using the sequence-dependent setup times depending on the lot size. They considered the available total time 

constraint and proposed a formulation. Zandieh, M., & Roumani, M. (2017) defined an upper limit for the number of 

accepted orders and considered sequence-dependent setup times. They proposed a nonlinear formulation. Silva, Y.L.T., 

et al. (2018) dealt with the same problem Oğuz, C., et al. (2010) addressed in their study. They proposed a time-indexed 

formulation with different revenue calculation method. Silva, Y.L.T., et al. (2018)’s time- indexed formulation has some 

structural difficulties with no flexibility for getting adapted to different circumstances.  

Table 1. Single-Machine OAS Problem Research 

 

# 

 

Year 

 

 

Authors 

 

Problem structure 

Release 

date 

Setup 

time 
Solution 

approach 

 

Objectives 

1 1990 Stern and Avivi* 1|rej, pmtn|∑Pi - - Heuristics 

algorithms 

Max. profit 

2 1996 Slotnick and Morton  1|rej|∑Pi-∑wjTj - - One heuristic 

algorithm 

Max. net profit 

3 1997 Ghosh  1|rej|∑Pi-∑wjTj - - Mathematical 

model and 

exact algorithm 

Max. net profit 

4 1997 Keskinocak et al. 1|rej, rj|∑Pi  - Exact algorithm Max. profit 

5 2001 Keskinocak et al. 1|rej, rj|∑Pi  - Exact algorithm Max. profit 

6 2002 Lewis and Slotnick 1|rej|∑Pi-∑wjTj - - Exact and 

heuristic 

algorithms 

Max. net profit 

7 2003 Yang and Geunes  1|rej, rj|∑Pj-∑Tj   - Heuristic 

algorithms 

Max. net profit 

8 2004 Charnsirisakskul et al.* 1|rej, pmtn|∑Pi-∑wjTj - - Mathematical 

model 

Max. net profit 

9 2006 Charnsirisakskul et al.* 1|rej, pmtn,prc,rj|∑Pi-

∑wjTj 

 - Mathematical 

model 

Max. net profit 

10 2007 Slotnick and Morton  1|rej|∑Pi-∑wjTj - - Exact and 

heuristic 

algorithms 

Max. net profit 

11 2007 Yang and Geunes  1|rej, rj|∑Pj-∑Tj  - Numerical 

examples 

Max. net profit 

12 2009 Rom and Slotnick  1|rej|∑Pi-∑wjTj - - Genetic 

algorithm 

Max. net profit 

13 2010 Oğuz et al.* 1|rej, sij,𝑑�̅�,rj|∑Rj   Mathematical 

model and 

heuristic 

algorithms 

Max. revenue 

14 2011 Nobibon and Leus * 1|rej|∑Pj-∑wjTj - - Mathematical 

model and 

exact 

algorithms 

Max. net profit 

15 2012 Cesaret et al. 1|rej, sij, rj|∑Rj   Tabu search 

algorithm 

Max. revenue

16 2014 Chen et al. 1|rej, sij, rj|∑Pi-∑wjTj   Genetic 

algorithm

Max. net profit

17 2013 Lin and Ying  1|rej,sij,rj|∑Pi-∑wjTj   Artificial bee 

colony 

algortihm 

Max. net profit

18 2014 Nguyen et al. 1|rej,sij,rj|∑Pi-∑wjTj   Genetic 

algorithm 

Max. net profit



Bicakci and Kara 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.2 161 

 

Table 1. Continued 

 

# 

 

Year 

 

 

Authors 

 

Problem structure 

Release 

date 

Setup 

time 
Solution 

approach 

 

Objectives 

19 2015 Nafchi and Moslehi  1|rej, Fj|∑Pj-RC - - Hybrid genetic 

and linear 

programming 

algorithm 

Max. net profit 

20 2015 Wang et al. 1|rej|∑Pj-∑cj-OC - - Numerical 

examples 

Max. net profit 

21 2016 Hosteins et al. 1|rej|∑Pj-∑Tj - - Exact algorithm Max. net profit 

22 2016 Garcia * 1|rej,rj,Dj
-,Dj

+| ∑Pj-RC  - Mathematical 

model and 

heuristic 

algorithms 

Max. net profit 

23 2016 Nguyen  1|rej,sij,rj|∑Pi-∑wjTj   Learning and 

optimizing 

system

Max. net profit

24 2016 Trigos and Lopez * 1|rej,batch,sij|∑Πj -  Exact and 

heuristic 

algorithms

Max. profit

25 2016 Xie and Wang  1|rej, sij|∑Pi -  ABC algorithm Max. profit

26 2017 Zandieh ve Roumani * 1|rej,sij|∑Pi-∑wjTj -  Mathematical 

model and 

heuristic 

algorithms

Max. net profit

27  2018 Silva et al.* 1|rej, sij,𝑑�̅�,rj|∑Pi-∑wjTj   Exact and 

heuristic 

algorithms

Max. net profit

Note: 1:single machine;  rej: rejection; pmtn: preemption; sij: setup time; prc: pricing; ri: release date; 𝑑�̅�: deadline; pi: processing time; Ri=max(0, ei-
wiTi); ∑Pi: total revenue;  ∑Ti: total tardiness; RC: total rejection cost; ∑ci: total cost; ∑wiTi: total weighted tardiness; OC: total contract manufacturing 

cost; Fj: product families; ∑Πj: total profit;  Dj
-,Dj

+: due windows. Max.: maximizing; Min.: minimizing; net profit: (total profit – total tardiness 

penalties). Included; - Not included; * Studies including mathematical formulation. 

 

Order acceptance and scheduling problem are still drawing the researchers’ attention. Studies on extensions of OAS 

problem with parallel machines have increased in recent years (Wu, G.H., et al., 2018; Wang, S., & Ye, B., 2019).  

In recent years, the developments of computer technology and software enable us to solve the combinatorial problems 

by well-designed mathematical formulations. Mathematical formulations can be useful in real-life applications and allow 

post-optimality analysis. In most of the studies on OAS problem, solving methods generally focus on heuristic 

algorithms. However, as Della Croce, F.  (2016) stressed, mathematical formulations are still useful for the scheduling 

problems.  

In this study, we proposed a new formulation for single machine OAS problem with sequence-dependent setup times 

which can solve all the available instances with up to 100 orders in the literature. We also reduce the release date 

constraints according to Oğuz, C., et al. (2010) formulation and conduct a detailed computational analysis to compare 

Oğuz, C., et al.’s (2010) formulation with our proposed formulation.  

The organization of this paper is as follows. Section 2 defines the OAS problem with sequence-dependent setup times. 

Section 3 introduces the new mathematical formulation for a single machine OAS problem with sequence-dependent 

setup times. Section 4 presents the results of the computational analysis by comparing the performance of the new 

formulation with Oğuz, C., et al.’s (2010) formulation. Finally, section 5 provides the concluding remarks. 

2. The Order Acceptance and Scheduling Problem 

The OAS problem is defined as follows. In a single-machine environment, we are given a set of orders {0,1,2,…,n,n+1}, 

where 0 is the beginning of the schedule and “n+1” shows the end of the schedule. The number of the orders is known, 

and the order of arrival time is assumed to be certain. Firm must reject some orders because of the limited production 

capacity. There is a tradeoff between the profit of accepted orders and the penalty weight of the delayed orders.  

Set: 

N={i|i=0,1,2,…,n,n+1} is the set of orders. 

Parameters: 

pi: The processing time of order i 

di: The due date of order i 

𝑑�̅�: The deadline of order i 
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ei: The maximum revenue of order i 

wi: The penalty weight of order i 

sij: The setup time of order j, if it is processed immediately after order i, i,jϵN 

Decision variables:  

Zij: The completion time of order j immediately after order i,jϵN 

Ti: The tardiness of order i 

Yi: It is equal to 1, if order i is accepted; 0 otherwise 

Xij: It is equal to 1, if order j is processed immediately after order i; 0 otherwise, i,jϵN 

Let Nı⸦N is the set of accepted orders. An order can be completed by the given deadline. As the tardiness of an order 

increases, its revenue linearly decreases; thus, its revenue would be equal to 0 after its deadline. Therefore, it is 

guaranteed that an order is rejected if it is completed after its deadline. To ensure this, wi is set to ei/(𝑑�̅�-di) for each order 

iϵN. The revenue function for order i is showed in Figure 1. The revenue of order i would be equal to max (0, e i-wiTi). 

The revenue varies according to the completion time of order i. The aim is to find the set Nı and their sequence which 

maximizes the total revenue.  

 

Figure 1. Revenue function for order i 

 

3. The New Mathematical Formulation 

In this section, we introduce the new formulation for single machine OAS problem with sequence-dependent setup times. 

The new formulation (BK) is given below. 

Max ∑ 𝑅𝑖
𝑛
𝑖=1                                         (1) 

St. 

∑ 𝑋0𝑖
𝑛
𝑖=1 = 1                              (2) 

∑ 𝑋𝑖,𝑛+1
𝑛
𝑖=1 = 1                              (3) 

∑ 𝑋𝑖𝑗
𝑛+1
𝑗=1,𝑖≠𝑗 = 𝑌𝑖   ∀𝑖= 1, … , 𝑛                           (4) 

∑ 𝑋𝑗𝑖
𝑛
𝑗=0,𝑖≠𝑗 = 𝑌𝑖   ∀𝑖= 1, … , 𝑛                          (5) 

∑ 𝑍𝑖𝑗
𝑛+1
𝑗=1 − ∑ 𝑍𝑘𝑖

𝑛
𝑘=0 = ∑ (𝑠𝑖𝑗

𝑛+1
𝑗=1 + 𝑝𝑗)𝑋𝑖𝑗  𝑖 ≠ 𝑗, ∀𝑖= 1, … , 𝑛, ∀𝑗= 1, … , 𝑛 + 1                   (6) 

𝑍0𝑖 = (𝑠0𝑖 + 𝑝𝑖)𝑋0𝑖   ∀𝑖= 1, … , 𝑛                                                    (7) 

∑ 𝑍𝑘𝑖
𝑛
𝑘=0 ≤ 𝑑�̅�𝑌𝑖    ∀𝑖= 1, … , 𝑛                                                    (8) 

𝑇𝑖 ≥ ∑ 𝑍𝑘𝑖
𝑛
𝑘=0 − 𝑑𝑖𝑌𝑖    ∀𝑖= 1, … , 𝑛                                                    (9) 

𝑍𝑖𝑗 ≤ 𝑑𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅𝑋𝑖𝑗   𝑖 ≠ 𝑗, ∀𝑖= 0, … , 𝑛, ∀𝑗= 1, … , 𝑛 + 1                                                                  (10) 

𝑇𝑖≤(𝑑�̅� − 𝑑𝑖)𝑌𝑖    ∀𝑖= 1, … , 𝑛                                                                                   (11) 
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𝑅𝑖=𝑒𝑖𝑌𝑖 − 𝑇𝑖𝑤𝑖   ∀𝑖= 1, … , 𝑛                                        (12) 

𝑌𝑖𝜖{0,1}   ∀𝑖= 1, … , 𝑛                                                                                    (13) 

𝑋𝑖𝑗𝜖{0,1}   𝑖 ≠ 𝑗, ∀𝑖= 0, … , 𝑛, ∀𝑗= 1, … , 𝑛 + 1                                                                 (14) 

In this formulation, 0 and “n+1” are the dummy orders. The objective function (1) maximizes the total revenue based on 

the accepted orders. Constraints (2) and (3) ensure that 0 is assigned to the first position in the sequence and “n+1” is 

assigned to the last position in the sequence. Constraint sets (4) and (5) guarantee that if an order is accepted, this order 

precedes only one order and is succeeded by only one order. Constraint set (6) ensures that if order j is processed 

immediately after order i, the completion time of order j must be equal to sum of the completion time of order i, the setup 

time from order i to order j and the processing time of order j. Constraint set (7) defines that the completion time of the 

first order in the sequence. Constraint set (8) enforces that if an order is not completed until its deadline, then it is not 

accepted. Constraint set (9) calculates the tardiness time of the orders. Constraint set (10) provides that the decision 

variables Xij and Zij are connected and 𝑑𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ denotes the 𝑚𝑎𝑥𝑖=1,…,𝑛{𝑑�̅�}. Constraint set (11) provides an upper bound to 

the tardiness time of the orders. Constraint set (12) calculates the revenue gained when order i is accepted and incurs 

tardiness of Ti. Constraint sets (13) and (14) define the binary variables. The new formulation has 2n2+8n+2 constraints 

and n2+2n binary decision variables.  

Constraints (2),(3),(4), and (5) are traditional assignment constraints, are the same as Oğuz, C., et al.’s (2010) 

formulation. Constraints (11),(12),(13) define the relations between tardiness, targets and revenue, so they are same as 

in Oğuz, C., et al.’s (2010) formulation. Constraints (14),(15),(16), and (17) are non-negativity and binary constraints. 

These constraints are not related to the structure of the formulation directly.  

The main difference between our new formulation and Oğuz, C., et al.’s (2010) formulation depends upon the decision 

variables corresponding to the completion time of the orders. They define completion time by Ci for order i and assume 

the main constraints of their formulation as a function of Ci’s. We define totally different decision variables to calculate 

completion times. Zij’s are developed based on the successive orders, therefore, our main decision variables are arc-

based. On the other hand, main decision variables of Oğuz, C., et al.’s (2010) formulation are node-based. Consequently, 

the main body of our formulation which includes constraints (6),(7),(8),(9), and (10) is completely different from Oğuz, 

C., et al.’s (2010) formulation. 

 

4. Computational Analysis 

In this section, we present the results of computational experiments in which we compare the performance of BK and 

reduceOğuz, C., et al.’s (2010) formulation (ROSB) based on run time and linear programming relaxations. Oğuz, C., et 

al.’s (2010) formulation is reduced by removing the release date constraints corresponding constraint set (4) to the 

original model. For detailed information, please check Oğuz, C., et al.’s (2010) paper.  

The mathematical formulations were tested in the benchmark instances suggested by Cesaret, B., et al. (2012). They 

generated the benchmark instances as six groups according to the problem size. Problem size was determined from 10 

to 100, more specifically, for n=10, 15, 20, 25, 50, and 100. They used two parameters; τ is tardiness factor and R is due 

date range. Both parameters can take the same values which are 0.1, 0.3, 0.5, 0.7, and 0,9. They generated 10 instances 

for each (τ,R) combination and there are totally 1500 instances. Processing times, revenues, and setup times were 

generated from uniform distribution with an interval of [1, 20], [1,20], and [1,10] respectively. Due dates are generated 

by using a factor which is selected randomly from a uniform distribution with an interval of [pT(1-τ-R/2, 1-τ+R/2] in 

which pT is the total processing time of all orders. Deadlines were generated by the equation 𝑑�̅�=di+Rpi. The tardiness 

penalties were determined by the equation wi=ei/(𝑑�̅�-di).  

BK and ROSB formulations were both executed in CPLEX 12.4 under the same computational environment which is 

Intel Xeon Phi 7290 1.5 GHz Processor 384 GB Ram. We set 7200 seconds time limit for n=10,15,20,25,50 and 14400 

seconds time limit for n=100. Run times of BK and ROSB formulations for n=10 are presented in Table 2. 

In Table 2, we clearly see that BK formulation outperforms ROSB in run times for each case. The average run times for 

BK are 0,86; 0,76, and 0,53, whereas ROSB formulation’s average run times are 446,27; 66,46, and 103,93 seconds. 

Maximum run times are 645,66; 147,83; 221,81 seconds for ROSB formulation whereas they are just 1,60; 1,22; 0,71 

seconds for BK formulation.  
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Table 2. Run times of BK and ROSB formulations for n=10. 

 n=10 

τ               R      
 

OPV       CPU (s) 

0.1           0.1                                                                                       ROSB BK 

Instance 1 
 

119 428,67 1,60 

Instance 2 
 

129 392,82 0,98 

Instance 3 
 

94 633,39 0,42 

Instance 4 
 

123 6,74 0,13 

Instance 5 
 

94 330,19 0,47 

Instance 6 
 

111 553,68 1,08 

Instance 7 
 

102 645,66 1,30 

Instance 8 
 

104 495,30 1,48 

Instance 9 
 

119 492,29 0,45 

Instance 10   105 483,95 0,69 

Avg.     446,27 0,86 

  0.1    0.5 

Instance 1 
 

112 147,83 0,85 

Instance 2 
 

122 70,26 0,79 

Instance 3 
 

127 73,01 0,93 

Instance 4 
 

98 43,79 0,66 

Instance 5 
 

110 104,26 0,66 

Instance 6 
 

85 83,37 0,79 

Instance 7 
 

113 2,80 0,40 

Instance 8 
 

124 1,49 0,60 

Instance 9 
 

116,4 133,52 0,67 

Instance 10   107 4,33 1,22 

Avg.    66,46 0,76 

0.3           0.1     

Instance 1  111 76,15 0,71 

Instance 2  134 221,81 0,62 

Instance 3  88 73,83 0,55 

Instance 4  98 147,23 0,45 

Instance 5  82 109,29 0,42 

Instance 6  107 52,55 0,26 

Instance 7  106 86,91 0,71 

Instance 8  119 95,73 0,49 

Instance 9  92 103,42 0,51 

Instance 10   109 72,37 0,62 

Avg.   103,93 0,53 
Note: OPV: optimal value; CPU (s): run time in seconds. 

The run time of ROSB formulation for the fourth instance for τ=0.1 and R=0.1 is short compared to others, because all 

orders can be processed in this case. Therefore, the LPR value is equal to the optimal value in the fourth instance.  

ROSB formulation can be solved only for n=10. For larger n values, ROSB formulation cannot be solved in 7200 seconds 

for up to n=50 and for 14400 seconds for n=100.  Therefore, we continue analysis with BK formulation for larger n 

values. Run times and LP relaxations of BK solutions for n=15, 20, 25, 50 are presented in Table 3. 

In Table 3, we observe that BK formulation can solve all the instances for n=15, 20, 25 and 50 in average run times 1,10; 

5,87; 16,38 and 1011,87 seconds respectively. The average percentages of deviations are 3% and 4%, which are very 

close to the optimal values. Run times and LP relaxations of BK formulation for n=100 are presented in Table 4. 
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Table 3. Performance of BK formulation for n=15, 20, 25, 50. 

τ R   

0.1            0.1                                                 Avg. CPU (s) Avg. %DEV. 

n=15  1,10 0,04 

n=20  5,87 0,04 

n=25  16,38 0,03 

n=50  1011,87 0,03 

Note: CPU (s): run time in seconds; LPR: linear programming relaxation; %DEV.: percentage deviation between LPR and OPV which is (LPR-

OPV)/OPV; Avg.: average.   

For the instances with 100 orders, BK formulation can solve 4 of the 10 instances in given time limit. The optimal values 

are 1079, 1172, 1077, and 1062 for the instance 1, instance 2, instance 5, and instance 8, respectively. There are also six 

best values because the optimal values cannot be found for six instances which are instance 3, instance 4, instance 6, 

instance 7, instance 9, and instance 10.  

According to LP relaxations, the average percentage of deviations is found to be % 3 which is very close to the optimal 

values. We believe that as the number of experiments increases, the more instances with 100 orders can be solved by BK 

formulation. 

Table 4. Performance of BK formulation for n=100. 

n=100   
   

τ               R      OPV  CPU (s) LPR %DEV. 

0.1           0.1                                                                                         

Instance 1 1079 13827,92 1106 0,03 

Instance 2 1172 8377,3 1197 0,02 

Instance 3 1040* 14400 1064 0,02 

Instance 4 1128* 14400 1158 0,03 

Instance 5 1077 12792,15 1101 0,02 

Instance 6 1079* 14400 1106 0,03 

Instance 7 1079* 14400 1106 0,03 

Instance 8 1062 12856,63 1092 0,03 

Instance 9 1104* 14400 1128 0,02 

Instance 10 1009* 14400 1032 0,02 

Avg.     -               0,03 
Note: OPV: optimal value; CPU (s): run time in seconds; LPR: linear programming relaxation; %DEV.: percentage deviation between LPR and OPV 

which is (LPR-OPV)/OPV; Avg.: average. * Best values 

5. Conclusion 

In this paper, we studied order acceptance and scheduling problem with due dates, deadlines and sequence-dependent 

setup times which maximizes the total revenue from the accepted orders. The contribution of this paper is to propose a 

new mixed integer mathematical formulation which can solve all the instances available in the related literature. Our 

proposed formulation can solve all the instances with 10, 15, 20, 25, 50 orders and some of the instances with 100 orders 

in given time limit. Our proposed formulation also gives LP relaxations with the average of % 3 which is very close to 

the optimal values.  

In the literature, many authors emphasize that the problem is strongly NP-hard. However, our proposed formulation can 

solve almost all the instances of OAS problem in a reasonable time. Most of the studies on single-machine OAS problem 

propose exact algorithms and heuristic algorithms. While there is a mathematical formulation capable of solving small 

to moderate real-life instances, heuristic algorithms are necessary to solve only larger instances. Therefore, our study is 

distinctive to show the capacity of a well-designed mathematical formulation.  

In addition, our proposed formulation provides good upper bounds by LP relaxations. It is useful for the authors willing 

to develop heuristic algorithms for OAS problem with greater orders. As for future studies, one can try to propose a 

mathematical formulation which can solve the instances with more than 100 orders, or one can try to develop a heuristic 

algorithm for greater real-life problems. 
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