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Abstract 

A pull system produces products based on customer demands. Each station is isolated until a customer order is placed; 

then a signal or Kanban is sent from downstream station to upstream station and continues until the first station. Most 

studies have investigated pull systems in deterministic environments while many real production lines are subjected to 

different types of uncertainties. Thus, the aim of this paper is to apply a dynamic Kanban system that changes the 

information on the Kanban cards based on the remained inventory in the buffer. The proposed approach uses a Markov 

chain analysis to compare the effectiveness of the Kanban card with dynamic information to the Kanban card with static 

information. In the present study, the production line of two work stations and two inventory buffers is modeled. 

Throughput, shortage, work-in-process and cycle time are the model measurement parameters. The results show the 

advantages of the proposed approach.  

 

Keywords: Pull system; Kanban; Buffer; Dynamic environment; Markov chain. 

1. Introduction 

 

The pull type production control manufactures products based on customer demands. Each station is isolated until a 

customer order is placed; then a signal or Kanban is sent from downstream station to upstream station and continues 

until the first station. This type of production control system reduces work-in-process. The production is controlled by 

cards known as Kanban (Gupta and Turki, 1997). Neither the flow of a product nor the processing of a part takes place 

without the signal of a Kanban. Kanban supports visual production control using the card of providing information to 

regulate the flow of inventory and materials (Jou Lin et al., 2013). It contains information such as the production rate 

and product name.  

The number of Kanban control cards significantly influences the performance of the production system. Framinan et al. 

(2003) considered two aspects of this problem: 

1. Card control: it changes or maintains the number of cards in pull systems based on the current conditions. Therefore, 

the number of cards is variable, and this can improve the performance of the production system. 

2. Card setting: it determines the number of Kanban cards in order to obtain appropriate performance. In this case the 

number of cards is constant. 

In a real-life environment, production systems are subjected to different types of uncertainties such as variable processing 

time and stochastic demand. Since determining the fix control system is only appropriate in a deterministic environment, 

the number of Kanban cards and also their information such as the production rate are seriously affected by variations in 

real-life environments. Most researchers did their studies on pull systems in deterministic environments while many real 

production lines are subjected to different types of uncertainties. 

In this paper, a dynamic Kanban system is developed that changes the Kanban card information (production rate) based  
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on the remained inventory in the buffer. The production line of two work stations and two inventory buffers is modeled 

based on Miltenburg (2010)’s model. Results of the model measurement parameters (throughput, shortage, work-in-

process and cycle time) show the advantage of the proposed approach. Miltenburg modeled the simple production line 

and used a Markov chain analysis to examine the effect of different material flow management on the production line.  

Markov Chain analysis is a well-founded analytical tool for analyzing dynamic system behavior (Kemeny and Snell, 

1976). This paper begins with a description of pull systems and a literature review related to this study is presented in 

Section 2. Then the problem is described in Section 3. In Sections 4 and 5 a Markov chain analysis is applied to compare 

the effectiveness of the Kanban card with dynamic information to the Kanban card with static information. Finally, 

conclusions and suggestions for further research are given in Section 6. 

2. Literature Review 

A review of the literature on pull systems and Kanban control cards indicates that most studies investigated pull systems 

in deterministic environments (see Moeeni & Chang, 1990; Bitran & Chang, 1987). There are few studies on developing 

methods of dynamic card control. For instance, Renna (2010) considered a set of rules to change the number of cards in 

the system. He developed a dynamic simulation environment to study the effect of Kanban card in different dynamic 

states. Some performance measurements like throughput and work-in-process were evaluated and finally the proposed 

method was compared with a Kanban control. 

Gupta and Turki (1997) developed a Kanban system which uses an algorithm to dynamically manipulate the number of 

Kanbans. The proposed method is a flexible Kanban system that controls the blocking and starvation under different 

conditions during a production cycle. Kumar and Panneerselvam (2007) examined Kanban systems and showed the 

importance of the dynamic number of Kanban control cards.   

In another study, Shahabudeen et al. (2003) focused on the number of Kanbans at each workstation by applying a 

simulated annealing algorithm approach. They modeled a two-card dynamic Kanban system with different demand 

requirements and measured the performance of the proposed algorithm under different conditions. Schmidbauer and 

Riisch (1994) analyzed a dynamic model of a production pull system with k stations in series. They considered finite 

capacity buffers between the machines and end of the production line. In their model, demand for products and 

breakdown and repair time for the machines were stochastic. The decomposition algorithm was used to solve the model 

and finally simulation results showed the advantages of the model. Hopp and Roof (1998) presented an approach that 

dynamically changed the number of control Kanban cards based on the throughput of the system. They measured a 

throughput rate and then decided based on its level. If the throughput was over or under the predefined level, they added 

or deleted the cards to the system. 

Shahabudeen and Sivakumar (2008) developed an adaptive Kanban system and applied Genetic and simulated annealing 

algorithms to set the design parameters of the system. They found out that simulated annealing algorithms reached better 

solutions with improved computational efficiency. 

Conwip pull system is similar to Kanban pull system while easier to implement and apply a single card type to control 

the total amount of work-in-process in the production system. When a job is released to a system, a card is attached to it 

if cards are available in the system, otherwise, the job must wait in a backlog until another job is completed and its card 

is sent to the beginning of the system. In this control pull system determining the number of cards is important (Spearman 

et al., 1990). 

Huang et al. (2013) explored the potential to combine CONWIP and Kanban methods into a hybrid pull system to have 

the advantages of both methods. Using the theory of token transaction systems, Sato and Khojasteh-Ghamari (2010) 

proposed a novel approach for card-based control of production processes, and   clarified the relation of cycle time and 

throughput in the specific sub-network of a production process between CONWIP and Kanban methods. Gong et al. 

(2014) studied the performance of different production control systems (MRP, KANBAN, and CONWIP) to investigate 

the different amounts of position information. They concluded that the production control system with the lowest amount 

of information spends the least amount of time on decision-making. 

Khojasteh-Ghamari (2009) showed that the Kanban is more flexible for the assembly system than the CONWIP. 

Specifically, sometimes if the number of Kanbans is optimally set, the Kanban system outperforms CONWIP with a 

lower average inventory and the same throughput. Tardif and Maaseidvaag (2001) developed a method in a make to 

stock environments controlled by a Conwip system. They aimed to determine the tradeoff between the backordered 

demand and inventory level of finished goods. They added a cart to the system if the inventory level was under a 

predefined control limit, and they deleted a card from the system or an extra card was added, if the inventory level was 

over a predefined control. 
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Framinan et al. (2006) presented a method for controlling cards in a Conwip system. They defined throughput rate for 

make to order environments, measured a throughput rate and decided based on its level. If the throughput is over a 

predefined upper control limit, the card is deleted from the system. In this method, a defined level is considered for the 

maximum number of extra cards. 

3. The problem description 

The proposed work is to use Markov chain in the pull system and compare effectiveness of the Kanban card with dynamic 

information to the Kanban card with static information. It is practically not feasible to calculate the steady-state 

distribution of the complex model because the state space is too large. So, the proposed production line consists of two 

work stations and two inventory buffers based on the model of Miltenburg (2010). 

3.1. A production system model 

Consider a production line of two work stations and two inventory buffers. Assume a product enters Station one and 

when its operation is completed it moves to the first inventory buffer and waits until it can enter Station two. At Station 

two another operation is completed and finally the product leaves Station two and enters the second inventory buffer 

(Figure. 1). 

 

 

 

 

 
Figure 1. A simple flow shop production system 

Stations 1 and 2 can break down and repair so they are up or down. Station one is blocked when the first inventory buffer 

is full. It can never be starved because it is that assumed there is an infinite supply of products that are released to Station 

one. Station two is blocked when the second inventory buffer is full and is starved when the first inventory buffer is 

empty.  

In this work the following assumptions were considered: 

1. Throughput, shortage, work-in-process and cycle time are the model measurement parameters. Throughput was 

defined as the rate the system generates money through sales, or the selling price minus total variable costs (Gupta, 

2003). Shortage is a situation where demand for a product exceeds the available supply. Work-in-process is a company's 

partially finished goods waiting for completion and eventual sale or the value of these items. The items are waiting for 

further processing in a queue or a buffer storage. Cycle time is the period required to complete a job or task from start to 

finish. 

2. Station one completes the operation of product with the probability of γ1. 

3. Station two completes the operation of product with the probability of γ2. 

4. Station one breaks down with the probability of α1. 

5. Station two breaks down with the probability of α2. 

6. Station one repairs with the probability of β1. 

7. Station two repairs with the probability of β2. 

8. Second inventory buffer reduces with one product demand with the probability of λ. 

A Markov chain model is developed to analyze the production line. Each state of the Markov chain is showed by the 

(S1, I1, S2, I2) where S1 = {U, D}, I1= {0, 1, 2}, S1 = {U, D} and I1= {0, 1, 2}. Stations one and two are either up (U) 

or down (D). The inventory in the first and second inventory buffer can be {I= 0, 1, 2}. So, 2*3*2*3=36 states that can 

be produced in this Markov chain are listed in Table 1: 

 
Table 1. States of the Markov chain 

States number States States number States States number States 

1 D0D0 13 U0D1 25 D0U2 

2 D1D0 14 U1D1 26 D1U2 

3 D2D0 15 U2D1 27 D2U2 

4 D0D1 16 U0D2 28 U0U0 

5 D1D1 17 U1D2 29 U1U0 

6 D2D1 19 D0U0 30 U2U0 

7 D0D2 20 D1U0 31 U0U1 

8 D1D2 21 D2U0 32 U1U1 

Station One 

First Buffer 

 
Second Buffer 

 Station Two 
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Table 1. Continued 

States number States States number States States number States 

9 D2D2 22 D0U1 33 U2U1 

10 U0D0 23 D1U1 34 U0U2 

11 U1D0 24 D2U1 35 U1U2 

12 U2D0 19 D0U0 36 U2U2 

 

The transition diagram for the model of considered production system is shown in Fig. 2 (parts a, b and c). To improve 

the readability of the transition diagram, it has been divided into three parts with each part showing some transition arc 

of the system. 

 
Figure 2(a). Transition diagram 

The transition diagram is divided into three parts and different colors to make reading of it as simple as possible. To 

improve the readability of transition probability matrixes, it has been divided into four matrixes and each matrix is 

presented separately. 

Transition Probability Matrix 

 
A B

C D

 
 
 
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Figure 2(b). Transition diagram 

 

Transition Probability Matrix. (A) 

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 0 0 0 
2 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 0 0 
3 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 0 
4 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 
5 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 
6 0 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 
7 0 0 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 
8 0 0 0 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 
9 0 0 0 0 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 

10 α1 0 0 0 0 0 0 0 0 * γ1 0 0 0 0 0 0 0 
11 0 α1 0 0 0 0 0 0 0 0 * γ1 0 0 0 0 0 0 
12 0 0 α1 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 
13 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 0 0 0 0 
14 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 0 0 0 
15 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * 0 0 0 

16 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 0 

17 0 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 

18 0 0 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * 
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  Figure 2(c). Transition diagram 

 
 

Transition Probability Matrix. (B) 
States 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 β2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 β2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 β2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 β2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 β2 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 β2 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 β2 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 β2 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 β2 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 β2 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 β2 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 β2 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 β2 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 β2 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β2 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β2 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β2 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β2 

 

 

 

 

 

 



A Markov Chain Analysis of the Effectiveness of Kanban Card with ... 

  

Int J Supply Oper Manage (IJSOM), Vol.4, No.3 221 

 

Transition Probability Matrix. (C) 
States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

19 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2 

 
Transition Probability Matrix. (D) 

States 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

19 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 0 0 0 

20 0 * 0 γ2 0 0 0 0 0 0 β1 0 0 0 0 0 0 0 

21 0 0 * 0 γ2 0 0 0 0 0 0 β1 0 0 0 0 0 0 

22 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 0 0 0 

23 0 λ 0 0 * 0 γ2 0 0 0 0 0 0 β1 0 0 0 0 

24 0 0 λ 0 0 * 0 γ2 0 0 0 0 0 0 β1 0 0 0 

25 0 0 0 λ 0 0 * 0 0 0 0 0 0 0 0 β1 0 0 

26 0 0 0 0 λ 0 0 * 0 γ2 0 0 0 0 0 0 β1 0 

27 0 0 0 0 0 λ 0 0 * 0 γ2 0 0 0 0 0 0 β1 

28 α1 0 0 0 0 0 0 0 0 * γ1 0 0 0 0 0 0 0 

29 0 α1 0 0 0 0 0 0 0 0 * γ1 γ2 0 0 0 0 0 

30 0 0 α1 0 0 0 0 0 0 0 0 * 0 γ2 0 0 0 0 

31 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 0 0 0 0 

32 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 γ2 0 0 

33 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * 0 γ2 0 

34 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 0 

35 0 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * γ1 

36 0 0 0 0 0 0 0 0 α1 0 0 0 0 0 λ 0 0 * 

*=1-(the summation of each row) 
 

The matrixes were filled based on the states and their probabilities. For example, we explained one state as follows: 

State 20: this state is (D1U0). It means statin one is up, first inventory buffer is 1(zero in the inventory buffer and one in 

Station two), Station two is up, and there is no product in the second inventory buffer. In the next transition, the states of 

Markov model will change if the following condition is met: 

It goes to state two (D1D0) if machine in station two breaks down with the probability of α2. It remains in its state 

(D1U0) if none of other states take place. It goes to state twenty two (D0U1) if Station two completes the operation on 

product with the probability of γ2. In this state the first inventory buffer decreases because the inventory in Station two 

leaves the station and the second inventory buffer increases. It goes to state twenty nine (U1U0) if the machine in station 

one repairs with the probability of β1. 

In the next section, we calculate the transition probability with the assumed input of the pull system and apply a Markov 

chain analysis to compare effectiveness of the Kanban card with dynamic information to the Kanban card with static 

information.  

4. Kanban card with static information as a signal to handle the pull system 

As mentioned before, the pull system makes products based on customer demands. Each station is isolated until a 

customer order is placed, then a signal or Kanban is sent from downstream station to upstream station and continues until 

the first station (Figure 3).  
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                                                                         Figure 3. Pull control system 

 

When the first and second inventory buffers decease to zero or one, Kanban cards send the signal to stations one and two 

to produce based on the predefined production rate. When the first and second inventory buffers are full, the Kanban 

cards send the signal to stations one and two to stop production temporarily. This control of the system is the control 

Kanban card with static information. 

The predefined probability levels (α1, α1, β1, β2, γ1, λ) are calculated in (Table 2). See Miltenburg (2010). Some 

assumptions are considered for calculating the probabilities: 

1. The planning period is 1000 hours. 

2. In the production plan 240 units of products are made. 

3. The number of product demands during a period of 100 hours is 40. 

4. Production time at Station one is 3 hours for each unit. 

5. Production time at Station two is 5 hours for each unit. 

6. Time between breakdowns at station one is 9 hours. 

7. Time between breakdowns at station one is 9 hours. 

8. Expected repair time at station one is 1 hours. 

9. Expected repair time at station two is 1 hours. 

The following occurrences are expected to happen during an arbitrary length period (for example a period of 100 hours). 

 

Table 2. Transition probability 

Event Frequency Probability 

product demand during a period 40 40/288=0.139 (λ) 

Station one is up 100*(9/10)=90 90/288=0.312(β1) 

Station two is up 100*(9/10)=90 90/288=0.312 (β2) 

Station one is under repair 100*(1/10)=10 10/288=0.035 (α1) 

Station two  is under repair 100*(1/10)=10 10/288=0.035 (α2) 

Station one completes the operation 90/3=30 30/288=0.104 (γ1) 

Station two completes the operation 90/5=18 18/288=0.063 (γ2) 

 Total=288 Total=1 

 

Now, we can calculate the numerical transition probability matrix base on the attained probability. This matrix is called 

P and each cell of it is pij (transition probability from state i to state j). We define some notations and then calculate them 

for our Markov chain as follows. See Miltenburg (2010). 

A= limiting behavior of the transition probability matrix. Each row is . 

 j    

1

n

j i ij

i

p 


   
(1) 

1

1
n

j

j




  
 

 

 = [0.0011    0.0019    0.0047    0.0005    0.0009    0.0005    0.0002    0.0002    0.0001    0.0072    0.0151    0.0466    

0.0034    0.0071    0.0064    0.0015    0.0017    0.0016    0.0107    0.0162    0.0349    0.0067    0.0111    0.0041    0.0033    

0.0020    0.0011    0.0700    0.1280    0.3504    0.0465    0.0952    0.0564    0.0240    0.0231    0.0154] 

 

Station One 

First Buffer 

 
Second Buffer 

 Station Two 
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Z= {zij}, Fundamental matrix. We only need the diagonal entries, so we write it here. 

   
1

ijZ z I P A


                        (2) 

 

Zjj= [1.8272    1.7560    1.7678    1.3921    1.3769    1.3994    1.3928    1.3909    1.4100    2.7953    2.4382    3.2140    

1.8498    1.7769    2.3173    1.8479    1.8782    2.4616    3.8650    2.7618    2.6827    2.2702    1.8434    2.0418    2.2569    

2.0293    2.1333    8.2289    4.2177    5.1433    3.6810    2.2443    4.4303    3.4638    3.9890    6.4405] 

I=Unit matrix. 

B= {bj} = the limiting variance of the number that the Markov chain is in each state;  

 2 1j j jj jb z     (3) 

B = [    0.0030    0.0049    0.0119    0.0009    0.0015    0.0009    0.0004    0.0003    0.0002    0.0332    0.0585    0.2510     

0.0091    0.0181    0.0231    0.0042    0.0048    0.0061    0.0722    0.0729    0.1511    0.0237    0.0297    0.0128    0.0116    

0.0063    0.0034    1.0772    0.9352    3.1310    0.2935    0.3231    0.4399    0.1417    0.1607    0.1830] 

Before calculating the distribution of the number of units produced for each job we determine two sets from the Markov 

chain as follows: 

Set 1=the states of Markov chain that product is at Station one (number of states: 10, 11, 13, 14, 16, 17, 28, 29, 31, 32, 

34 and 35). 

Set 2=the states of Markov chain that product is at Station two (number of states: 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 

35 and 36). 

The number of units that are produced in a period of transition has a normal distribution (the mean is /j set RT   

and the variance is
2/bj set RT ; here RT is the Production time at each Station) and is calculated in )Table 3). 

See Kemeny and Snell (1960) and Miltenburg (2010). 

Table 3. Production time distribution 

Station Production time Normal Distribution 

One (X1) 

 

3 hours per unit 
1 1/mean j set RT  =   0.1410 

2

1 1var /iance bj set RT  = 0.3399 

Two (X2) 

 

5 hours per unit 
2 2/mean j set RT  =    0.1476 

2

22
var /iance bj set RT  = 0.2180 

 

4.1. Throughput  
The number of units produced over the production planning period has the following mean and variance: 

Mean=1000*mean of the number of units that are produced =1000*0.1476=147.6 unit 

Variance= 1000* variance of the number of units that are produced = 1000* 0.218=218 

4.2. Shortage 

Shortage is a situation where demand for a product exceeds the available output. 

21 21 21( ) ( )* ( ) _

pp

E shortage pp x f x dx pp production plan


    

(4) 

After some steps we have: 

( ) ( )*( ( ) ( ))z zE shortage Throughput f s sF s  
 

(5) 

While 

( ( )) ( )s pp E Throughput Throughput 
 

(6) 

zf  and zF = unit normal distribution 

See Miltenburg (1997). 

 

147.6240

14.76
s


 =6.26  

( ) 14.76*( (6.26) 6.26 (6.26))z zE shortage f F   =110.655   
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4.3. Work-in-process 

To calculate the mean and variance of the work-in-process, first we have to consider the inventory in the production line 

in each state as shown in (Table 4). 

Table 4. Transition probability 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Ij 0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 4 

State 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Ij 0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 4 

 
36

1

1.734* 2j j

j

Mean I 


   
(7) 

4.4. Cycle time 

Cycle time is the period required to complete a job from start to finish. In the defined production system cycle time is 

the time at Station 1 added to the time at Station two. 

1 2

1 1

( ) ( )
13.867 

E
rs

X E X
hou   

(8) 

5. Kanban card with dynamic information as a signal to handle the pull system  

In this Section, a dynamic Kanban system is developed that changes the Kanban card information (production rate) based 

on the remained inventory in the buffer. When the complete product in the second inventory buffer deceases to zero and 

system is in the shortage danger, the information on the dynamic Kanban card changes and sends the signal to station 

two to reduce the production time to 4 hours. When the completed product in the second inventory buffer deceases to 

one, again the information on the dynamic Kanban card changes and sends the signal to station two to change the 

production time to 4.5 hours. When capacity of the second inventory buffer is full and system is not in the shortage 

danger the information on the dynamic Kanban card is similar to the information on the static Kanban card and sends 

the signal to station two to produce like before (5 hours for each unit). 

When the inventory in the first inventory buffer deceases to zero and Station two is in the starvation danger the 

information on the dynamic Kanban card changes and sends the signal to station one to reduce the production time to 2 

hours. When the inventory in the first inventory buffer deceases to one, again the information on the dynamic Kanban 

card changes and sends the signal to station one to change the production time to 2.5 hours. When capacity of the 

inventory in the first inventory buffer is full and Station one is in the danger to be blocked the information on the dynamic 

Kanban card is similar to information on the static Kanban card and sends the signal to station one to produce like before 

(3 hours for each unit). So, again the Markov chain parameters and its calculation are shown in (Table 5). 

Table 5. Transition probability 

 First buffer: 0 

Second buffer: 0 

First buffer: 0 

Second buffer: 1 

First buffer: 0 

Second buffer: 2 

First buffer: 1 

Second buffer: 0 

Event Frequency        

probability 

Frequency    probability Frequency      probability Frequency        probability 

Λ 40                  

40/307=0.13 

40                  

40/305=0.132 

40                  

40/303=0.132 

40                  40/298=0.134 

β1 90                 

90/307=.294 

90                 90/305=.295 90                 90/303=.297 90                 90/298=.302 

β2 90                 

90/307=.294 

90                 90/305=.295 90                 90/303=.297 90                 90/298=.302 

α1 10                

10/307=.032 

10                10/305=.033 10                10/303=.033 10                10/298=.034 

α2 10                

10/307=.032 

10                10/305=.033 10                10/303=.033 10                10/298=.034 

γ1 90/2=45       

45/307=0.146 

90/2=45       45/305=0.147 90/2=45       45/303=0.149 90/2.5=36       36/298=0.12 

γ2 90/4≈22       

22/307=0.072 

90/4.5=20      

20/305=0.065 

90/5=18      18/303=0.059 90/4≈22       22/298=0.074 

Total 307               1 305                1 303                 1 298               1 
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Table 5. Continued 
 First buffer: 0 

Second buffer: 0 

First buffer: 0 

Second buffer: 1 

First buffer: 0 

Second buffer: 2 

First buffer: 1 

Second buffer: 0 

 First buffer: 1 

Second buffer: 1 

First buffer: 1 

Second buffer: 2 

First buffer: 2 

Second buffer: 0 

First buffer: 2 

Second buffer: 1 

Λ 40                  

40/296=0.135 

40                  

40/294=0.137 

40                  

40/292=0.137 

40                  40/290=0.138 

β1 90                 

90/296=.304 

90                 90/294=.306 90                 90/292=.308 90                 90/290=.31 

β2 90                 

90/296=.304 

90                 90/294=.306 90                 90/292=.308 90                 90/290=.31 

α1 10                

10/296=.034 

10                10/294=.034 10                10/292=.035 10                10/290=.035 

α2 10                

10/296=.034 

10                10/294=.034 10                10/292=.035 10                10/290=.035 

γ1 90/2.5=36       

36/296=0.122 

90/2.5=36       

36/294=0.123 

90/3=30       30/292=0.102 90/3=30       30/290=0.103 

γ2 90/4.5=20      

20/296=0.067 

90/5=18      18/304=0.06 90/4≈22       22/292=0.075 90/4.5=20       

20/290=0.069 

Total 296                1 294                 1 292                   1 290                 1 

Now, we can calculate the numerical transition probability matrix base on the attained probability and the first and second 

inventory buffers in their states. We calculate all predefined matrixes to compare them with each other. 

A= limiting behavior of the transition probability matrix. Each row is . 

{ }j   

1

1

*

1

ij

n

j i

i

n

j

j

p 














 

 = [0.0008    0.0018    0.0047    0.0005    0.0010    0.0007    0.0002    0.0003    0.0002    0.0043    0.0135    0.0470    

0.0028    0.0081    0.0086    0.0015    0.0026    0.0023    0.0078    0.0151    0.0337    0.0068    0.0129    0.0056    0.0039    

0.0031    0.0016    0.0448    0.1144    0.3381   0.0428    0.1093    0.0757    0.0255    0.0350    0.0230] 

Z= {zij} =  
1

I P A


  , Fundamental matrix. We only need the diagonal entries, so we write it here. 

Zjj= [1.8995    1.8058    1.7806    1.4637    1.4161    1.4043    1.4575    1.4079    1.4084    2.4916    2.3921    3.1670    

1.7722    1.7409    2.2831    1.7532    1.8928    2.4419    3.8479    2.7278   2.5608    2.3781    1.8542    1.9957    2.3420    

1.9889    2.1199    6.3137    3.9275    4.4298   3.3692    2.0569    4.0128    3.0536    3.8918    6.2594] 

I=Unit matrix. 

B= {bj} = the limiting variance of the number that the Markov chain is in each state; bj= пj(2zjj-1- пj) 

B = [0.0021    0.0048    0.0121    0.0009    0.0019    0.0012    0.0005    0.0005    0.0003    0.0171    0.0509    0.2483    

0.0072    0.0200    0.0308    0.0038    0.0048    0.0061    0.0722    0.0729    0.1511    0.0237    0.0297    0.0128    0.0116    

0.0063    0.0034    1.0772    0.9352    3.1310    0.2935    0.3231    0.4399    0.1417    0.1607    0.1830] 

The number of units that are produced in a period of transition (for Jobs one and two) has a normal distribution (the mean 

is /j set RT   and variance is
2/bj set RT ; here RT is the weighted mean of production time based on 

the probability of amount of inventory) and is calculated in (Table 6). 

RT1=2*(probability that the first buffer is 0) +2.5*(probability that the first buffer is 1) +3*(probability that the first 

buffer is 2) = 2.6997 

RT2=4*(probability that the second buffer is 0) +4.5*(probability that the second buffer is 1) +5*(probability that the 

second buffer is 2) = 4.2366 

5.1. Throughput 

Mean=1000*mean of the number of units that are produced =1000*0.1811=181.1 unit 

Variance= 1000* variance of the number of units that are produced = 1000* 0.303=303 
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Table 6. Production time distribution 

Station Production time Normal Distribution 

One (X1) 

 

2.6997 hours per unit 
1 1/mean j set RT  =   0.1499 

2

1 1var /iance bj set RT  = 0.416 

Two (X2) 

 

4.2366 hours per unit 
2 2/mean j set RT  =    0.1811 

2

22
var /iance bj set RT  = 0.303 

5.2. Shortage 

2 2 2( ) ( )* ( )

pp

E shortage pp x f x dx


      pp=production plan 

After some calculations: ( ) ( )*( ( ) ( ))z zE shortage Throughput f s sF s   , while  

( )

( )

pp E Throughput
s

Throughput


 ,   zf  and zF =unit normal distribution 

See Miltenburg (2010). 

181.24 1

7.

0

1 4
s


 =3.38  

( ) 17.4*( (3.38) 3.38 (3.38))z zE shortage f F   =58.83   

 

5.3. Work-in-process 

To calculate the mean and variance of the work-in-process, first we have to consider the inventory in the production line 

in each state as shown in (Table 7). 

Table 7. Production time distribution 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Ij 0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 4 

State 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Ij 0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 4 

Mean=

36

1

*j j

j

I 


 = 1.872 

5.4. Cycle time 

In the defined production system, cycle time is the time at Station 1 added to the time at Station two. 

1 2

1 1

( ) ( )
12.192 

E
rs

X E X
hou   

5.5. Comparison 

The results are summarized in (Table 8). The table compares the Kanban card with static information to the Kanban card 

with dynamic information as a signal to handle the pull system. Some measurement parameters were considered. 

Table 8. Comparison of the two approaches 

Approach Throughput 

(unit) 

WIP(unit) Shortage(unit) Cycle Time(hours) 

static information 147.6 1.734 110.655 13.867 

dynamic information 181.1 1.872 58.83 12.192 

As the table reveals, improvement by the Kanban card with dynamic information is on all measurement parameters 

except for work-in-process. This approach could not improve work-in-process because when the information on the 

dynamic Kanban card changes and sends the signal to station one or two to reduce the production time, work-in-process 

produces more. While applying the Kanban card with static information is an easy approach to manage the pull 

production system, it is not useful in competitive conditions. In competitive environments, the Kanban card with dynamic 

information gives the best competitive advantage. 
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6. Conclusions and further research 

The pull type production control produces products based on customer demands. Each station is isolated until a customer 

order is placed, then a signal or Kanban is sent from downstream station to upstream station and continues until the first 

station. Most researchers did their studies on pull systems in deterministic environments while many real production 

lines are subjected to different types of uncertainties. In this paper, a dynamic Kanban system is developed that changes 

the Kanban card information (production rate) base on the remained inventory in the buffer. 

The proposed work here used Markov chain in the pull system and compared the effectiveness of the Kanban card with 

dynamic information to the Kanban card with static information. It showed the Markov chain analysis in handling pull 

system by dynamic information on the Kanban card. So, there is scope for further research to extend Markov chain 

analyses for controlling different control systems in stochastic environments. 
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