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Abstract 

A situation in which a finite set of players can obtain certain grey payoffs by cooperation can be described by a 

cooperative grey game. In this paper, we consider some grey division rules, called the grey equal surplus sharing 

solutions. Further, we focus on a class of the grey equal surplus sharing solutions consisting of all convex combinations 

of these solutions. Finally, an application of Operations Research (OR) situations is given. 
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 1. Introduction 

The grey uncertainty is established by Deng (1982) who introduced a new methodology focusing on the study of 

problems involving small samples and poor information. It deals with uncertain systems with partially known 

information through generating, excavating, and extracting useful information from what is available. This paper focuses 

on some division solutions for cooperative games, called the equal surplus sharing solutions. More precisely, these 

solutions are Centre-of-gravity of the Imputation-Set value, shortly denoted by CIS-value, Egalitarian Non-Separable 

Contribution value, shortly denoted by ENSC-value, and the equal division solution, shortly denoted by ED-solution 

(Driessen and Funaki, 1991; van den Brink and Funaki, 2009). Our main objective in this paper is to extend these 

solutions by using grey uncertainty. 

Cooperative game theory is widely used on interesting cost/profit sharing problems in many areas of OR such as 

transportation, connection, facility situations, etc. (see Borm et al., 2001 for a survey on OR Games). 

In this paper, we present on an application of facility location situations and related games with grey data. Facility 

location situations are among promising topics in the field of Operations Research (OR), which has many applications 

to real life. In these types of problems, there exists a given cost for constructing a facility. Further, connecting a player 

to this facility by minimizing the total cost is necessary (Nisan et al., 2007).  

A facility location game is constructed by a facility location situation. We introduce facility location situations with grey 

data and obtain the facility location grey games. Since these games are defined by using special substraction operator, 

we apply equal surplus sharing solutions to facility grey situations. 

This paper is organized as follows. Section 2 considers some preliminaries on cooperative game theory, cooperative grey 

games, grey calculus, and classical equal surplus sharing solutions in cooperative game theory. In Section 3, we introduce 

grey game-theoretical equal surplus sharing solutions on special subclass of cooperative grey games. Section 4 discusses 

a class of equal surplus sharing grey solutions. In Section 5, we give an application of facility location situations with 

grey data. 
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2.  Preliminaries   

 

In this section, some preliminaries about cooperative games and grey calculus are given (Alparslan Gok et al., 

2009a,2009b; Branzei et al., 2008; Deng, 1982; Palanci et al., 2015; Tijs, 2003). 

A cooperative game in coalitional form is an ordered pair >,< vN , where  nN 1,2,...,=  is the set of players, and 

Nv 2: is a map, assigning to each coalition 
NS 2  a real number  Sv , such that   0.=v  

We identify a cooperative game >,< vN  with its characteristic function .v  The family of all games with player set 

N  is denoted by .NG  

In this paper, we consider a one point solution f  on 
NG  assings that a payoff vector   Nvf   to every cooperative 

game .NGv  Examples of such solutions are the Centre-of-gravity of the Imputation-Set value, shortly denoted by 

CIS-value , Egalitarian Non-Separable Contribution value, shortly denoted by ENSC-value, and the equal division 

solution (Driessen and Funaki, 1991; van den Brink and Funaki, 2009). 

The CIS-value, the ENSC-value, and the ED-solution are defined by as follows: 

      ))((
1

)(= jvNv
N

ivvCIS
Nj

i 


                                                                                                            (1) 

for all .Ni   

       .forall))\((
1

)\(= NijNvNv
N

iNvvENSC
Nj

i  


                                                                 (2) 

for all .Ni   

   Nv
N

vEDi

1
=                                                                                                                                                   (3) 

for all .Ni   

A grey number that a number whose exact value is known but a range within that the value lies is known. In applications, 

a grey number in general is an interval or a general set of numbers. In this paper, we consider the interval grey numbers. 

A grey number with both a lower limit a  and a upper limit a  is called an interval grey number, denoted as  ., aaw'   

For example, the weight of a whale is between 150  and 200  ton. The length of a giraffe is between 4  and 5  meters. 

These two grey numbers can be respectively written as 

   .4,5  and  150,200 21  '' ww  

Now, we discuss various operations on interval grey numbers. 

Let 

    .<,,  and  <,, 21 dcdcwbabaw ''   

The sum of 
'w1  and ,2

'w  written ,21

'' ww   is defined as follows: 

 .,21 dbcaww ''   

For example, let  3,41
'w  and  ,5,82 

'w  then, 

 .8,1221  '' ww  

Assume that  ,,baw'  ,< ba  and k  is a positive real number. The scalar multiplication of k  and 
'w  is defined as 

follows: 

 .,kbkakw'   

 

We denote by )(  the set of interval grey numbers in .  

Let )(, 21 '' ww with  ,,1 baw'  ba < ;  ,,2 dcw'  dc < , abw' =1 and  . Then, 

(i)  dbcaww ''  ,21 ; 

(ii)  ., baw'    
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By (i) and (ii) we see that )(
 
has a cone structure. 

In general, the difference of 
'w1  and 

'w2  is defined as follows: 

   ,,= 2121 cbdawwww ''''   

(see Moore, 1979). 

For example, let  ,6,81 
'w  and  ,2,52 

'w  then we have 

   ,1,6=25,8621 '' ww   

   .16,=68,5212 '' ww   

Different from the above subtraction, we use a partial subtraction operator (for details see Alparslan Gok et al., 

2009a,2011; Branzei et al., 2008). We define 
'' ww 21  , only if cdab  , by  dbcaww ''  ,21  (for 

details see Alparslan Gok et al., 2009a; Branzei et al., 2008). 

Notice that if we make a comparison with the above example, then in our case    4,83,6   is not defined. But, 

   3,64,8   is defined. 

Let  ,4,81 
'w

 
and  ,3,62 

'w '' ww 21   is defined since 3648  , but 
'' ww 12   is not defined since 

,48=43=36    then we have 

   .1,2=63,8421  '' ww  

A cooperative grey game is an ordered pair >,< 'wN , where  nN ,1,=   is the set of players, and 

 N'w 2:  is the characteristic function such that 0,0][)( 'w , grey payoff function   ],[ SS

' AASw   

refers to the value of the grey expectation benefit belonging to a coalition ,2NS   where 
SA  and 

SA  represent 

possible maximum and minimum profits of the coalition .S  So, a cooperative grey game can be considered as a classical 

cooperative game with grey profits .'w  Grey solutions are useful to solve profit/cost sharing problems with grey data 

using cooperative grey games as a tool. Building blocks for grey solutions are grey payoff vectors, i.e., vectors whose 

components belong to )( . We denote by 
N)(  the set of all such grey payoff vectors. We denote by 

NG  the 

family of all cooperative grey games. 

Now, we introduce some theoretical notions from the theory of cooperative grey games. 

For 
NIGwww 21,,  and 

N'' Gww 21,  we say that 2211 wwww ''   if ),()( 21 SwSw ''   where 

 SwSw'

11 )(   and  SwSw'

22 )(   and, for each 
NS 2 .  

For 
N'' Gww 21, and  we define >,< 21

'' wwN 
 
and >,< 'wN 

 

by )()(=))(( 2121 SwSwSww ''''   and )(=))(( SwSw ''   for each .2NS  So, we conclude that 
NG  

endowed with "  " has a cone structure with respect to addition and multiplication with non-negative scalars above. 

For 
N'' Gww 21,  where 2211 , wwww ''   with )()( 21 SwSw   for each 

NS 2 , >,< 21

'' wwN   is 

defined by    SwSwSwSwSww ''''

212121 )()(=))((  . 

We call a game >,< 'wN grey size monotonic if >,< wN  is monotonic, i.e., )()( TwSw   for all 
NTS 2,   

with TS  . For further use we denote by 
NGSM  the class of grey size monotonic games with player set N .  

The grey CIS -value and the grey ENSC -value are defined on 
NGSM  but the grey ED -solution is only defined 

on .NG  
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3.  The grey equal surplus sharing solutions 

In this section, we introduce some game-theoretic solutions by using grey calculus which are inspired by van den Brink 

and Funaki (2009). 

The grey CIS -value ( CIS -value) assigns every player to its individual grey worth, and distributes the remainder of 

the grey worth of the grand coalition ,N  equally among all players. 

The CIS -value is defined by 

 NNGSMCIS  :  (4) 

         


Nj

''

N

''

i jwNwiwwCIS )(= 1  

such that 

     


Nj

'' jwNw  

for all Ni  and for all .N' GSMw   

Example 3.1 Let 
N' GSMw   and  1,2,3=N . The coalitional values are as follows: 

     ,0,0=3= '' ww   

     ,1,2=2=1 '' ww  

       ,1,4=13,4,7=12 '' ww  

       .5,9= and  3,5=23 Nww'
 

The CIS -value of the game is calculated as follows: 

            ))321((1
3
1

1

'''''' wwwNwwwCIS   

      )2,45,9(1,2=
3
1   

    3,51,2=
3
1  

  ,2,3=
3
2  

            ))321((2
3
1

2

'''''' wwwNwwwCIS   

    3,51,2=
3
1  

  ,2,3=
3
2  

            ))321((3
3
1

3

'''''' wwwNwwwCIS   

    3,50,0=
3
1  

  .1,1=
3
2  

Then, the CIS -value is 

       ).1,1,2,3,2,3(
3
2

3
2

3
2'wCSI  

The dual 
N' GSMw   of the grey game 

'w  is the game that assigns to each coalition NS   the grey worth that 

is lost by the grand coalition N  if coalition S  leaves ,N  i.e. 

     SNwNwSw ''' \= 

 

for all .NS   

The grey ENSC -value ( ENSC -value) assigns to every game 
'w  the CIS -value of its dual game, i.e. 

  NNGSMENSC  :                                                                                               (5) 

    'i

'

i wCISwENSC  =  

        


Nj

'''

N
iNwjNwNw \)\(= 1  



Yilmaz, Alparslan Gok, Ekici and Palanci 

5 
 

such that 

      iNwNjNwNw '

Nj

'' \\  
 

for all Ni  and for all .N' GSMw   

Thus, the ENSC -value assigns to every player in a game its grey marginal contribution to the "grand coalition" and 

distributes the remainder equally among the players. 

Example 3.2 Consider the game in Example 3.1. We calculate the ENSC -value of the game in Example 3.1 as 

follows: 

            23)131223(
3
1

1

'''''' wwwwNwwENSC   

    3,5)13,25(=
3
1   

  ,,31=
3
1

3
1  

            13)131223(
3
1

2

'''''' wwwwNwwENSC   

    1,4)13,25(=
3
1   

  ,,43=
3
1

3
1  

            12)131223(
3
1

3

'''''' wwwwNwwENSC   

    4,7)13,25(=
3
1   

  .,1=
3
1

3
1  

Then, the ENSC -value is given 

       ).,1,,43,,31(=
3
1

3
1

3
1

3
1

3
1

3
1'wIENSC  

The ENCIS -value is defined for  0,1  as follows: 

 NNGSMENCIS  :                                                                                                                         (6) 

       ''' wENSCwCISwENCIS    1=  

such that 

     jwiNwiw ''' =\=  

for all Nji ,  with .ji   

Finally, the grey ED -solution ( ED -solution) is given by 

  NNGED  :                                                                                                         (7) 

    
N

Nw
wED

'
'

i =  

for all Ni  

 

Example 3.3 Consider the game in Example 3.1. The ED -solution of the game in Example 3.1 is calculated as 

follows: 

           ,31=
3

5,9
=

3
==

3
2

321

Nw
wEDwEDwED

'
'''   

Then, the ED -solution is obtained by 

       ).,31,,31,,31(
3
2

3
2

3
2'wED  

Remark 3.1 We note that the CIS -value and the ENSC -value are defined in ,NGSM  but the ED -solution 

is defined in .NG  



On the Grey Equal Surplus Sharing Solutions 

6 
 

4.  A class of grey equal surplus sharing solutions 

 

In this paper, we discuss a class of grey solutions that consists of all convex combinations of the ED -solution, the 

CIS -value, and the ENSC -value, i.e., for  ,0,1,   we consider grey solutions 
 ,  given by 

       ,1=, ''' wEDwENCISw                                                                                              (8) 

where  'wENCIS   is given by  .1  We denote the class of all grey solutions that are obtained in this way by 

  .0,1,::= ,     Clearly, the interesting solutions in this class are the CIS -value, which is obtained 

by taking 1==   (i.e.    '' wwCIS 1,1=  ), the ENSC -value, which is obtained by taking 1,= 0=  

(i.e.    '' wwENSC 1,0=  ) and the ED -solution, which is obtained by taking 0=  (i.e.   ,= 0, 'wED

 0,1 ). We thus can write 
 ,  as 

       '''' wwww 0,11,, 1=                                                                                                       (9) 

         ''' www 0,11,01,1 11=     

for  .0,1,   

Proposition 4.1 gives an expression of the solutions 
 ,  in the sense that they give each player i  in a grey game 

'w  

some value  '

i w ,
, and the remainder of  Nw'

 is equally divided among all players. 

 

Proposition 4.1 For every 
N' GSMw   and  0,1,   it holds that 

       ),(= ,1,,  


Nj

'

j

'

N

'

i

'

i wNwww                                                                                  (10) 

wher         iNwiww '''

i \1=,     for Ni  such that      jwiNwiw ''' =\=  for all 

Nji ,  with .ji   

Proof.1For 
N' GSMw   and  0,1,   we have 

        '''

i wEDwENCISw     1,
 

       iNwiw '' \1=    

           Nw
N

jNwjwNw
N

'''

Nj

' 


 














 



1
)\1(  

       iNwiw '' \1=    

          










 



)\1(
1

jNwjwNw
N

''

Nj

'   

      ).(= ,1,  


Nj

'

j

'

N

'

i wNww    

Proposition 4.2 For every  0,1,   and 
N' GSMw   it holds that    .= ,1, ''

i ww      

Proof.2. For 
N' GSMw   and  0,1,   we have  

        )(= ,1,,  

 
Nj

'

j

'

N

'

i

'

i wNwww    

       iNwiw '' \1=     

          










 



  )\1(
1

jNwjwNw
N

''

Nj

'   

                                                                 
1 In this proof, we inspired by van den Brink and Funaki (2009).  
2 In this proof, we inspired by van den Brink and Funaki (2009). 
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5.  An application 

In a facility location game, a set   of agents (also known as cities, clients, or demand points), a set   of facilities, a 

facility opening cost if  for every facility i , and a distance ijd  between every pair ),( ji  of points in    

indicating the cost of connecting j  to i  are given. We assume that the distances come from a metric space; i.e., they 

are symmetric and obey the triangle inequality. For a set S  of agents, the cost of this set is defined as the minimum 

cost of opening a set of facilities and connecting every agent in S  to an open facility. More precisely, the cost function 

c  is defined by 

  }.min{min= ij
iSj

i

i

dfSc


 


                                                                                                                  (11) 

Facility location games are studied by Nisan et al. (2007) in the literature. Further, facility location interval games are 

introduced by Palanci et al. (2017). 

In this study, we introduce the facility location grey games. In a facility location grey game, a set   of agents (also 

known as cities, clients, or demand points), a set   of facilities, a grey facility opening cost 
'

if  for every facility 

i , and a distance 
'

ijd  between every pair ),( ji  of points in    indicating the rey cost of connecting j  to 

i  are given. Here,      .,,,  '

ij

'

ij

'

ij

'

i

'

i

'

i dddfff  The distances are supposed to come from a metric space. So, 

these distances are symmetric and satisfy the triangle inequality. For a set AS  of agents, the grey cost of this set is 

defined as the minimum grey cost of opening a set of facilities and connecting every agent in S  to an open facility. 

More precisely, the grey cost function 
'w  is defined by 

   

















 }min{min},min{min ij

iSj

i

i

ij
iSj

i

i

' dfdfSw                                               (12) 

Now, we present an application from a facility location situation and related game with grey data. 
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Figure 1. An application of a facility location situation from Turkey. 

 

Example 5.1 Figure 1 shows a facility location grey situation with 3 cities {Isparta (Player 1), Afyon (Player 2), Usak 

(Player 3)} and 2 airports  1,2  in Turkey. The grey cost function is calculated as follows: 

           ,4,43,3,42,5,71  ''' www  

           ,5,623,9,1113,7,1012  ''' www  

   .10,13123 'w  

Now, we want to calculate CIS -value, ENSC -value and ED -solution.We calculate the CIS -value of this 

game as follows: 

            ))321((1
3
1

1

'''''' wwwNwwwCIS   

  
3
1

3
1 ,64=  

            ))321((2
3
1
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3
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3
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3
1

3
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  ,,33=
3
1

3
1  

Then, the CIS -value is obtained by 

       ).,33,,32,,64(
3
1

3
1

3
1

3
1

3
1

3
1'wCIS  

We calculate the ENSC -value of this game as follows: 

            )131223(23
3
1

1

'''''' wwwNwwwENSC   

  ,,75=
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3
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Then, the ENSC -value is obtained by 

       ).,33,,21,,75(=
3
1

3
1

3
1

3
1

3
1

3
1'wENSC  

Finally, we calculate the ED -solution of this game as follows: 

           .,43=
3

10,13
=

3
==

3
1

3
1

321

Nw
wEDwEDwED

'
'''   

Then, the ED -solution is obtained by 

       ).,43,,43,,43(=
3
1

3
1

3
1

3
1

3
1

3
1'wED  

Table 13 illustrates the results of this application. 

Table 1. The grey equal surplus sharing solutions of Example 5.1. 

Grey Solutions Player 1 Player 2 Player 3 

CIS -value  
3
1

3
1 ,64   

3
1

3
1 ,32   

3
1

3
1 ,33  

ENSC -value  
3
1

3
1 ,75   

3
1

3
1 ,21   

3
1

3
1 ,33  

ED -solution  
3
1

3
1 ,43   

3
1

3
1 ,43   

3
1

3
1 ,43  

 

 

6.  Conclusion 

 

In this paper we propose different equal surplus sharing solutions by using grey numbers. Uncertainty with grey numbers 

is the natural type of uncertainty which may influence cooperation because lower and upper bounds for future outcomes 

or costs of cooperation can always be estimated based on available economic data. Moreover, we give an application on 

facility location grey games. 

As a future work, the class of cooperative grey games can be applied to different economic and Operations Research 

(OR) problems such as bankruptcy situations, airport situations, sequencing situations and cost allocation problems 

arising from connection situations. We note that the obtained results can be extended to different application areas such 

as OR and economic situations with grey numbers. It would be interesting to extend other solution concepts by using 

grey calculus such as Banzhaf value, -value etc. 
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