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Abstract 

We present a simple and effective metaheuristic algorithm for the Split Delivery Vehicle Routing Problem (SDVRP). 

The SDVRP is a relaxation of the classical Vehicle Routing Problem in which a customer demand may be serviced by 

more than one vehicle. The objective is to find a set of least cost trips for a fleet of identical vehicles to service 

geographically scattered customers with or without splitting. The proposed method is a hybridization between a Variable 

Neighborhood Search (VNS), an Evolutionary Local Search (ELS) and a Variable Neighborhood Descent (VND). It 

combines the multi-start approach of VNS and ELS and the VND intensification and diversification strategies. This new 

method is tested on three sets of instances from literature containing a total of 77 benchmark problems. The obtained 

results show that the algorithm outperforms all previously published metaheuristics. 62 instances out of 77 are improved. 

Keywords: Vehicle routing problem; Split delivery; Variable neighborhood search; Evolutionary local search; Variable 

neighborhood descent. 

1. Introduction 

 

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization problem with a high practical 

relevance. It consists in designing the optimal set of routes for a fleet of identical vehicles in order to serve a given set of 

customers, where each customer must be visited exactly once by a vehicle. The VRP has a wide range of applications 

such as in fuel distribution, bank deliveries, and postal deliveries and so on, and has been the subject of intensive research. 

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the VRP in which a customer demand may be 

responded to by more than one vehicle. This problem has recently received a lot of attention from researchers. This is 

mainly because of the substantial savings in the total cost and the number of vehicles used that can be obtained by 

allowing split deliveries. 

 

In some real-life applications, the customers’ demand may exceed the vehicle capacity and then more than one vehicle 

is required to serve it. However, splitting demands can also be interesting when they are smaller than the vehicle capacity. 

The simplest example that illustrates such a case is shown in Figure 1. Even if all the customer demands (2 units for each 

customer) are smaller than the vehicle capacity (equal to 3), the solution where the demand of customer b is split has a 

better cost than the solution without splitting that uses one less vehicle. 

This paper presents a simple and effective metaheuristic algorithm for the Split Delivery Vehicle Routing Problem 

(SDVRP). The objective is to find a set of trips with the least cost for a fleet of identical vehicles to service geographically 

scattered customers with or without splitting. The proposed method is a combination of a Variable Neighborhood Search 

 

(VNS), an Evolutionary Local Search (ELS), and a Variable Neighborhood Descent (VND). It puts the multi-start 

approach of VNS and ELS and the VND intensification and diversification strategies together. This new method is tested 

on three sets of instances from the literature containing a total of 77 benchmark problems. The obtained results show that 

the algorithm outperforms all the previously published metaheuristics. 62 instances out of 77 are improved. 
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Figure 1. Example of the saving obtained by allowing the splitting 

2. Review of the literature  

 
The SDVRP was introduced by Dror and Trudeau (1989, 1990), who showed the advantage of splitting demands and 

proved the NP-hardness of the problem and some structural properties of optimal solutions. Later, Archetti et al. (2006) 

gave a bound on the cost reduction that can be obtained by allowing the splitting. 

 

Three lower bounds are proposed for the SDVRP. The first one was obtained from a cutting plane algorithm by Belenguer 

et al. (2000). The second lower bound which is slightly better than the first one was proposed by Jin et al. (2008) who 

developed a column generation approach. The last one, recently presented by Moreno et al. (2010), is based on an 

algorithm that combines column and cut generation approaches and improves many of the best known lower bounds 

found by the two previous methods. Concerning exact solution algorithms for the SDVRP, Dror et al. (1994) proposed 

the first formulation of the problem, several families of valid inequalities, and a branch and bound procedure. A dynamic 

programming model with infinite state and action spaces was also presented by Lee et al. (2006) and its results were 

improved later by Jin et al. (2007) using a two-stage algorithm based on some new valid inequalities. 

 

Heuristic approaches have been more widely investigated since the exact methods mentioned above cannot solve 

instances with more than 21 customers. A constructive heuristic for the SDVRP was presented by Dror and Trudeau 

(1990), and more sophisticated metaheuristics were proposed recently by several researchers. The first metaheuristic for 

the SDVRP is the tabu search algorithm of Archetti et al. (2006). The results of this method were improved by Boudia 

et al. (2007) using a memetic algorithm with population management (MA|PM), Mota et al. (2007) using a scatter search 

algorithm, and Chen et al. (2007) as well as Archetti et al. (2008) using solution approaches that combine heuristics and 

integer programming components. Recently, Aleman et al. (2010) proposed an adaptive memory algorithm coupled to a 

variable neighborhood descent which improves the results of the previous methods, except for the results of the MA|PM 

of Boudia et al. (2007). 

 

Some extensions of the SDVRP were also studied. They mainly concern the consideration of time windows constraints 

or that of the arc routing version. The SDVRP with time windows (SDVRPTW) was considered in 1999 by Guéguen 

(xxxx) who proposed a formulation and adapted a column generation approach for the VRP with time windows to the 

SDVRPTW. This work was then improved in M. Gendreau (1999). The only metaheuristic dedicated to the SDVRPTW 

is the tabu search method of Ho and Haugland (2006). Frizzell and Giffin (1995) studied the SDVRPTW with grid 

network distances. 

 

For the arc routing version (the Split Delivery Capacitated Arc Routing Problem, SDCARP), an adaptation of the SDVRP 

heuristic of Dror and Trudeau for the SDCARP with time windows was proposed by Mullaseril et al. (1997) to solve a 

livestock feed distribution problem. More recently, an important investigation of the SDCARP was presented in (2010, 

2008). Two integer programming formulations, several constructive heuristics, two lower bounds and two metaheuristics 

were proposed. The authors also show that the savings that can be obtained by allowing the splitting in arc routing 

problems are similar to the ones obtained by Dror and Trudeau on the SDVRP although the length of a required edge is 

counted each time it is traversed for a partial service. 

 

Our special interest lies in the combination of several components of three classical metaheuristics including the Variable 

Neighborhood Search (VNS), the Evolutionary Local Search (ELS), and the Variable Neighborhood Descent (VND). 

The resulting framework is applied to the SDVRP. The rest of this paper is organized as follows: Section 2 presents the 

problem and introduces some notations. The hybridization of the three metaheuristics mentioned above is described in 

Section 3. The components of the SDVRP are given in Section 4 and the experimental results are shown in Section 5. 

Finally, conclusions are drawn in the last section. 
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3. Statement of the problem 

 

The SDVRP is defined on a complete weighted and undirected network G = (N, E, C). N is a set of n + 1 nodes indexed 

from 0 onwards. Node 0 corresponds to a depot with identical vehicles of capacity W. Each other node i, i = 1, 2, ..., n 

has a known demand qi. The weight cij = cji on each edge (i, j) of E is the travelling cost between nodes i and j. We 

assume that no demand qi exceeds vehicle capacity W. Otherwise, for each customer i such that qi > W, an amount of 

demand W can be deducted from qi to build one dedicated trip with a full load until, as shown in [3], the residual demand 

fits the vehicle capacity. 

We emphasize that partial deliveries are allowed, so some customers (called split customers) can be visited more than 

once. The objective is to determine a set of vehicle trips of minimum total cost. Each trip starts and ends at the depot and 

supplies a subset of customers. The number of trips or vehicles used is a decision variable. It is assumed that the triangle 

inequality holds: in that case, solutions in which each trip visits its customers only once dominate the others. In other 

words, if one customer is visited several times, these visits are done by distinct trips. 

The problem can be formulated as follows: 

 

Minimize  

∑ ∑ ∑ 𝑐𝑖𝑗 . 𝑥𝑖𝑗
𝑘
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𝑘
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𝑥𝑖𝑗
𝑘 ∈ {0,1}                                  ∀ i, j ∈ 𝑉; ∀ 𝑘 ∈ 𝐹                                                                                                                      (8) 

𝑦𝑖
𝑘 ≥ 0                                       ∀ i, j ∈ 𝑉; ∀ 𝑘 ∈ 𝐹                                                                                      (9)  

 

 

Constraint (2) guarantees the service of each customer by at least one vehicle. Constraint (3) is the flood conservation 

constraint. The respect for customer demand and the capacity of the vehicles are ensured respectively by constraints (4) 

and (5). A point can be processed only by a vehicle passing through it and this is guaranteed by constraint (6). Finally, 

constraint (7) is the subtours elimination constraint. 

 

4. General presentation of the solution approach 

 

The metaheuristic proposed in this study is an enhanced version of a new method called hybrid GRASP × ELS that was 

applied successfully to the classical Vehicle Routing Problem by Prins in 2009. 

 

The GRASP is a simple metaheuristic proposed by Feo and Bard (1989) in which each iteration consists of two phases: 

constructing a greedy randomized solution and improving it with a local search procedure. The solution produced in the 

first phase is generated by adding elements to the problem’s solution chosen randomly from a list of well ranked 

candidate elements according to a greedy function. The GRASP has been applied to a wide range of combinatorial 

optimization problems, and is often faster but less effective than other metaheuristics like tabu search or genetic 

algorithms. 
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Evolutionary Local Search (ELS) was introduced by Wolf and Merz (2007) to solve a telecommunication problem. 

Starting with a good solution built by a heuristic and improved with a local search, ELS performs ngen generations. Each 

generation builds nchild children-solutions. Each child is obtained taking a copy of the incumbent solution Sol, which is 

then modified by a perturbation procedure and improved by local search. If the best offspring solution improves the 

incumbent solution Sol, it replaces it for the next generation. The method is summarized in Algorithm 1. An Iterated 

Local Search is obtained if only one offspring lsolution is built in each generation (nchild = 1). 

 

In the hybrid GRASP × ELS, each of the niter GRASP iterations generates one starting solution and applies ELS to it. 

The advantage of this hybridization is the possibility of getting out of local optima when the ELS converges and restarts 

the local search from a new solution. Reghioui (2008) proposed a similar method that uses several greedy randomized 

heuristics in the first phase. Its application to the Capacitated Arc Routing Problem with Split Deliveries has resulted in 

high-quality solutions compared with those obtained from a memetic algorithm. The general structure of the hybrid 

GRASP × ELS is given in Algorithm 2. 

 

 

 

 

 

 

 

 

 

 

 

A possible target of the improvement of the hybrid GRASP × ELS would be the quality of solutions produced in the first 

phase. Each iteration of the method can be seen as a separate ELS that does not benefit from the information collected 

about the best solution in the previous iterations. In addition to that, when the solutions generated by the greedy 

randomized heuristic are of poor quality, the local search takes a long time to converge to local optima. The enhancement 

proposed by the method sketched in Algorithm 3 consists of replacing the greedy randomized heuristic in the first phase 

by a procedure that modifies the best solution achieved so far, inspired by the strategy used in the shaking phase of the 

Variable Neighborhood Search (VNS). 

 

The main principle of VNS is the systematic change of neighborhood within the search. Let (N1,...,Nkmax) denote a finite 

set of neighborhoods, where Nk(S) is the set of solutions in the kth neighborhood of S. VNS escapes from a local optima 

by initiating the search process from the starting points sampled from one of the kmax neighborhoods of the best solution.  

 

A similar strategy is used in the approach proposed for the SDVRP. When the ELS converge, a new solution is drawn 

randomly in a neighborhood Nk to change the search region. This new solution often keeps some characteristics of the 

best solution, thus the intensification phase takes less time to achieve a local optima. Another key point in the efficiency 

of the method is the use of Variable Neighborhood Descent (VND) as the local search in the ELS phase. More details 

about the VND are given in the next section. The solution approach proposed for the SDVRP is called the enhanced 

evolutionary local search (EELS) in the sequel. 

 

Algorithm 1-ELS algorithm : 

Sol=Heuristic(); 

for gen :=1 to ngen do 

BestChildSol :=Sol; 

for son :=1 to nchild do 

ChildSol := Sol; 

Perturb(ChildSol); 

ChildSol := LocalSearch(ChildSol); 

if Cost(ChildSol) < Cost(BestChildSol) then 

BestChildSol := ChildSol; 

end if 

end for 

if Cost(BestChildSol)< Cost(Sol) then 

Sol=BestChildSol; 

end if 

end for 

 

Algorithm 2 - Hybrid GRASP x ELS algorithm: 

for i:=1 to niter do 

Sol := Greedy_Randomized_Heuristic(); 

Sol := ELS(Sol); 

If Cost(Sol) < Cost(BestSol) then 

BestSol := Sol; 

end if  

end for 
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5. Components of the SDVRP 

5.1 Initial Solutions 

The EELS proposed for the SDVRP uses two classical VRP heuristics and one SDVRP heuristic to generate the first 

three initial solutions: the savings heuristic of Clarke and Wright (1964), the Sweep heuristic of Gillet and Miller (1974), 

and the Split-Insertion Heuristic (SIH) of Reghioui (2008). The remaining initial solutions are drawn randomly from 

three neighborhoods around the best solution.  

 

The saving algorithm starts with assigning a trip to each customer. Then, at each iteration it concatenates two distinct 

trips whose total saving is the largest until additional concatenations would violate vehicle capacity or increase total cost. 

In the sweep heuristic, clusters of customers compatible with the vehicle capacity are generated by the rotation of a half-

line centered on the depot. A vehicle route is then computed in each cluster by solving a traveling salesman problem.  

 

SIH is an efficient heuristic able to split demands. It starts with a solution reduced to a dummy loop on the depot. At 

each iteration, the heuristic evaluates all non-routed customers and inserts with or without splitting the one that has the 

minimum insertion cost. For each customer, the best subset of trips is chosen for the insertion. New trips are created 

when no further insertions are possible in the current trips. 

 

The initial solution of each iteration i > 4 is obtained as follows: first, the best solution is temporarily converted into a 

giant tour by concatenating the sequences of customers of its trips. Random moves are then executed and the giant tour 

is finally converted back into an SDVRP solution, using a splitting procedure (SPLIT) proposed by Boudia et al. (2007) 

in their MA|PM. 

 

Three moves are used to modify the giant tour of the best solution (BGT, Best Giant Tour): 

 

1. M1: Swap two customers. 

2. M2: Relocate one customer. 

3. M3: Invert a chain of customers (2-opt). 
 

In the fourth iteration, a new giant tour GT is obtained by applying M1 to BGT. SPLIT is then used to convert GT into a 

feasible solution S. If the improvement of S with the ELS phase does not give a better solution than the best one, M2 is 

used in the next iteration. Otherwise, M1 is considered.  

 

In general, at each iteration i > 4, M1, M2 and M3 are used respectively after one, two and three or more iterations without 

improving the best solution found so far. 

 

5.2 Local search 

The local search used in the ELS phase of the EELS is structured as a Variable Neighborhood Descent (VND). VND 

[22] is a local search technique concerned with systematic neighborhood changes. It is based on the observation that a 

local minimum for a given neighborhood is not necessarily a local minimum for another one. Let the set of neighborhoods 

be (N1, ...,Nkmax). Starting from k = 1, at each iteration the VND performs a local descent based on neighborhood Nk. If 

the obtained local optimum is better than the best current solution, then it replaces it and k is set to 1. Otherwise k is 

incremented. The method stops when no further improvement can be found with the neighborhood Nkmax. 

 

Two neighborhoods are used in our VND. The first one contains moves involving one or two trips and is defined by 

three classical moves of the VRP (Or-Opt which relocates a chain of 1 to 3 customers, Exchange which swaps two chains 

Algorithm 3 - Enhanced evolutionary local search algorithm: 

Sol := Heuristic(); 

k:=1; 

BestSol  := Sol; 

for i:=1 to ni do 

Sol := Neighborhood_k(BestSol); 

Sol := ELS(Sol); 

If Cost(Sol) < Cost(BestSol) then 

BestSol := Sol; 

k := 1; 

else 

k := min(kmax, k + 1); 

end if  

end for 
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of 1 to 3 customers and 2-Opt) and two other moves that exchange parts of customers’ demand, introduced by Boudia et 

al. (2007). Figure 2 taken from the same study shows an example of these two moves which are able to split demands of 

customers. They are defined as follows: the first move exchanges two customers i and j pertaining to two distinct trips 

and splits the one with the largest demand. The second move is similar but exchanges a customer i with two successive 

customers j and k pertaining to another trip. 

 

The second neighborhood contains a move operating on more than two trips. At each iteration it removes one customer 

from all the routes in which it is serviced and performs a best insertion with or without splitting. This last move is an 

improvement of the K-split interchange operator of Dror and Trudeau (1989), which was proposed in (2007). Figure 1 

shows an example of this move. Customer b is removed from its route (solution without splitting) and inserted with 

splitting in the other two routes (solution with splitting). 

 

5.3 Perturbation Procedure 

The perturbation procedure is called during the ELS iterations. The move M3, which is based on 2-opt, is used to generate 

children-solutions. The procedure follows the same process as the one used in the first phase to generate initial solutions 

by perturbing giant tours. The solution S passed to ELS is first converted into a giant tour, some 2-opt moves are then 

executed and the resulting tour is converted back into an SDVRP solution. The objective here is to generate small 

perturbations in order to explore the local region around the solution S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of splitting moves 

5.4 General structure 

The EELS is summarized in algorithm 4. The first phase (from line 3 to line 19) generates the initial solution of each 

iteration i. Constructive heuristics CW, GM and SIH are used in the first three iterations. In the remaining iterations, the 

trips of the best solution BestSol are concatenated to give a giant tour. Then, a random solution in the neighborhood of 

BestSol is obtained as follows: procedures PerturbSwap and PerturbRelocate are called respectively when the number 

of iterations without improvement IterWI is equal to 1 and 2 and Perturb2Opt is called when it is greater than or equal 

to 3. Each one of them executes pmax moves and the resulting tour is converted into an SDVRP solution Sol and 

improved by the VND. 

 

The second, or ELS, phase (from line 20 to line 46) generates several child solutions by perturbing a copy of Sol with 

procedure Perturb2Opt and improving it with the VND. The number of moves p executed by Perturb2Opt is initialized 

to a minimum value pmin at the beginning of the ELS or when a generation improves the incumbent solution Sol. If Sol 

is not improved p is incremented in order to escape from the local optima, but without exceeding a maximum value 

pmax. At the end of each generation, the best child solution BestChildSol replaces Sol in case of improvement. The best 

solution BestSol is updated after the end of the ELS generations. 

 

The originality of this implementation compared to the classical one is that it limits the number of iterations without 

improvement instead of the number of iterations. The main advantage of this strategy is that the search process is not 
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stopped when improvements are obtained from the last iterations (which means that the search region is promising). The 

same strategy is also used for generations and children. The EELS stops when the number of iterations without 

improvement (IterWI) of the best solution BestSol exceeds a maximum value MaxNIWI. Similarly, the ELS phase stops 

after MaxNGWI generations without improvement of the incumbent solution Sol, and no further child solution is 

generated when the best child solution BestChildSol cannot be improved after MaxNC WI perturbations of Sol. 

 

6. Computational results  

6.1 Implementation and instances 

In this section we report the performance of our method on the SDVRP described in Section 3. All the algorithms were 

coded in Delphi and executed on a Pentium IV 3 GHz with 1 GB of RAM under Windows XP. The tests were performed 

on well-known instances and compared to both the best lower bounds when available and the best known heuristic 

solutions in the related literature. Three sets of instances with a total of 77 SDVRP benchmark problems were used. 

 

The first set contained 42 instances introduced by Archetti et al. (2006) to evaluate the performances of a tabu search 

approach (2006) and an optimization based algorithm (2008). These instances were derived from 7 CVRP test problems 

described by Christofides et al. by randomly generating the demands of customers using five different intervals with 

respect to vehicle capacity W. In addition to the original instances, five new groups of 7 instances were obtained using 

the following intervals: [0.1W,0.3W], [0.1W,0.5W],[0.1W,0.9W],[0.3W,0.7W],[0.7W,0.9W]. The number of customers in 

these instances ranges from 50 to 199. 

 

The second set included 14 randomly generated instances from (2000) with known lower bounds (2000, 2007, 2010). 

They contained 50 to 100 customers. The demand of customers was generated using the same strategy as Archetti et al. 

[3] and the intervals [0.1W,0.9W], [0.3W,0.7W] and [0.7W,0.9W]. 

 

The last comparison was conducted on a set of 21 instances proposed by Chen et al. [8] that have between 8 and 288 

customers. The demands were obtained using the interval [0.7W,0.9W]. The specificity of these instances lies in their 

structure. In each problem, customers are located in concentric circles around the depot in a manner that allows a visual 

estimation of a near-optimal solution. 

 

The appropriate adjustment of parameters in our algorithm can make a significant difference in terms of speed and 

solutions quality. The EELS have 5 parameters that were tuned in order to obtain satisfactory results from the three sets 

of instances used. The following setting was considered: MaxNIWI = 10 , MaxNGWI = 30, MaxNCWI = 5, pmin = 1 and 

pmax = 4. 

6.2 Results  

Table 1 shows the results of the EELS on the first set of instances and the best published results obtained so far by 

SplitTabu and the optimization based algorithm (Opt−Based) proposed in (2006, 2008). The Opt−Based columns give 

the percentage of improvement over the solution of SplitTabu and the computational time. The EELS columns provide 

the exact costs obtained from using one run and the setting given above. 

 

The results indicate that the EELS improves 41 out of the 42 tested instances, while being 2 times faster than the 

optimization based algorithm. Moreover, the average percentage of improvement over the solution obtained with 

SplitTabu is 2.51% for the EELS versus 0.55% for the optimization based algorithm. 

 

For the instances of Belenguer et al. (2000), exact methods and some heuristic approaches consider integer distances by 

rounding them to the nearest integer while other heuristics use real numbers. To be able to compare all these methods, 

both real and integer distances have been used.  
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Algorithm 4 :General structure of the mix metaheuristic 

I :=1; IterW I := 0 

while IterW I <= MaxN IW I do 

if  i = 1, 2, 3 then 

Sol := CW(), GM(), SIH(); i := i + 1 

else 

Concat (BestSol, Tour) 

if IterW I = 1, 2 then 

PerturbSwap(Tour,pmax), PerturbRelocate(Tour,pmax) 

end if 

if  IterW I > 2 then 

Sol := Perturb2Opt(Tour,pmax) 

end if 

Split(Tour,Sol) 

end if 

Sol := VND(Sol) 

Concat (Sol,Tour) 

p := pmin; GenW I := 0 

while GenW I < MaxNGW I do 

BestChildSol  := Sol; ChildW I := 0 

while ChildW I <= MaxNCW I do 

ChildTour := Tour 

Perturb2Opt(ChildTour,p) 

Split(ChildTour,ChildSol) 

ChildSol := VND(ChildSol) 

if Cost(ChildSol) < Cost(BestChildSol) then 

BestChildSol := ChildSol; ChildW I := 0 

else 

ChildW I:=ChildW I+1 

end if 

end while  

if Cost(BestChildSol) < Cost(Sol) then 

Sol := BestChildSol 

Concat(sol,Tour) 

p := pmin,GenW I := 0 

else 

p := min(pmax,p+1);GenW I := GenW I+1 

end if 

end while 

if Cost(Sol) < Cost(BestSol) then 

BestSol := Sol; IterW I := 0 

else 

IterW I := IterW I+1 

end if 

end while 

return(Bestsol) 
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 Table 1. Computational results of the SDVRP instances of archetti 

 

Tables 2 and 3 compare the performances of two versions of the EELS with the MA|PM of Boudia et al. (2007) and the 

algorithm of Aleman et al. (2010) noted ICA+VND on the instances of Belenguer et al. (2000). Both methods considered 

integer numbers. The first version uses the setting of parameters given above while in the second (fast version) fewer 

generations are considered in the ELS phase (5 instead of 30). Table 4 presents a comparison of the EELS with the 

heuristic of Chen et al. (2007) who tested their method on only five of these instances and used real numbers. Aleman et 

al. (2010) also executed their ICA+VND without rounding the euclidean distances. Their results for these five instances 

are sketched in the same table. The column LB in the three tables  (2, 3 and 4) shows the lower bound obtained by 

Moreno et al. [23] since it is better than those of Belenguer et al. (2000) and Jin et al. (2007) on the 14 instances. 

      Opt-Based EELS 

File  Demand Split Tabu Saving Time Cost  saving Time 

p1-50 
 

3 307 907 0,59 97 5 246 111 1,16 29,50 

p2-75 
 

8 542 757 0,08 52 8 238 883 3,56 125,84 

p3-100 
 

8 413 577 0,01 51 8 273 926 1,66 399,38 

p4-150 
 

10 708 613 0,70 298 10 284 995 3,96 642,59 

p5-199 
 

13 403 505 0,15 297 13 105 908 2,22 1 362,38 

p6-120 
 

13 403 505 0,15 298 13 105 908 2,22 1 361,89 

p7-100 
 

10 569 587 0,00 262 10 385 320 1,74 510,16 

  
       

p1-50 0.1-0.3 7 653 121 0,37 256 7 721 860 -0,90 53,84 

p2-75 0.1-0.3 11 340 760 0,99 161 11 141 998 1,75 148,95 

p3-100 0.1-0.3 15 151 732 0,65 159 14 701 795 2,97 254,97 

p4-150 0.1-0.3 21 018 042 0,24 1152 20 426 855 2,81 716,69 

p5-199 0.1-0.3 25 858 494 0,13 567 24 970 978 3,43 1 665,02 

p6-120 0.1-0.3 25 858 494 0,13 545 24 970 978 3,43 1 665,55 

p7-100 0.1-0.3 30 604 668 1,41 585 29 116 951 4,86 577,70 

  
       

p1-50 0.1-0.5 10 391 059 0,30 866 10 058 547 3,20 49,45 

p2-75 0.1-0.5 15 566 936 0,53 646 15 051 288 3,31 109,75 

p3-100 0.1-0.5 20 541 296 1,46 201 20 245 591 1,44 332,94 

p4-150 0.1-0.5 29 916 416 0,49 517 28 873 354 3,49 635,05 

p5-199 0.1-0.5 36 242 004 0,84 1138 35 081 493 3,20 1 783,37 

p6-120 0.1-0.5 36 242 004 0,84 1114 35 081 493 3,20 1 783,62 

p7-100 0.1-0.5 45 026 152 0,59 365 42 258 299 6,15 833,47 

  
       

p1-50 0.1-0.9 15 119 826 0,08 2939 14 918 496 1,33 47,41 

p2-75 0.1-0.9 23 386 654 0,04 361 23 156 274 0,99 120,80 

p3-100 0.1-0.9 31 552 228 0,60 620 31 071 622 1,52 395,97 

p4-150 0.1-0.9 46 741 320 0,31 592 45 935 431 1,72 1 208,69 

p5-199 0.1-0.9 57 158 484 0,10 806 55 899 746 2,2 2 015,67 

p6-120 0.1-0.9 57 158 484 0,10 813 55 899 746 2,2 2 015,00 

p7-100 0.1-0.9 73 501 136 3,27 4882 69 022 946 6,09 463,50 

  
       

p1-50 0.3-0.7 15 039 466 0,13 1684 14 918 503 0,8 43,41 

p2-75 0.3-0.7 22 935 488 1,08 2551 22 474 891 2,01 118,72 

p3-100 0.3-0.7 30 709 048 0,50 1605 30 183 767 1,71 345,12 

p4-150 0.3-0.7 44 968 584 0,70 251 43 879 382 2,42 1 001,05 

p5-199 0.3-0.7 55 711 292 0,38 1702 54 599 173 2,00 2 289,58 

p6-120 0.3-0.7 55 711 292 0,38 1704 54 599 173 2,00 2 202,28 

p7-100 0.3-0.7 71 682 608 0,58 7147 66 889 077 6,69 463,39 

  
       

p1-50 0.7-0.9 21 736 308 0,06 834 21 690 614 0,21 98,69 

p2-75 0.7-0.9 32 853 678 0,34 1872 32 261 032 1,80 256,08 

p3-100 0.7-0.9 44 707 136 0,41 2433 43 988 851 1,61 399,28 

p4-150 0.7-0.9 64 821 904 0,30 2460 64 166 262 1,01 1 138,45 

p5-199 0.7-0.9 83 921 136 0,44 656 82 160 719 2,10 1 541,55 

p6-120 0.7-0.9 83 921 136 0,44 656 82 160 719 2,10 1638,34 

p7-100 0.7-0.9 106 733 056 2,34 3948 102 531 713 3,94 809,17 

Average   0,55 1193,88 
 

2,51 800,86 
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Compared to the MA|PM of Boudia et al. (2007), the slow version of the EELS finds better solutions on 9 instances and 

gives the same solution costs for 4 instances. The MA|PM outperforms the EELS only on one instance. The average 

deviation of the lower bound is 2.33% for the MA|PM and 1.82% for the EELS, however on average the EELS requires 

two minutes to find a solution while the MA|PM needs only 18 seconds. The fast version was designed to tackle this 

weakness. The number of generations without improvement has been reduced in order to make the EELS more 

competitive in terms of the computational time. Table 3 shows clearly that this version of the EELS is as fast as the 

MA|PM and also gives a slightly better average deviation of the LB. The number of improved solutions here is 6 instead 

of 9. The first version of EELS is slower than ICA+VND, but the second version is two times faster. Both versions 

outperform ICA+VND on all instances with regard to the solution quality. 

 
Table 2. Results of the random SDVRP instances of Blenguer 

    ICA+VND MA| PM EELS   

File  LB Cost  Time Cost  Time Cost  Time Best 

S51D1 454,0 469 4,53 458 8,77 458 28,12 458 

S51D2 694,2 726 4,05 707 7,44 705 24,94 704 

S51D3 930,7 994 2,5 945 7,84 945 24,16 945 

S51D4 1 539,0 1 700 2,89 1 578 11,98 1 570 33,36 1 570 

S51D5 1 313,4 1 399 1,8 1 351 16,72 1 335 37,62 1 335 

S51D6 2 141,7 2 221 2,27 2 182 9,92 2 170 73,37 2 170 

S76D1 586,6 603 63,55 592 15,23 592 106,41 592 

S76D2 1 061,1 1165 7,73 1 089 30,50 1 089 79,48 1 087 

S76D3 1 395,9 1 485 12,23 1 427 12,89 1 422 83,25 1 420 

S76D4 2 046,1 2 205 6,91 2 117 8,76 2 096 108,17 2 081 

S101D1 704,9 757 210,36 717 49,75 716 318,03 716 

S101D2 1 337,1 1 431 26,2 1 372 31,72 1 376 150,55 1 372 

S101D3 1 832,2 1 975 27,84 1 891 33,98 1 868 250,84 1 868 

S101D5 2 737,1 2 985 18,36 2 854 18,66 2 798 264,58 2 798 

Average 6,67 27,94 2,33 18,87 1,71 113,06 2,10 

 

The comparison with the heuristic of Chen et al. (2007) given in Table 4 confirms the superiority of the EELS which 

always finds better solutions while remaining 3 times faster. ICA+VND has the best computational time but gives 

solutions of poor quality. 

 

The last comparison was performed on 21 instances proposed by Chen et al. (2007). The authors also compared their 

method to SplitTabu but their results are not included in Table 1 since they use different instances (generated following 

the same strategy as Archetti et al. (2006), but the demands of customers are different since the random generators are 

not initialized in the same way). This time the EELS finds 12 new best solutions. It outperforms the method of Chen et 

al. [8] on 18 instances and is twice as fast. ICA+VND is always the fastest method, however the EELS finds better results 

for 12 instances and gives a better average deviation of the lower bound, i.e. 1.03% instead of 1.48%. The EELS retrieves 

the optimum for 6 instances and is outperformed only on three (SD1, SD8 and SD9). 

 
Table 3. Results of the random SDVRP instances of Blenguer (Fast version) 

 

 
  ICA+VND MA| PM EELS   

File  LB Cost  Time Cost  Time Cost  Time Best 

S51D1 454,0 469 4,53 458 8,77 458 4,72 458 

S51D2 694,2 726 4,05 707 7,44 705 4,94 704 

S51D3 930,7 994 2,5 945 7,84 945 7,06 945 

S51D4 1 539,0 1 700 2,89 1 578 11,98 1 575 9,75 1 570 

S51D5 1 313,4 1 399 1,8 1 351 16,72 1 340 6,22 1 335 

S51D6 2 141,7 2 221 2,27 2 182 9,92 2 187 7,28 2 170 

S76D1 586,6 603 63,55 592 15,23 592 19,14 592 

S76D2 1 061,1 1165 7,73 1 089 30,50 1 097 17,83 1 087 

S76D3 1 395,9 1 485 12,23 1 427 12,89 1 437 15,83 1 420 

S76D4 2 046,1 2 205 6,91 2 117 8,76 2 081 25,52 2 081 

S101D1 704,9 757 210,36 717 49,75 716 31,06 716 

S101D2 1 337,1 1 431 26,2 1 372 31,72 1 376 36,06 1 372 

S101D3 1 832,2 1 975 27,84 1 891 33,98 1 905 18,92 1 868 

S101D5 2 737,1 2 985 18,36 2 854 18,66 2 835 21,77 2 798 

Average 6,67 27,94 2,33 18,87 2,25 16,15 2,10 
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Table 4. Comparison with Chen et al.’s algorithm on the instances of Blenguer 

 

7. Conclusion 

Based on the findings of this study we can say briefly that the combination of several components of different 

metaheuristics can lead to a strong and robust approach with a good alternation between diversification and 

intensification phases. The enhanced evolutionary local search proposed for the Split Delivery Vehicle routing Problem 

(SDVRP) combines diversification strategies of the Variable Neighborhood Search and the Evolutionary Local Search 

by using shaking techniques and perturbation procedures with the intensification method of the Variable Neighborhood 

Descent. The resulting approach has been compared to a lower bound and to the best four published metaheuristics for 

the SDVRP. Computational results confirm the efficiency of this new method as more than 80% of the tested instances 

were improved.  

 
Table 5. Results of the SDVRP instances of Chen 

    Chen et al. ICA+VND EELS 

File  LB Cost  Time Cost  Time Cost  Time 

SD1 228,3 228,28 0.7 228,28* 0,06 240,00 2,06 

SD2 708,3 714,40 54,40 708,28* 0,22 708,28* 4,61 

SD3 430,6 430,61 67,30 430,58* 0,17 430,58* 3,67 

SD4 631,0 631,06 400,00 635,84 0,55 631,05* 5,70 

SD5 1 390,6 1 408,12 402,70 1390,57* 0,69 1390,57* 10,81 

SD6 831,2 831,21 408,30 831,24* 0,94 831,24* 8,56 

SD7 3 640,0 3 714,40 403,20 3640,00* 1,03 3640,00* 15,67 

SD8 5 068,3 5 200,00 404,10 5068,28* 1,75 5 080,00 27,50 

SD9 2 044,2 2 059,84 404,30 2 071,03 2,91 2 062,09 53,81 

SD10 2 684,9 2 749,11 400,00 2 747,83 3,58 2 704,05 89,13 

SD11 13 275,0 13 612,12 400,10 13 280,00 3,97 13 280,00 80,56 

SD12 7 175,0 7 399,06 408,30 7 279,97 4,00 7 223,63 88,84 

SD13 10 053,6 10 367,06 404,50 10 110,58 5,80 10 110,58 218,81 

SD14 10 588,2 11 023,00 5 021,70 10 893,50 15,49 10 741,83 244,75 

SD15 14 908,5 15 271,77 5 042,30 15 168,28 18,33 15 128,48 401,94 

SD16 3 381,3 3 449,05 5 014,70 3 635,27 39,71 3 440,62 769,87 

SD17 26 317,2 26 665,76 5 023,60 26 559,93 17,42 26 503,59 705,55 

SD18 14 029,2 14 546,58 5 028,60 14 440,59 40,38 14 220,29 916,73 

SD19 19 707,2 20 559,21 5 034,20 20 191,19 27,64 20 032,24 793,25 

SD20 39 252,8 40 408,22 5 053,00 39 813,49 63,18 39 666,02 1 516,98 

SD21 11 271,0 11 491,67 5 051,00 11 799,60 738,49 11 467,08 4 290,78 

Average 1,98 2115,57 1,48 46,97 
 

488,08 

 

 

 

 

 

 
  ICA+VND EMIP+VRTR EELS 

File  LB Cost  Time Cost  Time Cost  Time 

S51D4 1 549,7 1 708,00 2,89 1 586,5 201,74 1 564,52 73,73 

S51D5 1 318,9 1 404,54 1,80 1 355,5 201,62 1 334,55 61,12 

S51D6 2 154,7 2 230,06 2,27 2 197,8 301,90 2 180,42 77,28 

S76D4 2 059,8 22 020,87 6,91 2 136,4 601,92 2 087,32 196,08 

S101D5 2 767,6 2 999,31 18,36 2 846,2 645,99 2 806,02 358,27 

Average 6,67 27,94 2,74 390,63 1,21 153,3 
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