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Abstract 

This paper investigated the problem of simultaneous determination of lot-sizing and production scheduling with 

earliness/tardiness penalties.  In this problem, decisions about lot-sizing and scheduling are made so that the sum of 

holding, tardiness, and setup costs is minimized. There are n orders waiting to be processed on a machine. Each order 

has its own due date as well as tardiness and earliness cost being the same as holding cost .Each order is delivered only 

once. If the production is completed before or on the due date, delivery will be on the due date. Otherwise, the order will 

be delivered immediately after its production is completed. In spite of its wide applications, this problem has not yet 

been reported in the literature. A mathematical model was presented as solution methods for the problem. Two meta-

heuristics, namely, Simulated Annealing and Ant Colony System meta-heuristic algorithms are presented for solving the 

problem. Also, lower bounds are obtained from solving the problem relaxation, and they are compared with the optimal 

solutions to estimate the goodness of two meta-heuristic algorithms. They are difficult benchmarks, widely used to 

measure the efficiency of metaheuristics with respect to both the quality of the solutions and the central. The results show 

that the Simulated Annealing recorded a lower solution time and average percentage deviation than did the Ant Colony 

System algorithm. The presented SA is capable to solve large instances that are mostly compatible with the real-world 

problems. 

Keywords: Scheduling; Lot-sizing; Earliness/Tardiness; Simulated annealing; Ant colony system. 

1. Introduction

Scheduling and lot sizing are a part of factor production planning and control. Most of the time, decisions about these 

two problems are made hierarchically (Sereshti and Bijari 2013).  Smooth and cost-efficient operation of a factory often 

depends on managerial ability in the selection of lot sizes and processing times. Managers must decide which products 

to make during which periods and the exact production sequence and production quantities to minimize the cost function 

(Gupta and Magnusson, 2005). Fleischmann and Meyr (1997) consider lot-sizing and scheduling problems 

simultaneously due to their interdependency, the problem that was named the general lot-sizing and scheduling problem 

(GLSP). Recent research on scheduling problems use the just-in-time (JIT) philosophy. In JIT production, it is not 

desirable for customers to receive their orders later or sooner than the stated delivery time. JIT scheduling is based on 

the production of items only for the required quantities and at the right time (Monden, 1998). The strategy of JIT delivery 

imposes extra costs on producers despite their limited capacity, because, if the product is completed earlier than the 

delivery time, it occupies storehouse space until the delivery time is reached, which obviously imposes additional costs. 

This is termed the earliness/tardiness (E/T) scheduling problem. Simultaneous scheduling and lot-sizing decisions are 

not considered in the general E/T problem.  The purpose of the model developed in this paper is to integrate the GLSP 

with the idea of minimization of earliness/tardiness costs, earliness cost being the same as holding cost. 

The rest of the paper is organized as follows. In Section 2, a literature review is presented. Problem definition is presented 

in Section 3. In Section 4, a mathematical model is developed. Section 5 devoted to calculation of lower bound. The 

metaheuristic algorithms for the solution to the problem including the Simulated Annealing (SA) and the Ant Colony 
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System (ACS) algorithms are presented in Section 6. In Section 7, numerical results obtained from the comparison of 

the two algorithms are presented. Finally, conclusions are presented in Section 8. 

2. Literature Review

For modelling the GLSP problem two distinct approaches might be adopted. In the first approach, there are two kinds of 

time buckets: small buckets, and large ones (Fleischmann and Meyr 1997). Small bucket problems break the planning 

horizon in small time periods which limits the number of products manufactured in a single period. Several papers on 

simultaneous lot-sizing and scheduling problems have developed models and methods to solve this problem (Clark and 

Clark (2000); Mahdieh, Bijari and Clark (2011); Mohammadi (2010); Mohammadi and Jafari (2011);Meyr (2013); 

Seeanner et al. (2013)) 

The second approach is based on the capacitated lot-sizing problem (CLSP) with sequence-dependent setup times 

(CLSPSD). This problem is related to the travelling salesman problem (TSP) or the vehicle routing problem (VRP). 

Setup costs in GLSP are like the distance cost in TSP. Because TSP is an NP-hard problem, CLSP with sequence-

dependent setup is also NP-hard. Gupta and Magnusson (2005) used this approach for modelling simultaneous lot-sizing 

and scheduling. Almada-Lobo et al. (2008) demonstrated that Gupta’s model does not avoid disconnected sub-tours. 

Almada-Lobo et al. (2007) presented a model more efficient than those based on Meyr’s (2000) approach for the 

scheduling problem. Almada-Lobo and James (2010) solved the single-machine CLSD (CLSD-SM) by integrating a big-

bucket lot-sizing and scheduling model and a batching scheduling model to develop two neighborhood-based search 

algorithms. James and Almada-Lobo (2011) studied the parallel-machine capacitated lot-sizing and scheduling problem 

with sequence-dependent setups (CLSD-PM) of which the single-machine problem (CLSD-SM) is a special case. 

Sereshti and Bijari (2013) studied profit maximization in simultaneous lot-sizing and scheduling problem (PGLSP) and 

represented a two mathematical models for it. Luis, Klabjan, and Bernardo (2014) proposed a two-dimensional 

framework for reviewing and classifying the different modelling approaches adopted for sequencing decisions in lot-

sizing and scheduling problems. They reviewed the most relevant models in each class to identify their main features 

and differences, especially their underlying assumptions. From this study emerged an important contribution which is a 

new polynomial formulation of the problem using commodity flow based sub-tour elimination constraints. The authors 

also performed extensive computational experiments to compare the different formulations in terms of their ability to 

yield quality solutions under running time constraints. 

Cheng-Hsiang study analyzes two variants of the discrete lot-sizing and scheduling problem (DLSP): first a bi-objective 

DLSP in which renewable energy is considered and earliness tardiness and CO2 emissions are minimized simultaneously; 

second a DLSP in which renewable energy is considered and earliness tardiness is minimized, subject to a constraint on 

the CO2 emissions. He represented non-dominated solutions for the bi-objective DLSP are subsequently derived using 

the lexicographic weighted Tchebycheff (LWT) method. Mehdizadeh,Hajipour, and  Mohammadizadeh, studied a multi-

item capacitated lot-sizing problem (MICLSP) with setup times, safety stock deficit costs, demand shortage costs – both 

backorder and lost sale states – and different manners of production. They develop a bi-objective mathematical 

programming model with two conflicting objectives. They propose two novel Pareto-based multi-objective meta-

heuristic algorithms called multi-objective vibration damping optimization and the non-dominated ranking genetic 

algorithm. Wang et al., an integrated lot sizing and scheduling problem for a production–distribution environment with 

arbitrary job volumes and distinct due dates considerations. A mixed integer formulation is proposed for this problem, 

and then a genetic algorithm is developed to solve it. 

The lot-sizing decision is not considered in the general earliness/tardiness problem. Supithak et al., (2010) applied the 

concept of lot-sizing to the E/T problem and investigated it within the framework of the Discrete Lot-sizing and 

Scheduling Problem (DLSP) along with the chemical batch scheduling which is employed to construct this model. Mirabi 

(2011) considered the assumption of tardiness penalty in the model for the simultaneous lot-sizing and scheduling 

problem and presented a mathematical model for it. The major assumption of his problem is that jobs must be produced 

exactly once in the planning horizon.  

3. Problem definition

The problem is must determine production lot sizes and their schedules to minimize the sum of sequence-dependent 

setup costs, earliness costs (holding cost) and tardiness costs. In GLSPET, there are n orders waiting to be processed on 

a machine. Each order has its own due date as well as tardiness and earliness costs. Each order is delivered only once. 

If the production is completed before or on the due date, delivery will be on the due date. Otherwise, the order will be 

delivered immediately after its production is completed. 
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3.1 Assumptions 

Major assumptions for problems simultaneous scheduling and lot-sizing with earliness/tardiness penalties (called SLET) 

are as follows:  

(1) Each order contains one product. 

(2) The planning horizon is finite and contains T periods. 

(3) Setup times and costs are sequence-dependent. The triangular inequality holds between setup times. 

(4) Holding cost is considered per unit order for unit time and the tardy cost is calculated for the total order. 

(5) Machine is setup for the first order at the beginning of the planning horizon. 

(6) The model is in the setup preservation mode, which means that the setup state is preserved over idle periods. 

(7) If two orders are placed for one product type, sequence-dependent setup costs and setup times must be set to zero. 

This model is an extension of Almada-Lobo et al.’s (2007) model in which product sequencing in each period is modelled 

like a TSP. 

3.2. Mathematical Modelling 

3.2.1. Decision variables and parameters 

We consider i and j as orders, which are labelled by 1 to J, and t denotes time periods ranging from 1 to T. The parameters 

of the SLET model will be as follows: 

𝑠𝑐𝑖𝑗  : Setup cost for transition from order i to order j 

𝑠𝑡𝑖𝑗  : Setup time for transition from order i to order j 

𝛽𝑖  : Tardy cost for total order per unit time 
ℎ𝑖  : Holding cost for one unit of order i 
𝑎𝑖  : The processing time of one unit of order i 
𝑑𝑖  : Due date of order i 
𝑜𝑖  : Demand of order i 
𝑐𝑡  : Available capacity in each period 

The following decision variables are used: 

𝑥𝑖𝑗𝑡  : Binary variable which is 1 when setup occurs from order i to order j in period t 

𝑦𝑖𝑡 : An auxiliary variable that assigns order i in period t 
𝑢𝑖𝑡 : Equals one if the machine is set up for order i at the beginning of period t 
𝑇𝑖  : Delay of order i 
𝐼𝑖𝑡  : The inventory level of order i at the end of period t 
𝑤𝑖𝑡  : Binary variable which is 1 when order i is delivered in period t 
𝑞𝑖𝑡 : Quantity of order i produced in period t 
𝑐𝑜𝑖  : Delivery time of order i 
𝑑𝑒𝑖𝑡 : Quantity of order i delivery in period t 

3.2.2. The Model 

The model is proposed as follows: 

Min z = ∑ ∑ ∑ scijxijt

T

t=1

J

j=1

J

i=1

+ ∑ βiTi

J

i=1

+ ∑ ∑ hiIit

J

i=1

T

t=1

)1) 

S .T. 

∑ aiqit + ∑ ∑ stijxijt ≤ ct

J

j=1

J

i=1

J

i=1

, ∀t = 1‚ … ‚T )2) 

qjt ≤
ct

aj

(∑ xijt

J

i=1
i≠j

+ ujt) , ∀j = 1‚ … ‚ J ∀t = 1‚ … ‚T )3) 
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∑ xijt

J

i=1

+ ujt = uj (t+1) + ∑ xjit

J

i=1

, ∀j = 1‚ … ‚ J ∀t = 1‚ … ‚T )4) 

yit + Jxijt − (J − 1) − Jui(t) ≤ yjt , ∀j‚i = 1‚ … ‚ J  i ≠ j ∀t = 1‚ … ‚ T )5) 

∑ uit = 1

J

i=1

, ∀t = 1‚ … ‚ T )6) 

Ti = coi − di, ∀i = 1‚ … ‚ J )7) 

Iit = Iit−1 + qit − deit, ∀i = 1‚ … ‚ J ∀t = 1‚ … ‚ T )8) 

deit = wit × oi, ∀i = 1‚ … ‚ J ∀t = 1‚ … ‚ T )9) 

oi × wit ≤ ∑ qit

t

t′=1

, ∀i = 1‚ … ‚ J ∀t = di‚ … ‚T )10) 

wit = 0, ∀i = 1‚ … ‚ J ∀t = 1‚ … ‚ di − 1 )11) 

coi = ∑ wit. t

T

t=1

, ∀i = 1‚ … ‚ J )12) 

qit‚deit‚coi‚Iit‚Ti‚uit‚yit ≥ 0 , ∀i = 1‚ … ‚ J ∀t = 1‚ … ‚ T )13) 

wit‚xijt ∈ {0‚1}, ∀j‚i = 1‚ … ‚J ∀t = 1‚ … ‚T )14) 

In this model, Equation )1) represents the objective function which minimizes the sum of setup, tardiness, and inventory 

holding costs. Inequality )2) ensures that production and setups do not exceed the available capacity. Constraint )3) 

guarantees that an order is produced if the machine has been set up for it whilst Constraint )4) guarantees that the setup 

state network is a connected network, and Constraint )5) avoids disconnected sub-tours. Constraint )6) ensures that at 

the beginning of each period, there is only one setup state. In Equation )7), the amount of delay is calculated for each 

order. Constraint )8) balances production and inventories with demand. Relation )9) is a definition of 𝑑𝑒𝑖𝑡. Constraint

)10) guarantees that an order will not be delivered unless its production is complete for delivery on the due date or after 

that; thus, it is delivered when the whole order is produced. Constraint )11) ensures that orders are not delivered before 

their due dates, even their production is complete. Equation )12) calculates the delivery time for each order. Finally, 

Equations )13) and )14) define the different kinds of variables in the model. 

3.2.3. Complexity 

The SLET model is a combination of GLSP and the earliness/tardiness scheduling problems. Since the GLSP model is 

Np-hard (Fleischmann and Meyr, 1997), also according to the research done by Hall, Kubiak, and Sethi (1991), single-

machine problem with Earliness/Tardiness criterion is also NP-hard. Proposed problem as a combination of two Np-hard 

models with no new assumption, is also Np-hard. This justify to developing a meta-heuristic. Two meta-heuristics, 

namely the Simulated Annealing and the Ant Colony System algorithms, are proposed. 

4. Lower bounding relaxation

As seen from the previous subsection, SLET model comprises a large numbers of constraints and variables. It is obvious 

to achieve optimal solution for model is time consuming and in the real-world situation is impossible. Hence developing 

meta-heuristic is unavoidable. It is also necessary to develop a lower bound to test the accuracy of the heuristic. To find 

lower bound we use one type of relaxation and eliminates constraint )14) (constraint relaxation). This elimination causes 

each order is delivered to several pieces in a separate period after the due date, if the production isn’t completed before 

or on the due date. Therefore holding cost after the due date is zero. These eliminations make the solution be less than 
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the optimal but the differences are not significant. 

5. Meta-heuristic approach

5.1. Ant Colony System Algorithm 

This section describes the ACS algorithm. The algorithm contains two phases. In the first phase, periods are selected in 

a non-ascending order of due dates and the orders are then selected by Equation )15). Equation )15) is used to determine 

the probability that an order is selected for production in a certain period, in which q is a random variable uniformly 

distributed over [0,1], 𝑞0  (0≤𝑞0≤1) is a parameter, and i is a random variable selected according to the probability

distribution given by Equation )16), where 
𝑖𝑡

 is a heuristic value calculated by Equation )17). In this Equation,  and 𝛾′

are parameters,  is the parameter to control the influence of the heuristic information, and 𝜏𝑡𝑖 is the rate of pheromone

if the order i is produced in period t. Also, 𝑁𝑘 is the set of candidate orders (incomplete orders) of the ant k.

)15) i = {
argmax

l∈Ni
k{τti[ηti]

β}  if q ≤ q0

I  otherwise

)16) pti
k =

[τti][ηti]
β

∑ [τti][ηti]
β

l∈Ni
k

 if   j ∈ Nk

)17) ηti = {
γdi = t

γ′di ≠ t

If all the orders are complete in the first phase, there is no need for the second phase of the algorithm; otherwise, the 

algorithm starts its second phase, in which, unlike the first phase, orders are selected in a non-ascending order of the total 

cost (including holding, setup, and tardiness costs) of the best solution, and the periods are then selected. If the order is 

completed, the next order is then selected. 

 Initialization of pheromones

Let the initial pheromone trail be τ0 =
1

zfirst
, where zfirst is the objective function value of the feasible solution.

 Local and global updating of pheromones

Global updating of pheromones in ACS is implemented by Equation )18): 

)18) 
τti = (1 − ρ)τti + ρ∆τti

bs, (Tbs∀(t‚i)|qit > 0)

where, 0 < ρ < 1 is the evaporation rate, ∆τti = 1
zbs⁄  in which zbs is the objective function value of the best-so-far. Tbs

represents the sets of periods in which the orders are produced. 

In ACS, the pheromone rule is locally updated and immediately applied after each feasible solution. The local updating 

of pheromone is implemented by Equation )19): 

)19)τti = (1 − ξ)τti + ξτ0 

where,  is a parameter in this equation whose value is between zero and one. 𝜏𝑡𝑖 is the rate of the pheromone if order i

is produced in period t. 

5.2. Simulated Annealing Algorithm  

Simulated annealing is a local search algorithm (meta-heuristic) capable of escaping from local optima. Its ease of 

implementation, convergence properties and its use of hill-climbing moves to escape local optima have made it a popular 

technique. Generally speaking, a search algorithm in combinatorial problems first generates neighborhood solutions from 
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a current solution, and then, continues to move to one of them until prespecified conditions are met. SA uses this 

repetitive improvement approach, but in particular it probabilistically allows deteriorating movements so that a 

neighborhood solution out of a local optimum can be tried. 

The simulated annealing (SA) heuristic we propose is as follows: 

GENERATE a feasible schedule X with cost Z 

set the initial temperature T 

set the temperature length  L 

set the cooling ratio R  

set the maximum iterations number, mrun 

set the iterations counter, crun 

while crun < mrun do 

do i=1, L 

SEARCH and select a neighbour X’ of X 

Let Z’ = the cost of  X’

Let 𝛿 = Z’ − Z 

Let 𝛿 ≤ 0 

Set X= X’

If 𝛿 > 0 

Set X= X’ with probability 𝑒−
𝛿

𝑇

Continue 

Set T=R*T 

read crun 

Continue 

end 

5.2.1. Initial solution 

In theory, simulated annealing yields a near optimal solution independent of the initial solution. Although this factor has 

been tested in past simulated annealing literature, empirical evidence linking the initial solution to the final solution is 

inconclusive. The procedure for the initial solution runs as follows: Select the orders in a non-decreasing order of due 

dates. Then, determine production lot sizes on the left hand side of the ordered due date or one closest to it. If there is no 

period available, insert the lot size of the order in the available period closest to the due date on the right hand side. 

5.2.2. Generation of neighborhood solutions 

Neighborhood solutions are generated according to the following two methods. 

 Lot interchange

This method selects and exchanges two lots. The first lot to exchange is selected based on the ratio of tardiness and 

earliness cost. The other lot to exchange is randomly selected. 

 Lot insert

One lot is inserted at the end of another lot. Lots are selected as described in the lot interchange section. 

5.2.3. Temperature 

The temperature begins at a high level and is cooled until an equilibrium is reached. The way in which the algorithm 

avoids being trapped in a local minimum is that it generates and accepts random solutions in which the performance 

evaluation function has a greater value, i.e., the solution has a higher energy. When the temperature is high, the algorithm 

will be likely to accept a higher energy solution, while at a very low temperature the algorithm will almost only accept 

solutions of lower energy. However, it is necessary to control initial temperature more efficiently because very high 

initial temperature could consume too much time in preparation stage of our problems. We used objective function from 

initial solution in this paper. 

5.2.4. Cooling ratio 

 We use common ratio such as the geometric ratio, which use the temperature of kth exterior loop Tk: Tk = ρ Tk_1; 
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5.3. Sequencing orders within periods and Termination criteria  

To sequence orders within period t, one directed graph is extracted at first. Hence one directed graph (called D) is 

constructed by double (N, E), where N is the set of nodes of D. Each node indicates one order. E is the subset of {ij│i,j€V 

and i≠j} called the set of edges of D. Each edge indicates feasible sequence between two orders. Therefore if order i 

cannot be processed immediately after order j, there is no edge from node j to node i. 

To constructing D, one additional node numbered 0 is shown in D. Each edge 0i (i€N) in D indicates sequence 0i and it 

means order i is the first order in sequence within period t (based on assumption (6)). If node i in D has various exiting 

edges and one of these edges ends to one degree node (node with only one entering edge), say node j, then it means order 

j, and no other orders, must be processed on the machine after order i. Therefore all ik arcs, k≠j, indicate infeasible 

sequences. Obviously edge ji (if exists) represent infeasible sequence because if order j must be processed after order i, 

order i cannot be processed after order j. So  all of redundant edges must be eliminated from D. Select sequence  with 

the least summation setup costs. We set the termination criterion as NAl iterations without an improvement.

5.4. Local search procedure 

Local search is used in the two algorithms to improve the feasible solutions obtained. The local search contains the 

following three sections: 

(1) In order to reduce the tardiness cost, the orders placed in periods after their due dates are moved to periods before 

their due dates.  

(2)  For any order, the holding cost is reduced by moving the lot sizes of periods other than their delivery periods to 

their delivery periods or to a neighbouring one. 

(3) The setup cost is reduced by changing the sequence of orders inside periods using the pair-wise exchange. 

6. Numerical experiments

In this section, we report the numerical experiments carried out for the SA and ACS algorithms. 

6.1. Problem instance generation 

The method proposed by James and Almada-Lobo (2011) is used to generate data sets for SLET with some modifications 

as needed. 

The method runs as follows. The production capacity in each period is calculated as in Equation )20), where 𝐶𝑡 is the

capacity available in period t, 𝑂𝑖  is the demand of order i, and the value of S is calculated using Equation )21). In Equation

)20), the parameter  adjusts the capacity. Based on our investigations, the values 0.05, 0.25, 0.5, 0.75, and 1 were 

considered for this parameter.  

)20) Ct =
∑ oi

J
i=1

T
Rand[1‚1.2] + ρ × S 

)21) S = ∑ maxj

J

i=1

(stij) − mini{maxj(stij)}

The setup times (𝑠𝑡𝑖𝑗) have a discrete uniform distribution over the range [5,10]. Setup costs are generated using Equation

)22). In this equation,  is a coefficient for adjusting setup costs. The value for this parameter will be equal to 50 or 100 

for different scenarios, holding costs are between 2 and 9 penalty units per period, processing time for one unit is equal 

to one unit of time, and demand is between 40 and 59 units per period (James and Almada-Lobo, 2011).  

)22) scij = stij × θ

The tardiness cost for each order is calculated using Equation )23), in which  is a coefficient for adjusting the tardiness 

cost. The values for this parameter will be equal to 1.2, 1.5, and 2 for different scenarios. 

)23)βi = hi × oi × α 

A total number of 30 (235) problem sets are generated based on the different coefficients considered for the parameters 

α, ρ, and, θ. In order to investigate the efficiency of the proposed solution methods, 12 problem groups with different 
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sizes were generated for each of the 30 sets. The row titled ‘Small’ in Table 1 shows the numbers of orders and periods. 

In other words, to test the performance of the algorithms, 30 problem sets each with 12 problems were generated, making 

a total number of problems 360 (1230) problem instances. 

6.2. Parameter setting for the two algorithms 

In order to set the parameters in the two algorithms, several values are considered for each parameter at as shown in 

Table 2. The impacts of these parameters and their interactions on every algorithm are investigated using the full factorial 

design with 24 blocks selected from different problems. Tukey's (1977) multiple range test is used to compare all pairs 

of means for each factor to identify the best value for each parameter.  

6.2.1. Parameter setting for the Ant Colony System algorithm  

Initial tests revealed that a k value of 10 proposed by Dorigo and Stutzle (2004) would be the best for the number of ants. 

Also, the values of 1 and 1.8 suggested in Almeder (2010) were considered for  and 𝛾′ parameters, respectively. Bold

numbers in Table 2 show the values selected for the parameters.  

6.3. Numerical results 

In this section, we investigate the quality of the proposed meta heuristics through comparisons. This evaluation is 

accomplished in separated parts using small-scale and large sized instances. To solve the proposed mathematical model, 

the GAMS 23/4 software and CPLEX solver was used. The algorithms were coded in Visual C.NET 2010 and solved 

on a computer with a 2.67 GHZ processor. The models were run in a time limit of 3600 s. 

The problems without optimal solutions within this time limit were omitted. Some of the problems presented in sets 9, 

10, 11, and 12 with =0.05 had no optimal solutions. Computed lower bound (LB) was applied for all instances to show 

their accuracy compared with the mathematical model in small-size problems. To evaluate the performance of the 

algorithms, the solution for each problem obtained from each algorithm was compared with that obtained from the other 

model. To do this, each algorithm was run five times for each problem. The average percentage deviations of the five 

runs were reported as the percentage deviation from each algorithm for each problem. Then, the average percentage 

deviation was calculated for the 30 sets and presented as percentage deviation for each set. With regard to time limit, the 

number of problems with optimal solutions in each problem set was also presented. The results of comparisons are 

presented in Table 3. Clearly, optimal solutions were obtained for 333 out of the 360 problems within the limit of 3600 

seconds. Table 3 also shows the percentage deviation for each problem set. It is also clear from this Table that the models 

exhibited differences in their performance for different problem sets. In other words, none of the algorithms could be 

considered the best.  

Hence, the differences between two methods must be analyzed whether they are significant or not. To do this, hypothesis 

μ1 − μ2 = 0 against the hypothesis μ1 − μ2 > 0 with unknown and unequal variance was used. It is needed to perform

a t test analysis. The Sample size is equal to 12, sample average for ASC and SA are X̅1 = 1.77  and X̅2 = 1.72   and

sample standard deviation for ASC and SA are s1 = 0.68 ands2 = 0.68, respectively. Since t = 0.58 < t0.05,24=1.711,

it means that the difference isn't statistically significant. 

In the case of solution times, similar to the case of percentage deviation, the average value of the solution times of the 

five runs was reported as the average solution time (Table ).Clearly, the average solution time of the SA algorithm for 

all the problem sets, except for sets 1, is less than that of ACS. Also, the average solution time for all the sets by SA is 

equal to nearly one fourth of that by ACS. 

To study the effects of different parameters on the performance of the algorithms, average percentage deviations were 

calculated for the different input parameters. For this purpose, the problems with identical parameters were grouped into 

one set and the average percentage deviation was calculated for each new set. The column titled ‘Small-scale Instances’ 

in Table  shows the effect of coefficients, , and  on the performance of the algorithms. It is clear from the first part 

of Table that when  is equal to 1.2, the average percentage deviation is greater than the other two values for both 

algorithms. The second part of the Table  shows the effect of . Clearly, the average percentage deviation of instances 

with =50 is lower than that of instances with =100. This indicates that problems with higher setup costs are more 

difficult to solve. The third part of Table shows the effect of . When this coefficient is equal to 0.05, we have the tightest 

capacity. Generally speaking, differences are observed between the two algorithms with regard to their different 

parameters.  

In order to compare the performances of the algorithms for large scale instances, 9 problem groups with different sizes 

were generated for all the 30 sets. The row titled ‘Large’ in Table 1shows the numbers of orders and periods. Similar to 
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the previous case, each problem was run five times using each algorithm. The percentage deviation value of each problem 

for each run was calculated as follows: 

RPD =
FAlgorithm−LB

LB
× 100                                                                                                                                         (24)

where, LB is lower bound and 𝐹𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚is the objective function value of the algorithms. Average percentage deviations

and average solution times are calculated as they were for the small scale instances (Table 7). Clearly, the algorithms 

exhibit the different performance with respect to the different groups of problems. As in the case of small scale instances, 

the average solution time for the SA algorithm is less than that for the ACS in all the problem sets. 

To study the effects of different parameters on the performance of the algorithms, average percentage deviation was 

calculated for each input parameter. The column titled ‘Large Scale’ in Table presents the effects of , , and  on the 

performance of the algorithms. 

7. Conclusions and future research

The problem investigated in this paper is one of simultaneous lot-sizing and scheduling with earliness/tardiness penalties 

(SLET) along with the sequence-dependent setup time and cost. The problem objective is to determine the production 

lot-sizes and their schedules in order to minimize the sum of the total setup, holding, and tardiness cost. A mathematical 

model, and two meta-heuristics, namely SA and ACS, were presented as solution methods for the problem. Also, lower 

bounds are obtained from solving the problem relaxation. A benchmark was established to evaluate the performance of 

the algorithms. The algorithms were initially evaluated for their efficiencies in obtaining optimal solutions for the set of 

small size instances by solving the mathematical model within a time limit of 3600 seconds. The algorithms were also 

compared, with lower bound, for their performance with a set of large size instances. The effects of different parameters 

on the performance of the algorithms were evaluated for both small and large size problem instances. As shown by the 

experimental results, our proposed SA algorithm outperformed the other meta-heuristics algorithm. Also the solution 

time of the SA algorithm was less than that of ACS. 

For future research, the proposed model can be extended to the flow shop environment, assembly line. Also, considering 

other functions used in the sequencing and scheduling such as maximum completion time in the flow shop, will be an 

interesting area for future research. Other meta-heuristic methods can be developed to solve the problem. Finally, order 

selection and order acceptance or rejection are suggested as topics for future research. 

Representing exact methods which try to find an optimal solution based on the model structure like branch and bound 

algorithm is a good aspect for future research. Efficient heuristic and met- heuristic algorithms are also appropriate 

methods to solve SLET. 
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Appendix 

Table 1. Numbers of orders and periods 

T×J Problem group T×J Problem group T×J problem group Scale Problem 

15×15 
9 10×10 5 5×5 1 

Small 

15×17 
10 10×15 6 5×10 2 

15×20 11 15×10 7 10×5 3 

17×15 12 15×12 8 10×7 4 

30×25 7 25×20 4 20×15 1 

Large 30×30 8 25×25 5 20×20 2 

30×35 9 25×30 6 20×25 3 

Table 2. Values suggested for the parameters of the SA and ACS algorithms 

Values suggested Description Parameter Algorithm

504030 stopping criteria 𝑁𝐴𝑙

SA 0. 950. 90. 70. 5Cooling ratio coefficient 𝜌 

403020 10temperature length L 

50 4030 stopping criteria 𝑁𝐴𝑙

ACS 

543The rate of influence of the heuristic information ψ

0.10.070.04rate of local evaporation ξ

0.30.20.1rate of global evaporation φ

0.7 0.60.5 0.4
A parameter that chooses a value between zero and 

one 
𝑞𝑜

Table 3. Average percentage deviations of the solutions and the number of problems with optimal solutions obtained by the 

algorithms and lower bound 

Average percentage deviation Number of problems with optimal solutions 

T×J 
Problem 

groups 
LB ACS SA ACS SA LB 

Mathematical 

model 

0.130/230/15 25272430 5×5 1 

3.012/632/1619 1614 30 5×10 2 

1.891/671/551219 15 30 10×5 3 
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Table 3. Continued

Average percentage deviation Number of problems with optimal solutions 

T×J 
Problem 

groups 
LB ACS SA ACS SA LB 

Mathematical 

model 

2.431/832/04151215 30 10×7 4 

1.331/411/59 21 2022 30 10×10 5 

1.230/821/0821 2425 30 10×15 6 

1.021/791/59141612 30 15×10 7 

2.451/852/431612 1229 15×12 8 

2.462/312/051613102415×15 9 

2.782/141/621717132415×17 10 

2.362/181/531419142415×20 11 

3.322/322/8561282217×15 12 

- - - 196 207184333Total number 

2.031/761/72 0/59 0/62 0.55-Average 

Table 4. Average solution time of the algorithms and optimal solution time (seconds) 

ACS SA LB Optimal time T×J Problem groups 

0/311/010/510/615×5 1 

1/610/981/031/085×10 2 

1/491/111/141/8010×5 3 

7/541/4510/57 13/3710×7 4 

4/063/047/548/6410×10 5 

14/054/12 54/4760/4810×15 6 

8/891/54 65/08 80/0915×10 7 

23/224/02321/45332/6415×12 8 

10/402/12112/05115/3115×15 9 

19/135/08 289/08 381/89 15×17 10 

22/977/25203/23248/3315×20 11 

42/3813/14552/12714/0317×15 12 

133/74 147/07216/17 Average solution time 
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Table 5. Coefficient effects on the performance of the algorithms 
Large scale Small scale 

Value Parameter 
ACS SA ACS SA 

0/490/63 2/162/12½ 

 0/45 0/541/651/891/5 

0/400/50 1/501/132 

0/450/481/291/1250 
 

0/460/65 2/252/35100 

1/371/052/622/890/05 

 

0/780/622/251/980/25 

0/470/431/611/380/5 

0/430/321/401/430/75 

0/220/291/071/001 

Table 6. Average percentage deviation and average solution time in large scale instances 

Average solution time (second) Average percentage deviation 
Group problem 

ACS SA ACS SA 

115/98 7/05 0/75 0/41 1 

139/96 40/82 0/83 0/45 2 

193/54 45/04 0/60 0/83 3 

337/55 132/05 0/72 0/69 4 

181/60 74/02 1/36 1/04 5 

377/39 78/45 0/80 0/41 6 

344/60 101/78 0/77 1/19 7 

438/00 65/45 0/75 0/98 8 

956/24 191/81 1/65 1/03 9 

342/76 81/83 0/91 0/78 Total average 
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