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Abstract 

Reliability is one of the most important factors of complex systems which play a crucial role in the performance of 

modern systems. In this study, a novel algorithm for estimating reliability of ready-to-use systems in designing phase for 

designed lifetime is proposed. At the first stage, the related studies are checked, and then fundamental theories of each 

section are presented. With reference to the particular structure of ready-to-use systems and Markov Chain conditions, a 

new model based on Markov method and Fuzzy approach is suggested. The performance of proposed model is validated 

by testing on a real system. Therefore, the reliability and mean time to failure of the industrial system is estimated by the 

algorithm. Finally, practical suggestions are recommended for optimizing the system reliability. 
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 1. Introduction 

Reliability is the success probability measurement of a system in supporting its performance properly during its designed 

mission time. Complex systems are classified into some categories including ready-to-use systems, in which they are 

formed by diverse components with unknown reliabilities. Designed life cycle of ready-to-use systems is not restricted 

to one mission. In this type, the system is stored after the first operation and will begin the second mission after the 

depository process. By finishing the mission, the system is inspected and expected corrective maintenance is applied, 

followed by moving the system to storehouse, until the next mission turns. In case of occurring failures in ready-to-use 

systems, there will be no opportunity to compensate for the error. Hence, improving the reliability of ready-to-use 

systems has a far-reaching effect on the performance of the whole system. By the first failure during operation time, 

system will completely fail in mission performance (Billinton, R. & Allan, R. N., 1998). Therefore, failure probability 

of ready-to-use systems is accepted in a certain level. Consequently, an approach is required to estimate the reliability of 

a ready-to-use system in its designing phase. By means of that, reconnaissance of potential failures is performed in its 

infant life cycle and suggestions for improving the reliability may be made. 

Bucci et al. (2008) proposed a dynamic model of fault tree service by mixing Markov theory and cell-to-cell mapping 

technique (CCMT). They demonstrated that service fault tree is applicable for all probability risk assessment (PRA) 

systems. Shalev & Tiran (2007) analyzed service fault tree in designing phase. They applied updated failure rate values 

to fault tree system by using Condition-based maintenance methods. In this method, by periodically calculating the 

highest failure rate and its effects, system failure probability is assessed. Jianzhong & Julian (2011) evaluated the safety 

of flight control system by applying Markov model. They compared the obtained results of Markov model by fault tree 

service. . The result showed that the Markov model was more accurate than the fault tree service approach. Dominguez-

Garcia et al. (2008) proposed a model to assess the reliability of dynamic fault tolerant systems. They used Markov 

chainmodel to evaluate the performance of flight control system in a fighter plane. Lu & Wu (2014) considered Markov 

chain model for predicting the failure and repair time of each component, in order to evaluate the reliability of - 
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Comprehensive fuzzy system. Bobbio et al. (2001) presented a generic model of system reliability by Bayesian network 

concept. Also they converted a fault tree into Bayesian network. Levitin et al. (2017) proposed an approach for evaluating 

reliability of standby systems composed of multi-state elements with constant state transition rates. They suggested an 

iterative algorithm for reliability evaluation based on element state probabilities. Li et al. (2017) concentrated on the 

development of reliability measures for a repairable multi-state system which operates under dynamic regimes under the 

discrete-time markov. Manesh et al. (2018) indicated that the state space diagram of the system must be simplified in 

order to use markov method for complex systems. For this purpose, they removed many states of the state space diagram 

and proposed a method that can calculate the probabilities by taking into account minimum states and also they indicated 

that the new procedure can predict state probabilities with high accuracy. Zhou, Q. et al. (2018) proposed a quantitative 

reliability analysis model based on fuzzy logic theory, Bayesian network, and cognitive reliability & error analysis 

method for the tanker shipping industry. VanDerHorn, E. et al. (2018) presented a methodology for updating the model 

parameters using abstracted data forms through a bayesian network. They stated in the context of reliability analysis, a 

common form of available information is summarized reliability data for various mechanical components (e.g., failure 

rates or failure probabilities) instead of detailed actual test data. Sihombing, F. et al. (2018) presented new algorithms 

that handle and solve a fault tree by taking advantage of the new state of the art in parallel computing. Kharazmi and 

Saadatinik (2016) introduced a new family of lifetime distributions called hyperbolic cosine – F (HCF) distribution. 

Kharazmi, O. (2017) focused on a special case of HCF family with exponentiated exponential distribution as a baseline 

distribution (HCEE). In the present study, we propose a novel algorithm for estimating reliability of ready-to-use 

systems. Fuzzy theory is benefitted, in order to improve the accuracy of results.  

2.  Formulation of the model 
2.1. Markov Chain 

Markov chain is a memoryless process. It means, the conditional probability of next event, only depends on the present 

state, not on previous ones. Markov chain is a discrete random process in time with a particular state, which changes 

randomly in each step. The changes in Markov chain model can be formulated by physical distance or any other discrete 

variables (Billinton, R. & Allan, R. N., 1998). 

2.2. Fault Tree Analysis (FTA) 

FTA is a logical and graphical diagram that describes the failures and their reasons. In graphical aspect, the FTA uses 

some special signs to mention all failures of system and subsystems (Clemens, P.L., 1992). 

 
                Figure 1. Parallel Fault Tree: AND Gate             Figiure 2. Series Fault Tree: OR Gate 

 

2.3. Triangular fuzzy numbers  

Triangular fuzzy numbers are described by three real numbers as (U, M, L). M is the most probable fuzzy number. These 

numbers can be described by a membership function which includes two linear sections connected at (M, 1) point. In 

previous studies, it was demonstrated that probable values of FTA can be considered as triangular fuzzy numbers (Verma, 

A. K et al., 2004). 

2.4. Bayesian network 

Bayesian network is a graphical diagram which includes knots for expressing variables, and arrows for representing the 

relationships between knots. Bayesian network is not a circular graph. This network is applicable to calculate the 

probability of any variable (knot) which is affected by some other variables (Bobbio, A. et al., 2001). 

3. Assumptions 

We consider four assumptions for the present study as follows: 

 Ready-to-use systems are memoryless. It means the next state of the system is only affected by the present state.  

 In idle time of a system, no failures are occurred. Moreover, depreciation rate is negligible. 

B  A 

C= A AND B 

B  A 

 

 

  

C = A OR B 
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 All essential repairs for ready-to-use systems are performed in idle state of system. So, repair times are also ignored. 

 Failures are independent from each other. 

 

4. Methodology of research 

Discrete Markov method is the base of the proposed algorithm, due to considering the system as a repairable one. Also, 

we can consider a constant failure rate in designed lifetime of system. Moreover, the idle time of system can be ignored 

by the discrete behavior of Markov chain. 

5. Steps of proposed algorithm 

5.1. step 1: system inspection  

It is mandatory to recognize all system features and its functions. It is impossible to define reliability indicators without 

understanding the properties of the system. 

5.2. step 2: defining the number of subsystems and their connections 

To facilitate reliability testing, the system should be split into several subsystems. The connection network of subsystems 

can be in series, parallel, series-parallel or parallel-series mode. 

5.3. step 3: defining state space diagram and possible changes 

The order of state space is all possible system conditions due to the performance or failure of subsystems. All possible 

states for a system are recognized and also possible state changes are defined (Billinton, R. & Allan, R. N., 1998). 

5.4. step 4: failure rate calculation in each mission for all subsystems 

Due to being in designing phase of a system and the lack of functional information about performance of the system, a 

FTA is needed to recognize the potential failures of system and their failure rates. First, all probable failure of each 

subsystem is recognized and fault tree of each subsystem is depicted in several levels. Then for calculating the marginal 

probability values of FTA, similar failure data of the system is used by referring to reference documents in intended 

industry   

 Then, the exact obtained results are converted into triangular fuzzy numbers as follows (Verma, A. K et al., 2004): 

 

𝐸𝑖 = (𝑚𝑖 − 𝑑𝑖, 𝑚𝑖, 𝑚𝑖 + 𝑑𝑖) 
 (1) 

To obtain the unity value of each considered marginal probability, (2) can be expressed. 

{ 
𝑔 =

1

𝑛
∑ 𝑑𝑖𝑛

𝑖=1

𝑓 = min 𝑚𝑖+max 𝑚𝑖

2

   𝐹 = (𝑓 − 𝑔 , 𝑓 , 𝑓 + 𝑔)        

     (2) 

FTA is converted into Bayesian network. In this step, the variables in FTA are changed into knots of Bayesian network, 

and the “OR” and “AND” gates are transformed into lines. Figure 3 and Figure 4 depict the related Bayesian network of 

FTA represented in Figure 1 and Figure 2 (Bobbio, A. et al., 2001). 

 

 
                        Figure 3. Parallel Bayesian Network: AND node          Figure 4. Series Bayesian Network: OR node 

 

In the following, since failures are considered independent of one another (assumption number 4), a joint distribution 

function  can be obtained to calculate the probability of failure. In cases where the above assumption is not true, we use 

the Markov-Monte Carlo method for deduction. (3) is used f for series bayesian network illustrated in Figure 4. In the 

following relationships, zero represents that event does not occur and one indicates occurrence (Bobbio, A. et al., 2001). 

 

 B    A 

  C 

 B    A 

  C 
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𝑝 (  𝑐 = 1 ∣  𝐴 = 0, 𝐵 = 0 ) = 0  

𝑝 (  𝑐 = 1 ∣  𝐴 = 1, 𝐵 = 0 ) = 1  

𝑝 (  𝑐 = 1 ∣  𝐴 = 0, 𝐵 = 1 ) = 1  

𝑝 (  𝑐 = 1 ∣  𝐴 = 1, 𝐵 = 1 ) = 1    

(3) 

Finally, the probability of event C can be obtained as follows: 

 

𝑝 (𝑐 = 1) =  𝑝 ( 𝑐 = 1 ∣  𝐴 = 0, 𝐵 = 0 )𝑝 ( 𝐴 = 0, 𝐵 = 0) +

𝑝 (  𝑐 = 1 ∣ 𝐴 = 0, 𝐵 = 1 ). 𝑝 (  𝐴 = 0, 𝐵 = 1) +

𝑝 (  𝑐 = 1 ∣ 𝐴 = 1, 𝐵 = 0 ). 𝑝 ( 𝐴 = 1, 𝐵 = 0) +

𝑝 (  𝑐 = 1 ∣  𝐴 = 1, 𝐵 = 1 ). 𝑝 ( 𝐴 = 1, 𝐵 = 1)    

(4) 

 

Assuming the independence of the occurrence of failures A and B with the above conditional relations, the following 

formula may be obtained. 

𝑝 (𝑐 = 1) = 𝑝 ( 𝐴 = 0, 𝐵 = 1) + 𝑃 ( 𝐴 = 1, 𝐵 = 0) + 𝑃(𝐴 = 1, 𝐵 = 1)        (5) 

 

Complementary event probability can be used to simplify the above mentioned equations. 

𝑝 (𝑐 = 1) = 1 −  𝑝 (𝑐 = 0) = 1 − 𝑃[ 𝐴 = 0, 𝐵 = 0] = 1 − 𝑃( 𝐴 = 0) ∗ 𝑃(𝐵 = 0)   (6) 

 

It is possible to extend the (6) for Series Bayesian network. Therefore, by making failure C happen out-of n available 

failures, we have: 

𝑝 (𝑐 = 1) = 1 −  𝑝 (𝑐 = 0) = 1 − 𝑃[ 𝐴1 = 0, 𝐴2 = 0, … , 𝐴𝑛 = 0]   
(7) 

  Regarding the independence of failure occurrences, it can be obtained: 

𝑝 (𝑐 = 1) = 1 − [ 𝑃(𝐴1  = 0) ∗ 𝑃(𝐴2 = 0) ∗ … ∗  𝑃(𝐴𝑛 = 0) ]   (8) 

 

Also for parallel bayesian network depicted in Figure 3, the following conditional relations are derived (Bobbio, A. et 

al., 2001): 

𝑝 (  𝑐 = 1 ∣  𝐴 = 0, 𝐵 = 0 ) = 0  

𝑝 (  𝑐 = 1 ∣  𝐴 = 0, 𝐵 = 1 ) = 0  

𝑝 (  𝑐 = 1 ∣  𝐴 = 1, 𝐵 = 0 ) = 0   

𝑝 (  𝑐 = 1 ∣  𝐴 = 1, 𝐵 = 1 ) = 1  

 

 (9) 

The calculation of the probability of occurrence in this case is similar to that of the previous relation to the probability 

of occurrence of C, and by placing the above conditional relations, we get the following relationship: 

𝑝 (𝑐 = 1) = 𝑃(𝐴 = 1, 𝐵 = 1) = 𝑃 ( 𝐴 = 1) ∗ 𝑃 ( 𝐵 = 1)    (10) 

 

We can extent the (10) for Parallel Bayesian network. Therefore, by making failure C happen out-of n available failures, 

we have: 

𝑝 (𝑐 = 1) =  𝑃 [ 𝐴1 = 1, 𝐴2 = 1, … , 𝐴𝑛 = 1] 
(11) 

  According to independence of failure occurrence, (11) can be expressed as (12). 

𝑝(𝑐 = 1) = 𝑃(𝐴1  = 1) ∗ 𝑃(𝐴2 = 1) … 𝑃(𝐴𝑛 = 1) (12) 

 

5.5. step 5: calculation of the repair probability for subsystems 

The total and conditional probability rules and Bayes’ theorem are applied to calculate the repair probability of each 

component. The potential failures are categorized as repairable and non-repairable. Hence, the repair probability of 

potential repairable failures is considered as one, and for non-repairable failures as zero. For series bayesian network 

depicted in Figure 4, p (a), p(b) and p(c) indicate the failure probability of a, b and c respectively, and P(𝑅𝐶) resembles 

the repair probability of c (Ross, S. M., 2014). 

P( 𝑅𝐶 = 1) = P( 𝑅𝐶 = 1 | 𝐶 = 1) = 𝑃(𝑅𝐶 = 1  | at least A = 1 or B = 1)  

= (𝑃[(𝑅𝐶 = 1) ∩ ( at least A = 1 or B = 1)])/(𝑃 ( at least A = 1 or B = 1 ) )  

= (𝑃 [(𝑅𝐶 = 1) ∩  (𝐴 ∪ 𝐵)])/(𝑃 (𝐴 ∪ 𝐵 ) )   

= (𝑃 [[(𝑅𝐶 = 1) ∩ 𝐴] ∪ [(𝑅𝐶 = 1) ∩ 𝐵]])/(𝑃(𝐴 ∪ 𝐵 ) )  

= (𝑃[(𝑅𝐶 = 1) ∩  𝐴] + 𝑃[(𝑅𝐶 = 1) ∩ 𝐵] − 𝑃[[(𝑅𝐶 = 1) ∩ 𝐴] ∩ [(𝑅𝐶

= 1) ∩ 𝐵]])/(𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)) 

       (13) 
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In order to summarize the equations in this article 𝑃(𝐴 = 1) is written as 𝑃(𝐴). 
According to independence of events, the following equation can be made. 

P( 𝑅𝐶) = (𝑃[(𝑅𝐶 = 1) ∩ 𝐴] + 𝑃 [(𝑅𝐶 = 1) ∩ 𝐵] − 𝑃  [[(𝑅𝐶 = 1) ∩ (𝐴 ∩

𝐵)]])/(𝑃(𝐴) + 𝑃(𝐵) −  𝑃(𝐴) ∗ 𝑃(𝐵) )    

    (14) 

 

The Bayes’ theorem extents the Eq. (14) as follows: 

𝑃(𝑅𝐶 = 1 ) = (𝑃[(𝑅𝐶 = 1)   ∣ 𝐴 ] ∗ 𝑃(𝐴)   + 𝑃 [(𝑅𝐶 = 1)   ∣ 𝐵 ] ∗ 𝑃(𝐵) − 𝑃 [[(𝑅𝐶 =

1) ∣ (𝐴 ∩ 𝐵)]] ∗ 𝑃(𝐴) ∗ 𝑃(𝐵))/(𝑃(𝐴) + 𝑃 (𝐵) −  𝑃(𝐴) ∗ 𝑃 (𝐵) )    

(15) 

 

If in Series Bayesian network, one parent knot is made from more than 2 knots, the probability of repair on the condition 

of breakdown C is converted as follows, which is the main aspect of the presented method: 

𝑃(𝑅𝐶 = 1 ) = ∑ 𝑃[ (𝑅𝐶 = 1) ∣∣ 𝐸𝑖  ] ∗ 𝑃(𝐸𝑖)
𝑛
𝑖=1 −  ∑ 𝑃 [[(𝑅𝐶 = 1)  ∣ (𝐸𝑖1

∩ 𝐸𝑖2
)]] ∗𝑛

𝑖1 < 𝑖2

𝑃(𝐸𝑖1
) ∗ 𝑃(𝐸𝑖2

) + ∑ 𝑃 [[(𝑅𝐶 = 1)  ∣ (𝐸𝑖1
∩ 𝐸𝑖2

∩ 𝐸𝑖3
)]] ∗ 𝑃(𝐸𝑖1

) ∗ 𝑃(𝐸𝑖2
)𝑛

𝑖1 < 𝑖2<𝑖3
∗

𝑃(𝐸𝑖3
) − ⋯ + (−1)𝑛+1𝑃 [[(𝑅𝐶 = 1)  ∣ (𝐸𝑖1

∩ 𝐸𝑖2
∩ … ∩ 𝐸𝑛)]] / ∑ 𝑃(𝐸𝑖)𝑛

𝑖=1 −

 ∑ 𝑃(𝐸𝑖1
) ∗ 𝑃(𝐸𝑖2

)  + ∑ 𝑃(𝐸𝑖1
) ∗ 𝑃(𝐸𝑖2

) ∗ 𝑃(𝐸𝑖3
) − ⋯ + (−1)𝑛+1 𝑛

𝑖1 < 𝑖2<𝑖3
𝑃(𝐸𝑖1

) ∗𝑛
𝑖1 < 𝑖2

𝑃(𝐸𝑖2
) ∗ … ∗ 𝑃(𝐸𝑛)    

     (16) 

 

 

It should be noted that the following relation has been used to prove the Eq. (16). 

𝑝(𝐸1 ∪ … ∪  𝐸𝑛) = ∑ 𝑃(𝐸𝑖)𝑛
𝑖=1 − ∑ 𝑃(𝐸𝑖1

∩ 𝐸𝑖2
)𝑛

𝑖1 < 𝑖2
+ ∑ 𝑃(𝐸𝑖1

∩ 𝐸𝑖2
∩ 𝐸𝑖3

) − ⋯ +𝑛
𝑖1 < 𝑖2<𝑖3

(−1)𝑛+1 𝑃(𝐸𝑖1
∩ 𝐸𝑖2

∩ … ∩ 𝐸𝑛)  
           (17) 

In parallel bayesian network, depicted in Figure 3, to calculate the repair probability on the condition of breakdown C, 

we have: 

P( 𝑅𝐶 = 1) = P( 𝑅𝐶 = 1 | 𝐶 = 1) = 𝑃(𝑅𝐶 = 1  | A = 1 , B = 1)    

= (𝑃[(𝑅𝐶 = 1) ∩ (A = 1 , B = 1)])/(𝑃(A = 1 , B = 1 ) ) 

= (𝑃 [(𝑅𝐶 = 1) ∩ (𝐴 ∩ 𝐵)])/(𝑃(𝐴 ∩ 𝐵 ) ) 

 

                               (18) 

According to Bayes’ theorem: 

𝑃(𝑅𝐶 = 1 ) = (𝑃 [[(𝑅𝐶 = 1) ∣ (𝐴 ∩ 𝐵)]] ∗ 𝑃(𝐴) ∗ 𝑃(𝐵))/( 𝑃(𝐴) ∗

𝑃(𝐵) )  
                                              (19) 

 

As a result, if the value of  𝑃 [[(𝑅𝐶 = 1) ∣ (𝐴 ∩ 𝐵)]] is one, the repair probability of C would be one, and if the value of 

 𝑃 [[(𝑅𝐶 = 1)  ∣ (𝐴 ∩ 𝐵)]] is zero, the repair probability of C would be zero, too. 

5.6. step 6: calculation of failure rate and repair probability of main system 

Draw the bayesian network for whole system. Similar to step 4 and 5, with failure rate and repair probability of each 

subsystem, calculate the failure rate and repair probability of whole system.  

5.7. step 7: determining stochastic transitional probability matrix 

According to probable spaces in step 3, probability matrix of variable states transition is defined. Elements of this matrix 

indicate the probability of possible states transition, which are failures probability and the whole system repair probability 

obtained from step 6. The sum of elements for each row is equal to one, but the sum of the elements of a column is not 

necessarily one (Billinton, R. & Allan, R. N., 1998). 

5.8. step 8: evaluating time dependent probabilities 

The probability that the system will function correctly after the m time stages: by considering the transition matrix, we 

can obtain distribution function of Xn|1 and by defining state n+1th distribution function of Xn|2 can be obtained. With 

this recursive method, Xn|m can be obtained. while the distribution function of system state in first state is obtained, to 

define a direct relation between Xn and Xn|m and calculating distribution function of system in state n, we can use (20) 

(Billinton, R. & Allan, R. N., 1998). 

    

𝑃(𝑚)  =  𝑝(0).  𝑝𝑚 
(20) 



A Novel Algorithm for Estimating Reliability of Ready-to-use Systems in Designing Phase for ... 

  

Int J Supply Oper Manage (IJSOM), Vol.5, No.4 294 

 

Therefore, the element of transition matrix with m state is  𝑃ij
m . This matrix should be evaluated by the first probable 

condition vector 𝑝(0) which resembles the first state. 

   

5.9. step 9: evaluating limiting states probabilities (reliability in designed lifetime) 

Due to Ergodic system of Markov chain, by increasing   m, the probability values of the states are closer to each other 

and eventually become the same value, and the probability values of the system state are obtained. Consequently, 

regardless of the system’s start state, the probability of reaching the K state in the long run is constant. We show this 

value with 𝑝𝑘 (Billinton, R. & Allan, R. N., 1998). 

𝑝𝑘 = lim
𝑚→∞

𝑃𝑖𝑘
(𝑚)

         (21) 

Therefore, by increasing   m, matrix 𝑝𝑚 tends to a matrix in which all elements in each column, such as column I, would 

equal to Pi. Therefore by continuing the multiplication of the matrix in the preceding step, limit conditions are eventually 

achieved and the values of the matrix components does not change. We can define the probability vector (α) in the form 

of a row matrix with elements 𝑝𝑖  and from the order of 1 × K (k is the number of possible states of the system) as follows: 

 ∗ 𝑝 =   (22) 

 

After the formation of the above equations, for solving the model, we need an independent equation, since the two 

equations are obtained.  The completed equation is: 

∑ 𝑝𝑖
𝑘
𝑖=1 = 1      (23) 

After the model is solved, the above equations determine the reliability of the system during the designed lifetime. 

5.10.  step 10: Determining the absorbing states and average stages before entering these states (MTTF) 

The purpose of explaining the basics of absorbing states in this step of algorithm is to determine the moderate number 

that the system operates appropriately before entering the adverse conditions (MTTR). Absorbing mode refers to a 

condition in which it is not possible to exit the system. Of course, the adverse mode is not just an absorbing state, and in 

some cases it can be removed by performing repairs, but in practice it is considered to be a steady state, with the use of 

these methods, the number of steps before entering this states are defined. If P is the stochastic transitional probability 

matrix, then the Q matrix is formed by removing the rows and columns associated with the absorbing state. If such a 

matrix is formed, we will have the number of expected times as follows (Billinton, R. & Allan, R. N., 1998): 

𝐸 ( 𝑋) = ∑ 𝑥𝑖𝑝𝑖

∞

𝑖=1

 
    (24) 

 

The above equation is used not only for singular probabilistic members with probability of pi, but also for multi-

probability matrices with Q matrices. Therefore, whenever n represents the number of times expected to occur from the 

repetition of the time intervals for transition states, we will have: 

𝐸 ( 𝑋) = 1. 𝐼 + 1. 𝑄 + 1. 𝑄2 + ⋯ + 1. 𝑄𝑛−1                    (25) 

Where, I is a unit matrix representing the probability of all possible initial conditions, and the number one in each row 

indicates the share of the state with the same row number. Each of the numbers one in the above equation represents a 

stage of successive state and is equivalent to X(i) in the initial equation. The first state occurs with the probability matrix 

I. The second state with the Q matrix, the third state with Q ^ 2, and ultimately the system at the nth state of the time is 

in permanent mode. Hence, the following equation is obtained: 

𝐸 ( 𝑋) = 𝑁 = 𝐼 + 𝑄 + 𝑄2 + ⋯

+ 𝑄𝑛−1 
    (26) 

 

Because the above equation cannot be easily evaluated, instead of the (26), the following equation is used, which is 

actually a binomial expansion,: 

[𝐼 − 𝑄][𝐼 +  𝑄2 + ⋯ + 𝑄𝑛−1]

= 𝐼 −  𝑄𝑛    (27) 

Also when n → ∞  

lim
𝑛 →∞

𝑄𝑛 = 𝑜    
      (28) 

Then: 

𝐼 − 𝑄𝑛 → 𝐼      (29) 

 

As a result, (27) changes into (30) as follows: 
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[𝐼 − 𝑄][𝐼 + 𝑄2 + ⋯ + 𝑄𝑛−1] = 𝐼    (30) 

 

Or  

[𝐼 +  𝑄2 + ⋯ + 𝑄𝑛−1] = [𝐼 − 𝑄]−1    (31) 

 

Based on previous equations we have: 

𝑁 = [𝐼 − 𝑄]−1   (32) 

 

6. experimental results 

Ultimately, the proposed algorithm has been applied to an intelligent industrial system sample to evaluate its reliability. 

According to the system inspection, it is clear that the system should be divided into two separate subsystems (A and B) 

for ease of reference. The possible mode space for the system consists of 2 modes. Mode 1 is the correct operating mode 

of the system and mode 2 is the state where the system is not functioning properly.  

 

 
                                                      Figure 5. State space diagram of system 

After plotting the Fault Tree for each subsystem and mapping it to the Bayesian network and collecting data from similar 

system’s failure data and referring to reference documents in intended industry to determine the marginal probabilities 

and converting the data into fuzzy numbers, we calculate the failure rate for each mission in accordance to (8). 

Consequently, according to the experts' opinion, for potential failures that can be repaired, we will consider the possibility 

of repair on the condition of failure as one and for potential failures that are not repairable, the possibility of repair on 

condition of failures are zero. Then, with respect to (16), we obtain the probability of repair on the condition of failure 

of each subsystem. And in the next step, we calculate the total system failure rate (𝜆𝑠) and the probability of repairing 

the entire system (𝐿𝑠). Then, we obtain the stochastic transitional probability matrix based on the state space diagram of 

system. 

P =[
1 − 𝜆𝑆 𝜆𝑆

𝐿𝑆 1 − 𝐿𝑆
] 

    (33) 

 

In the next step, we calculate the probability that the system will work correctly for different missions, based on (20). 

  
Figure 6. System reliability diagram 

 

 Then, we will determine the limiting state probabilities of the system lifetime (reliability). α is defined as follows. 

𝛼 = [  𝑝1 𝑝2 ]     (34) 

According to (22), we have: 

[  𝑝1 𝑝2 ] ∗ [
1 − 𝜆𝑆 𝜆𝑆

𝐿𝑆 1 − 𝐿𝑆
] =  [  𝑝1 𝑝2 ]   

(35) 

 

The following system of equations can be obtained: 

{
(1 − 𝜆𝑆) 𝑝1  + 𝐿𝑆. 𝑝2  = 𝑝1 
𝜆𝑆 . 𝑝1  + (1 − 𝐿𝑆) 𝑝2  = 𝑝2 

 
   (36) 
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Due to recursive equations, (23) can be used to complete the system of equations. So we have: 

{
(1 − 𝜆𝑆) 𝑝1  + 𝐿𝑆 . 𝑝2  = 𝑝1  

 𝑝1  +  𝑝2  = 1   
 

  (37) 

 

After solving the above system equations, system reliability (𝑝1) will be obtained based on given parameters. 

𝑝1 =
𝐿𝑆

𝐿𝑆 + 𝜆𝑆 
 

   (38) 

 

By setting the values of the parameters (which are fuzzy numbers) in the above equation and performing fuzzy 

calculations, the reliability value for this system is obtained as follows. 

(𝑅𝑆) = 𝑝1 = [0/728 , 0/794 , 0/889 ]   (39) 

 
Figure 7. Representation of fuzzy system reliability 

In the final step, according to (32), the value of MTTF of the system can be calculated as 5/70. With regard to the 

calculated system reliability, which is fuzzy and has a core of approximately 79.4%, as well as MTTF of 5/70 missions, 

it is obvious that the improvements are essential. It should be noted that the multiplicity of series systems in the structure 

of the system, as found in the associated Fault Tree, justifies this value.  

7. Conclusion 

These calculations help in two ways. First, the failure mode and effects analysis (FMEA) tool identifies errors in design 

phase and prioritizes them. Second, in terms of budgeting, it determines how much to invest in each piece and how much 

it will cost. Because the final result should always keep the system in terms of cost-effectiveness and efficiency at the 

optimal point, by increasing the complexity of a system, whether in terms of increasing the number of components or 

the combination of multiple mechanical and electronic systems, as well as evaluating the construction and design costs 

to meet the reliability limitation, the approaches of the meta-heuristic algorithms such as Genetic Algorithm or Hybrid 

Algorithms would be applicable. Creating a new method for calculating marginal probabilities and introducing a new 

method for calculating conditional probabilities that are used to calculate the probability of repair on the condition of 

failure of each subsystem are the most important suggestions that can be made to further this research. 

 

References  

Billinton, R., and Allan, R. N. (1992). Reliability evaluation of engineering systems. New York: Plenum press. 

Bobbio, A., Portinale, L., Minichino, M., and Ciancamerla, E. (2001). Improving the analysis of dependable systems by 

mapping fault trees into Bayesian networks. Reliability Engineering & System Safety, Vol. 71(3), pp. 249–260. 

Bucci, P., Kirschenbaum, J., Mangan, L. A., Aldemir, T., Smith, C., and Wood, T. (2008). Construction of event-

tree/fault-tree models from a Markov approach to dynamic system reliability. Reliability Engineering & System Safety, 

Vol. 93(11), pp. 1616–1627. 

Clemens, P.L., Fault Tree Analysis, Fourth Edition, Lecture Presentation, Sverdrup Technology, Inc (1992). 

Dominguez-Garcia, A. D., Kassakian, J. G., Schindall, J. E., and Zinchuk, J. J. (2008). An integrated methodology for 

the dynamic performance and reliability evaluation of fault-tolerant systems. Reliability Engineering & System Safety, 

Vol. 93(11), pp. 1628–1649. 

Jianzhong, Y., and Julian, Z. (2011). Application Research of Markov in Flight Control System Safety Analysis. 

0؛0/728

1؛0/794

0؛0/889
0

0/5

1

1/5

0/6 0/7 0/8 0/9 1

M
em

b
er

sh
ip

 f
u

n
ct

io
n

Reliability



Javid, Abouei Ardakan, Yaghtin and Najafi Juybari 

  

Int J Supply Oper Manage (IJSOM), Vol.5, No.4 297 

 

Procedia Engineering, Vol. 17, pp. 515–520. 

Kharazmi, O., and Saadatinik, A. (2016). Hyperbolic Cosine-F Family of Distributions with an Application to 

Exponential Distribution. Gazi University Journal of Science, Vol. 29(4), pp. 811-829. 

Kharazmi, O. (2017). Hyperbolic Cosine–Exponentiated Exponential Lifetime Distribution and its Application in 

Reliability. International Journal of Supply and Operations Management, Vol. 4(1), pp. 63-77. 

Levitin, G., Jia, H., Ding, Y., Song, Y., and Dai, Y. (2017). Reliability of multi-state systems with free access to 

repairable standby elements. Reliability Engineering & System Safety, Vol. 167, pp. 192-197. 

Li, Y., Cui, L., and Lin, C. (2017). Modeling and analysis for multi-state systems with discrete-time Markov regime- 

switching. Reliability Engineering & System Safety, Vol. 166, pp. 41-49. 

Lu, J.-M., and Wu, X.-Y. (2014). Reliability evaluation of generalized phased-mission systems with repairable 

components. Reliability Engineering & System Safety, Vol. 121, pp. 136–145. 

Manesh, M. K., Rad, M. P., and Rosen, M. A. (2018). New procedure for determination of availability and reliability of 

complex cogeneration systems by improving the approximated Markov method. Applied Thermal Engineering. Vol. 138, 

pp. 62-71. 

Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Academic Press.  

Sihombing, F., and Torbol, M. (2018). Parallel fault tree analysis for accurate reliability of complex systems. Structural 

Safety, Vol. 72, pp. 41-53. 

Shalev, D. M., and Tiran, J. (2007). Condition-based fault tree analysis (CBFTA): a new method for improved fault tree 

analysis (FTA), reliability and safety calculations. Reliability Engineering & System Safety, Vol. 92(9), pp. 1231–1241. 

Verma, A. K., Srividya, A., and Gaonkar, R. P. (2004). Fuzzy dynamic reliability evaluation of a deteriorating system      

under imperfect repair. International Journal of Reliability, Quality and Safety Engineering, Vol. 11(04), pp. 387-398. 

Van DerHorn, E., and Mahadevan, S. (2018). Bayesian model updating with summarized statistical and reliability 

data. Reliability Engineering & System Safety, Vol. 172, pp. 12-24. 

Zhou, Q., Wong, Y. D., Loh, H. S., and Yuen, K. F. (2018). A fuzzy and Bayesian network CREAM model for human 

reliability analysis–The case of tanker shipping. Safety science, Vol.105, pp. 149-157. 

 

 

 


