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Abstract 

In this paper, a multi- objective quadratic programming (Poss- MOQP) problem with possibilistic variables coefficients 

matrix in the objective functions is studied. Through the use of  level sets the Poss- MOQP problem is converted into

the corresponding deterministic multi- objective quadratic programming (   MOQP) problem and hence into the single

parametric quadratic programming problem using the weighting method.  An extended   possibly efficient solution is

specified. A necessary and sufficient condition for finding such a solution is established.  A relationship between the 

solutions of possibilistic levels is constructed. Numerical example is given to clarify the obtained results. 

Keywords: Multi- objective quadratic programming; Possibilistic variables; Possibilistic efficient solution;   Level

set;   Possibly efficient solution;  Possibly optimal solution. 

1. Introduction

In many scientific areas, such as system analysis and operations research, a model has to be set up based on data which 

are only approximately known. Fuzzy Sets Theory, introduced by Zadeh (1965), makes it possible to incorporate the 

unknown and approximate data to the mathematical models . Fuzzy numerical data can be represented by means of fuzzy 

subsets of the real line, known as fuzzy numbers. Dubois and Prade (1980) extended the use of algebraic operations on 

real numbers to fuzzy numbers by the use of a fuzzification principle. Luhandjula (1987) introduced the multi- objective 

programming problems with possibilistic data. Hussein (1992) presented the vector optimization problems with 

possibilistic weights. Sakawa and Yano (1989) introduced the concept of  Pareto optimality of fuzzy parametric 

program. Kassem (1998) studied the nonlinear programming problems with possibilistic variables in the objective 

functions parameters and introduced the parametric study corresponding to the resulted   possibly optimal solution. 

Tanaka et al. (2000) proposed algorithms to solve linear programming problems for obtaining center vectors and 

distribution matrices in sequence based on different kinds of possibility distributions of fuzzy variables. 

Quadratic optimization is considered as one of the most important areas of non- linear programming. Numerous problems 

in real world applications, including problems in planning, scheduling, economics, engineering design and control etc…, 

are naturally expressed as quadratic problems .The quadratic problem is the most interesting class of the optimization 

problems, and it is known as an NP-hard problem. There are several method and algorithms for solving the quadratic 

programming problem introduced by Pardalos and Rosen (1987) and Horst and Tuy (1993). Ammar (2008) studied 

multiobjective quadratic programming problem with fuzzy random coefficients matrix in the objective functions and a 

decision vector as fuzzy variables. Jana et al. (2009) added an entropy objective function to the multiobjective portfolio 

selection model that is to generate a well-diversified asset portfolio based on the possibilities mean value and variance 

of constraints distribution. Inuiguchi and Ramik (2000) introduced a review on some fuzzy linear programming methods 

and techniques in practical from your point of view. Khalifa and ZeinEldein (2014) presented portfolio selection problem 

as multi- objective quadratic- linear programming problem with fuzzy objective functions coefficients and applied fuzzy 

programming approach for solving the problem. Ammar and Khalifa (2003) introduced fuzzy portfolio selection problem 

as quadratic programming approach. Ammar and Khalifa (2015) introduced portfolio selection problem as quadratic 
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programming problem with inexact rough interval in the objective function and constraints. Kheirfam (2011) used a 

fuzzy ranking and arithmetic operations to transform the quadratic programming problem with fuzzy numbers in the 

coefficients and variables into the corresponding deterministic one and solved it to obtain a fuzzy optimal solution. Based 

on Zadeh (1978), he transformed the fuzzy quadratic programming problem into a pair of two- level mathematical 

programs, regarding the extension principle. Khalifa (2016) proposed an interactive approach for solving multi- objective 

nonlinear programming problem. The approach is based on the Reference Direction (RD) introduced by Narula et al. 

(1993) and the Attainable Reference Point (ARP) method introduced by Wang et al. (2001). Canestrelli et al. (1996) 

studied possibilistic quadratic programming. 

This paper deals with a multi- objective quadratic programming (MOQP) problem with possibilistic variables 

coefficients matrix in the objective functions. The (Poss- MOQP) is formulated by incorporating possibilistic data in the 

objective functions’ coefficients. Through the use of the  - level sets, the considered problem is converted into the 

corresponding deterministic quadratic problem and hence the concept of   - efficient solution is introduced instead of 

efficient solution. A necessary and sufficient condition for such solution is established and hence the relationship between 

solutions of possibilistic levels is constructed.  

The paper is divided to the following 6 sections: In section2, some preliminaries needed for the paper are introduced. In 

section3, the possibilistic multiobjective quadratic programming problem and its specific definition and properties is 

introduced. In section4, the   possibly efficient solution of the Poss- MOQP problem will be characterized. In section 

5, a numerical example is given for illustration. Finally, some concluding remarks are reported in section6. 

2. Preliminaries

In this section, the possibilistic variable, its   level set, support, and convexity definitions which are necessary in this 

paper are introduced (see, Kassem (1998), and Hussein (1998)). 

Definition1. A possibilistic variable Vu is a variable characterized by a possibility distribution ),(vu which means 

that, a possibility distribution v associated with v may be viewed as fuzzy constraints on the values which may be 

assigned to v . Such distribution is characterized by a possibility distribution function  1,0: Vu which is 

associated with each Vu , the degree of compatibility of the variable u with the realization .Vv

If V is Cartesian product of nVVV ...,,, 21  , then )...,,,( 21 nu vvv is an n  ary possibility distribution, i.e., 

).)(),...,(),(()( 21 21 nuuuu vvvv
n

   

Definition2. The  level set of a possibilistic variable Vu  is defined as follows:

  .)(:   vVuu u

Definition3. A possibility distribution u on V is called convex if 

.10,,));(),((min))1(( 212121  wVvvvvvwwv uuu   

Definition4. The support of a possibilistic variable u is denoted by )(uSupp and is defined as:
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3. Problem definition and solution concept

 Consider the following possibilistic multi- objective quadratic programming problem: 
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 .0,:  xBAxRxMx n
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minmij bBaA and  jxx  . It is assumed that all possibilistic variables inserted in Poss- 

MOQP problem are convex with bounded and closed supports and )(0 uSuppu  . 

Definition5. A point 
x is said to be a possibly efficient solution of Poss- MOQP problem if 
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 is called an  possibly efficient solution for Poss- MOQP problem if 
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And )...,,2,1()(~ KkkC
 , and ),...,2,1()(~ KkQ

 are  1n - ary and )( nn - ary possibility distributions.

4. Characterization of  possibly efficient solution of Poss- MOQP problem

T0 characterize the   possibly efficient solution of the Poss- MOQP problem; let us consider  parametric multi- 

objective quadratic programming (   MOQP) problem as follows: 
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This contradicts the   possibly efficient of Mx   for Poss- MOQP and the necessity part is hold. 
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Sufficiency: Let Mx  to be the   parametric efficient solution for   PMOQP problem and Mx   not to 
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This contradicts (5). Then there is   DVVV K )()2()1( ,...,, , and   EWWW K )()2()1( ,...,,  satisfying 
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KkWV kkkk ...,,2,1,, )()()()(     (7) 

Equations (5) and (7) contradict the efficiency of 
x  for  PMOQP problem, and the efficiency part is established. 

The   PMOQP problem can be treated using the weighting approach (Miettinen, 1999) that is by defining the 

following problem: 
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We see that 
x  is a  parametric efficient solution of  PMOQP problem if there exists 0  such that

x  is 

the unique optimal solution of (  P) corresponding to the  level. 

It is clear that (  P) problem can be written in the following form (see, Bazaraa et al., 1990; and Steuer, 1986) 

(  P) 0            
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Subject to 

,Mx . , and  1,0 .

5. Numerical example

Consider a multi-objective quadratic programming problem in this form:
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In this example, two objectives are considered simultaneously. Also, the possibilistic variables
)1(

11
~q , and

)2(

11
~q are

characterized by possibility distributions ( )()1(
11

~ 
q

 , and )()2(
11

~ 
q

 ).  The supports of the possibilistic variables (
)1(

11
~q  , 

and
)2(

11
~q ) are  ,4,2  and  5,3 . It is appropriate to characterize this supports by parametric functions beginning by the

points of maximum possibility. Then, the parametric functions of   to the supports, for ,10  are:
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11
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Then ( P) 0  problem becomes
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At ,5.0)2()1(    and 3.0 , the ( P) 0  problem becomes
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The solution of the problem is:    1,5.1, 21 xx  , with 65.11)1( Z    , 2.11)2( Z      
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6. Concluding remarks

In this paper, multi- objective quadratic programming (Poss- MOQP) problem with possibilistic variables coefficients 

matrix in the objective functions has been introduced. The (Poss- MOQP) is considered by incorporating possibilistic 

data in the objective functions coefficients. Through the use of the  - level sets, the problem has been converted into 

the corresponding deterministic quadratic problem and hence the concept of   - efficient solution has been introduced 

instead of efficient solution. A necessary and sufficient condition for such solution has been established and hence the 

relationship between solutions of possibilistic levels has been constructed. Also, numerical example has been given for 

illustration.  
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