
International Journal of Supply and Operations Management

IJSOM
 February 2017, Volume 4, Issue 1, pp. 78- 89

ISSN-Print: 2383-1359
 ISSN-Online: 2383-2525

www.ijsom.com

Modeling and solving the distributed and flexible job shop scheduling problem with WIPs

supply planning and bounded processing times

 M. Ziaeea

a
 University of Bojnord, Bojnord, Iran

Abstract
In this paper, for the first time in the literature, we integrated production scheduling decisions and WIPs planning

decisions in a distributed environment. We study the distributed and flexible job shop scheduling problem (DFJSP)

which involves the scheduling of jobs (products) in a distributed manufacturing environment, under the assumption that

the shop floor of each factory/cell is configured as a flexible job shop. It is also assumed that the work-in-process (WIP)

parts can be bought from the market instead of manufacturing them in-house, and they also can be sold in the market

instead of processing their remaining operations and selling the end products. Moreover, the processing times of the

operations can be decreased by paying a cost. However, there are a lower limit and an upper limit for the processing

time of each operation. We formulate this general problem as a mixed integer linear programming (MILP) model. A fast

heuristic algorithm is also developed to obtain good solutions in very short time. The algorithm is tested on some problem

instances in order to evaluate its performance. Computational results show that the proposed heuristic is a

computationally efficient and practical approach.

Keywords:
Distributed Scheduling; WIPs Supply Planning; Flexible Job Shop; Bounded Processing Times.

1. Introduction

The significance of distributed manufacturing has been recognized by many researchers and industrialists in recent years

due to the changes in the mode of today’s production environment. Single factory or centralized production environment

in traditional manufacturing systems has been gradually replaced by more flexible distributed settings, including multi-

factory networks or multi-cell job shops due to the trend of globalization. The distributed manufacturing enables the

enterprises to be closer to their customers and suppliers, to produce and market their products more effectively, to be

responsive to market changes more quickly, to achieve better product quality, lower production cost, reduced

management risk, and better utilization of production resources (Chan et al., 2006b; Rosenau, 1996; Wang, 1997).

The distributed manufacturing takes place in a multi-factory environment including several factories, which may be

geographically distributed in different locations, or in a multi-cell environment including several independent

manufacturing cells located in the same plant. Each factory/cell is capable of manufacturing a variety of product types.

In addition, the factories or cells have different production efficiencies and lead times, operating costs, constraints, etc.

(Chan et al., 2006b; Giovanni and Pezzella, 2010). An important issue in dealing with the production in this decentralized

manner is the scheduling of operations of products (jobs) in the distributed manufacturing system (Jia et al., 2003; Wang

and Shen, 2007).

*Corresponding author email address: ziaee@iust.ac.ir

78

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

In this paper, we study the distributed and flexible job shop scheduling problem (DFJSP) which involves the scheduling

of jobs in a distributed manufacturing environment described above, under the assumption that the shop floor of each

factory/cell is configured as a flexible job shop (Therefore, each factory/cell will be hereafter called flexible manufacturing

unit (FMU)). The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling

problem)JSP(. The n×m classical JSP is defined as follows: set of n jobs must be processed on a group of m machines,

where the processing of each job i consists of Ji operations which should be performed on these machines. Each job has a

specified processing order on the machines which is fixed and known in advance, i.e., each operation has to be performed

on a given machine. In the FJSP however each operation is allowed to be processed on any machines among the set of

available ones; and thus, the scheduling problem is choosing a machine and a starting time at which the operation must be

processed, for each operation (Baker, 1974; Pinedo, 2002). The DFJSP consists of the following two subproblems which

can be solved sequentially or simultaneously: (1) the assignment of each job to exactly one FMU (which corresponds to

one cell in a multi-cell environment or one factory in a multi-factory setting), and (2) the scheduling of the jobs in each

FMU, i.e. solving a FJSP for each FMU. Once a job is assigned to a FMU and starts its processing (but not finished), it is

usually impossible or uneconomical to transfer this unfinished job to another FMU for the remaining operations (Chan et

al., 2006b). Therefore, we assume that once a job is allocated to a FMU, all its operations have to be processed in the same

FMU. We also suppose that all the FMUs belong to the same company. Accordingly, they work cooperatively to define

an optimal production plan maximizing the revenue of the company as a whole. Another assumption considered in this

paper is that the WIPs can be bought from the market instead of manufacturing them in-house, and they also can be sold

in the market instead of processing their remaining operations and selling the end products. In other words, for each job

assigned to each FMU, the FMU can either process all the operations of the job or process only several consecutive

operations. These options, i.e. buying/selling the WIPs, lead to the best use of existing capacities and a maximum profit

by an integrated planning model for the WIPs and therefore, can have many practical advantages and be used for many

production and even non-production environments. It is also assumed that the processing times of the operations can be

decreased by paying a cost. However, there are a lower limit and an upper limit for the processing time of each operation.

We formulate this general problem as a mixed integer linear programming (MILP) model to integrate the decisions on

production scheduling and WIPs supply planning.

Development of MILP models for more complex scheduling problems such as FJSP has become increasingly important

in recent years, because they can be easily solved using a robust software system and used for benchmarking the heuristic

algorithms and understanding the structure of the problems (Unlu and Mason, 2010). A review of MILP formulations for

the job shop and the flow shop scheduling problems presented in the literature is provided by Pan (1997). For the FJSP, a

review of the mathematical models developed for this problem is presented by Özgüven et al. (2010). A more recent

literature review and comparative evaluation of mathematical models for the FJSP is provided by Demir and Isleyen

(2013). They investigate all the mathematical models for the FJSP existing in the literature in terms of binary variables

that they rely on for sequencing operations on machines, and computationally compare the models assuming that the

objective function is makespan. They conclude that the model presented by Özgüven et al. (2010) is the best model in the

literature in terms of the computational time. For the FJSP with bounded processing times, there is only one contribution

from reference (Zhang et al., 2012) in which the authors present a mathematical model and a genetic algorithm with tabu

search procedure to solve the problem. Even for simpler scheduling problems such as parallel machines or flowshop

scheduling problems, a common assumption in the literature is that the processing times of the jobs are fixed and known

in advance. However, in some real scheduling problems, this assumption may not be realistic. Moreover, the lower and

upper bounds on processing times are often very easy to obtain in practical cases.

The DFJSP is more complicated than the traditional FJSP in single FMU, because it involves not only the FJSP in each

FMU, but also the problem in an upper level that is the assignment of the jobs to the FMUs. This problem is strongly NP-

hard, since the problem with one FMU, i.e. the FJSP, is already strongly NP-hard (Garey et al., 1976). Therefore, the more

general problem considered in this paper is also strongly NP-hard. This justifies the need for developing efficient heuristic

algorithms to obtain approximate solutions of good quality at little computational cost. These heuristic algorithms are very

fast in comparison with the exact methods and the metaheuristic algorithms; and if they have been proved to produce

solutions with adequate accuracy then they can be the best approach. Therefore, this paper proposes a powerful heuristic

algorithm to solve the problem.

Almost all existing studies in the field of production scheduling deal with the centralized or non-distributed production

environments, and only few papers investigate the distributed scheduling problems, especially those involving the DFJSP

(Wang and Shen, 2007). Due to the complexity of the distributed scheduling problems mentioned above, approximate

algorithms, mainly metaheuristics, have been often used to solve the problem. A review of the heuristics developed to

solve these problems can be found in references (Giovanni and Pezzella, 2010; Wang and Shen, 2007). Wang et al. (2013)

consider the distributed permutation flow-shop scheduling problem and present an effective estimation of distribution

algorithm (EDA) to solve the problem. This problem is also examined in (Gao et al., 2013) and solved by a tabu search

algorithm. Jia et al. (Jia et al. 2002, 2003) present a modified genetic algorithm to solve the distributed scheduling problem

in a multi-factory network in which, each factory is configured as a job shop. Chan et al. (2005, 2006a) consider the

DFJSP and present a genetic algorithm with dominated genes (GADG) to solve the problem and demonstrate the

79

Ziaee

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

performance of the method by using several new DFJSP instances. Also, Chan et al. (2006b) study a generalized version

of the DFJSP in which, machine maintenance constraints are considered and it is assumed that the maintenance time is

related to the machine age. A mathematical model and a genetic algorithm with dominant genes (GADG) are developed

for the problem. For both with and without maintenance constraints, the performance of the presented genetic algorithm

is evaluated using some new test instances. Giovanni and Pezzella (2010) present an improved genetic algorithm to solve

the DFJSP. The proposed approach is compared with other algorithms for distributed scheduling and tested on a large set

of DFJSP instances derived from well-known FJSP benchmarks, providing good results. As it can be seen in the above

review of literature on the distributed scheduling problems, studies on methods for solving these problems are in the early

stage. Almost all the proposed methods are metaheuristic algorithms and very time-consuming in comparison with the

heuristic algorithms, because they perform the search procedure in larger part of the solution space. For the general

problem considered in this paper, i.e. the DFJSP with the WIPs supply planning and bounded processing times, to the best

of author’s knowledge, there is no contribution in the literature.

In this study, we present a MILP model to solve the DFJSP with the WIPs supply planning and bounded processing times

(section 3). The problem is also solved using a heuristic algorithm (section 4). In order to evaluate the performance of the

proposed heuristic, we implement it using several randomly generated test problems and present the results of the

computational experiments (section 5). The results show that the proposed heuristic method can obtain good solutions in

very short time. Concluding remarks are given in the last section.

2. Assumptions and notations

The assumptions considered in this paper are as follows:

(1) Each FMU can produce all jobs with different efficiencies.

(2) For each job, all FMUs have the same number of operations.

(3) Jobs are independent of each other.

(4) Setup and transportation times are negligible.

(5) There are no precedence constraints among the operations of different jobs.

(6) Preemption is not allowed, i.e. a started operation cannot be interrupted during its processing.

(7) Each machine can process at most one operation at the same time.

(8) An operation cannot be performed by more than one machine at the same time.

(9) All the jobs have equal priorities.

(10) Machines never break down and are available throughout the scheduling period.

(11) For each job assigned to each FMU, the FMU can buy one of its WIPs and neglect the processing of all the

operations belonging to the bought WIP. Also, the FMU can stop the processing of the job in an arbitrary stage, sell the

corresponding WIP and neglect the processing of its remaining operations. In other words, for each job assigned to each

FMU, the FMU can process either all the operations of the job or only several consecutive operations.

(12) For each job, at most one WIP can be bought by the whole company.

(13) For each job, the processing time of each operation can be decreased by paying a cost. However, there are a lower

limit and an upper limit for the processing time of each operation.

(14) All FMUs, machines, jobs and bought WIPs are available at time zero.

The notations used throughout the paper are as follows:

Indices and parameters:

l: number of FMU’s.

n: number of jobs.

f: index of FMU’s; f=1,…,l.

i,i',z: index of jobs; i,i',z=1,…,n.

mf: number of machines in FMU f.

Ji: number of operations of job i.

maxJ: maximum number of operations per job (i.e., maxJ=
i

i

max J).

j,j': index of operations; j=1,…, Ji; j'=1,…, Ji'.

k,k',y: index of machines; k,k',y=1,…, mf.

ltijyf: Lower limit of processing time of operation j of job i on machine y of FMU f.

utijyf: Upper limit of processing time of operation j of job i on machine y of FMU f.

aijf: set of machines in FMU f which are capable of executing operation j of job i.

naijf: number of members of the set aijf.

s′ijf: mean processing time of operation j of job i over the machines belonging to the set aijf (i.e., ()

ijf

ijf ijyf ijf

y a

s ut / na


  

).

80

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

sjif: total mean processing time of job i in FMU f (i.e., sjif =
iJ

ijf

j 1

s


).

skyf: total weighted processing time on machine y of FMU f which is calculated as follows: skyf =
i

ijf

Jn

ijyf

i 1 j 1 ijf
if y a

ut

na 



  .

spijf: selling price of WIP (i,j,f). WIP (i,j,f) consists of all operations j': j'≤j, which may be either executed in FMU f or

bought by FMU f from an outsource. Therefore, for WIP (i,j,f), all operations j': j'>j, are unprocessed and need to be

executed either by FMU f or by outsourcing. WIP (i,0,f) is a base part/raw material and WIP (i,Ji,f) is a finished job.

pcijf: procurement cost of WIP (i,j−1,f).

fcf: fixed (overhead) cost of FMU f per time unit. This cost is therefore not dependent to the number of jobs processed by

the FMU and its scheduling plan.

tfc: the sum of fixed costs, i.e. tfc=
l

ff 1
.fc

 According to this definition, if the makespan, i.e. the maximum completion

time over all the FMUs, is equal to Cmax then total fixed cost for the problem is equal to tfc.Cmax.

cijyf: processing cost of operation j of job i processed on machine y of FMU f per time unit.

c'ijyf: cost of decreasing the processing time of operation j of job i on machine y of FMU f per time unit.

According to the above two definitions for cijyf and c'ijyf, if the processing time of operation j of job i on machine y of

FMU f is equal to Tijyf, ltijyf≤ Tijyf ≤ utijyf, then total processing cost of it is equal to Tijyf.cijyf +(utijyf−Tijyf).c'ijyf.

M: a large number.

Variables:

Uijf: binary variable that takes the value 1 if WIP (i,j,f) is sold by FMU f, and 0 otherwise.

Vijf: binary variable that takes the value 1 if WIP (i,j−1,f) is bought by FMU f, and 0 otherwise.

Tijyf: processing time (duration) of operation j of job i on machine y of FMU f.

CTijf / CTijyf: completion time of operation j of job i on (machine y) FMU f.

IFf: number of jobs assigned to FMU f.

Yiji'j': binary variable that defines the processing order of the operations (i, j) (i.e. operation j of job i) and (i', j')

belonging to two different jobs (i<i') on the same machine; it takes the value 1 if operation (i', j') precedes operation (i,

j), and 0 otherwise.

Xijkf: binary variable that takes the value 1 if operation j of job i is processed on machine k of FMU f, and 0 otherwise.

Cmax: makespan, i.e. the overall completion time of all jobs on all FMUs.

Obj: objective function value that is the total profit and equal to the sum of revenues of selling the WIPs minus the total

costs including the fixed costs, the processing costs and the procurement costs; it is computed by the following equation:

3. MILP formulation

Here, a MILP formulation is presented for the problem. This MILP model simultaneously makes a plan for buying and

selling the WIPs, determines the values of the processing times of the operations selected for processing, and makes a

scheduling plan for the operations.

Minimize

= () (). ()

() ()

ijf

ijf

ijf ijf 1 2 3 ijkf ijkf

i j f i j f k a

ijkf ijkf ijf ijf

i j f k a i j f

Obj sp .U fc fc fc C max c .T

c .a pc .V ,





    

  

 

 

Subject to:

= () ().

()

(())

()

ijf

ijf

ijf ijf 1 2 3

i j f

ijkf ijkf

i j f k a

ijkf ijkf ijkf

i j f k a

ijf ijf

i j f

Obj sp .U fc fc fc C max

c .T

c . ut T

pc .V .





  



 











81

Ziaee

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

() () (1)

ijf

ijk f i(j 1)kf i(j 1)kf i(j 1)kf ijf

k a

i i(j 1) f

CT CT T M . X M .U

i, j J , f , k a ,

   





    

    



(1) (2)

()

ijkf ijkf i j kf iji j ijkf i j kf

i i ijf i j f

CT T CT M . Y M . X X

i, j J , i i, j J , f , k a a ,

     

  

       

          

(2)

()

i j kf i j kf ijkf iji j ijkf i j kf

i i ijf i j f

CT T CT M .Y M . X X

i, j J , i i, j J , f , k a a ,

       

  

      

          

(1)
ijkf ijkf ijkf ijkf i ijf

ut T a M . X i, j J , f , k a ,        

() () () 1

ijf

ijkf ij f ij f i

k a j j j j

X V U i, j J , f , 

   

         

(1)
ijkf ijkf ijkf i ijf

M . X CT T 0 i, j J , f , k a ,        

ijkf ijkf ijkf ijkf i ijf
CT T a M .X 0 i, j J , f , k a ,        

ijf

ijkf i

f k a

C max CT i, j J ,


   

() 1
ijf

j f

V i, 

() 1
ijf

j f

U i, 

()
ijf ij f

j j

V U 0 i, j , f ,



    

() ()
ijf ij f

j j

U V 0 i, f ,



    

(1)
ijkf ijkf ijkf i ijf

lt T M . X i, j J , f , k a ,       

(1)
ijkf ijkf ijkf i ijf

T ut M . X i, j J , f , k a ,       

 
ijkf i ijf

X 0,1 i, j J , f , k a ,     

 
iji j i i

Y 0,1 i, j J , i i, j J ,  
        

 
ijf ijf i

U ,V 0,1 i, j J , f .    

The objective (1) is to maximize the profit that is the total revenue of selling the WIPs minus total costs including total

processing costs, total fixed costs and the total costs of procuring the WIPs. Constraint set (2) ensures that the precedence

restrictions between consecutive operations of each job are met, it means that the completion time of jth operation of job

i should not be greater than the start time of its (j+1)th operation. Constraint sets (3) and (4) define the order of any two

operations processed on the same machine and ensure that they will not clash. For any two operations (i, j) and (i', j'),

(i≠i'), constraint (3) is active only if the two operations can be processed on the same machine (k) (i.e. Xijkf = Xi'j'k'f' = 1)

and operation (i, j) is processed after operation (i', j') (i.e. Yiji'j' = 1); otherwise, i.e. if Xijkf = 0 or Xi'j'k'f' = 0 or Yiji'j' = 0, this

constraint is inactive. Note that, operation (i, j) is not necessarily positioned immediately after operation (i', j') when Yiji'j'

= 1. Clearly, for any two operations processed on the same machine, either constraint (3) or constraint (4) is active. a'ijkf

in constraint set (5) is the difference between the processing time of operation (i,j,k,f) and its upper limit, and is used for

computing the processing cost of the operation in the objective function. Constraint set (6) means that each operation (i,

j) to be processed in FMU f is assigned to one machine. According to constraint set (7), if an operation is selected for

processing and scheduling (i.e. Xijkf = 1), then its completion time must be greater than or equal to its processing time, i.e.

its starting time must be greater than or equal to time zero. If operation (i,j,k,f) is not selected for processing (i.e. Xijkf = 0),

then constraint (8) sets CTijkf , Tijkf and a'ijkf equal to zero. Constraint set (9) determines the overall completion time

(makespan), i.e. the completion time of each operation on each machine and each FMU should not be greater than the

makespan. Constraint set (10) ensures that for each job, at most one WIP is bought by the whole company. Constraint set

(11) ensures that for each job, at most one WIP can be sold by the whole company. Constraint set (12) means that if a WIP

of a job is to be bought, then one of its subsequent WIPs must be sold. According to constraint set (13), for each job, the

number of bought WIPs is equal to the number of sold WIPs, i.e. either no WIP is bought and no WIP is sold or one WIP

is bought and one WIP is sold. Constraints (14) and (15) ensure that the processing time of each operation (i,j,k,f) does not

82

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

violate its lower limit (ltijkf) and upper limit (utijkf). Constraint sets (16), (17) and (18) define the binary variables Xijkf, and

Yiji'j', Uijf and Vijf, respectively.

4. Proposed heuristic approach

In order to reduce the computational time, instead of solving the MILP model presented in the previous section, we propose

an efficient heuristic method for the problem. An outline of the proposed heuristic algorithm is given in Figure 1. This

method consists of four algorithms run consecutively and described as follows.

Apply Algorithm 1 to find a solution in which, for each job, the first WIP is bought and the last WIP is sold, i.e.

 Beginning of Algorithm 1 (Ziaee, 2014)

for j:= 1 to maxJ do

{

until the jth operation of all jobs are scheduled, repeat

{

 Find i, k, f (such that: 1. (j=1), or (j>1 and job i is assigned to FMU f); 2. j ≤ Ji ; and 3. jth operation of job

i is an unscheduled operation and machine k of FMU f is capable of processing this operation) that minimizes Tcrit.

 If job i is an unassigned job (i.e. a job that is not already assigned to any FMU), then assign it to FMU f; and

schedule jth operation of this job at the last position of current partial sequence on machine k of FMU f.

}

}

 End of Algorithm 1

 Repeat:

o Apply Algorithm 2 to improve the quality of solution obtained by Algorithm 1,

o Apply Algorithm 3 to improve the quality of solution obtained by Algorithm 2,

 Until (no improvement occurs over the best solution)

 Apply Algorithm 4 to improve the quality of solution obtained by Algorithms 2 and 3.

Figure 1. General outline of the proposed heuristic algorithm

4.1 Algorithm 1

This algorithm is based on the heuristic algorithm presented in (Ziaee, 2014). We have revised this algorithm in order to

cover the WIPs supply planning and bounded processing times. In this algorithm, each unscheduled operation (i, j) (i.e.

operation j of job i) to be scheduled on machine y of FMU f is evaluated by the following criterion, and the unscheduled

operation with minimum Tcrit is selected for scheduling.

Tcrit =

such that,

crit1 =((max (Cmaxyf, CTi,j-1,f) + Tijyf)− Cmaxyf).tfc

crit2 = max (0,(CTi,j-1,f −Cmaxyf))

crit3 =Tijyf .cijyf +(utijyf−Tijyf).c'ijyf

crit5 = skyf/n

crit6 = sjif/maxJ

Tcrit is weighted sum of some criteria which are established based on the factors affecting the objective function value.

Wr (r=1,2,…,6) are integer variables used to increase the flexibility and effectiveness of criterion Tcrit. The coefficients

Wr are variables bounded in a given range and used to refine the Tcrit. Cmaxyf is the maximum completion time across

all the operations scheduled on machine y of FMU f; that is, Cmaxyf is equal to the completion time of the operation

situated just before operation j of job i on machine y of FMU f. crit1 is equal to the fixed cost relating to the scheduling

of operation j of job i on machine y of FMU f. crit1 and crit2 are applied to decrease Cmaxyf and idle times, respectively;

clearly, both these objectives affect the makespan. For assigning operations to a machine, their processing costs are also

taken into account by crit3. crit4 is the average procurement cost minus average selling price and computed only for the

first operation of each job, leading to a good assignment of the job to one FMU. crit5 and crit6 are used for taking into

account the total weighted processing time of machines, and the total mean processing time of jobs, respectively. It must

1
i

l l

i 1 f iJ ff 1 f 1
V U , i.

 
   

6

r rr 1
W .crit ,



() if 1

0 if 1

i
J

ixf ixf ix 1

4

pc sp / J j
crit

j


 










83

Ziaee

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

be noted that these criteria (crit1 to crit6) do not have the same dimension, however, the algorithm itself adjusts their

effects by using variables Wr.

In Algorithm 1, all the processing times (Tijyf,  i,j,y,f) are set to either their upper limit (utijyf) or their lower limit (ltijyf).

Binary variable W7 is applied for setting the values of processing times (i.e. either the upper limits or the lower limits),

it takes a value of 1 for upper limits and 0 for lower limits. For other details concerning Algorithm 1 refer to (Ziaee,

2014). Pseudocode of this algorithm is available by request to the author.

4.2 Algorithm 2

Algorithm 2 improves the quality of solution obtained by Algorithm 1. The pseudocode of this algorithm is shown in

Figure 2. At each step of this algorithm, the value of crit' is first computed for all scheduled operations. All the scheduled

operations are then sorted in increasing order of their crit'ijf, and for each operation taken in this order, the elimination of

the corresponding WIP is tested, i.e. if this elimination can lead to better objective function value, then it is eliminated

from the scheduling plan. crit'ijf is the relative profit resulting from eliminating the corresponding WIP.

Repeat:

For f= 1 to l do

 For i= 1 to n do

For j= 1 to Ji do

For y= 1 to m do

{

If (Vijf=0 and Uijf>0 and machine y is capable of processing operation (i,j,f)) then

{

crit'ijf = spijf − spi(j−1)f − cijyf . Tijyf − tfc . Tijyf .

}

If (Vijf>0 and Uijf>0 and machine y is capable of processing operation (i,j,f)) then

{

crit'ijf=spijf − pcijf − cijyf . Tijyf − tfc . Tijyf .

}

If (Vijf>0 and Uijf=0 and machine y is capable of processing operation (i,j,f)) then

{

crit'ijf = pc i(j+1)f − pcijf − cijyf . Tijyf − tfc . Tijyf .

}

}

Sort all operations (i,j,f) in increasing order of their crit'ijf, and for each operation taken in this order do:

{

If (Vijf=0 and Uijf>0 and machine y is capable of processing operation (i,j,f)) then

{

Uijf = 0,

Ui(j−1)f = 1,

}

If (Vijf>0 and Uijf>0 and machine y is capable of processing operation (i,j,f)) then

{

Vijf = 0,

Uijf = 0,

}

If (Vijf>0 and Uijf=0 and machine y is capable of processing operation (i,j,f)) then

{

Vijf = 0,

V i(j+1)f = 1,

}

Considering the eliminated operation, compute the completion time of all remaining operations without changing their position in

the schedule. If the objective value of the obtained solution is less than the best objective value obtained so far, then consider it as

the best solution obtained so far.

}

Until (no improvement occurs over the best solution)

Figure 2. Pseudocode of Algorithm 2

4.3 Algorithm 3

Algorithm 3 improves the quality of solution obtained by Algorithm 2. The pseudocode of this algorithm is shown in

Fig. 3. In this algorithm, the value of crit" is first computed for all scheduled operations. All the scheduled operations

are then sorted in increasing order of their crit"ijf, and for each operation taken in this order, the decreasing of the

processing time of the operation up to (utijyf − ltijyf) is tested, i.e. if this decrement can yield better objective function

value, then its processing time is decreased up to (utijyf − ltijyf). crit"ijf is the relative profit resulting from decreasing the

processing time of the operation.

84

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

For the solution generated by Algorithm 2 (denoted by δ*) perform the following algorithm.

For f= 1 to l do

 For i= 1 to n do

For j= 1 to Ji do

For y= 1 to m do

{

If (operation (i,j,f) is a scheduled operation in δ*, and machine y is capable of processing this operation) then

{

crit"ijf = (c'ijyf − cijyf − tfc).(utijyf − ltijyf),

}

Sort all operations (i,j,f) in increasing order of their crit"ijf, and for each operation taken in this order, if processing time of this operation

is set to its upper limit, then set the processing time to its lower limit; and considering this change, recompute the completion time of

all operations without changing their position in the schedule. If the objective value of the obtained solution is less than the best

objective value obtained so far, then consider it as the best solution obtained so far.

}

Figure 3. Pseudocode of Algorithm 3

4.4 Algorithm 4

In this algorithm, it is first assumed that no WIP is bought, i.e. a solution in which the value of Cmax and objective

function value are equal to zero. The algorithm considers the best solution obtained by Algorithm 1 (denoted by δ), and

for each operation scheduled in δ, the buying of the WIP corresponding to this operation is tested. If the buying of this

WIP can improve the objective function value then it is selected to be bought and scheduled in new generated solution

(δ') such that its machine and its position are the same as those in δ. The pseudocode of this algorithm is shown in Fig.

4. Let Cmax(δ') be the makespan across all the operations scheduled in δ', and Cmaxyf be the maximum completion time

across all the operations scheduled on machine y of FMU f.

Assume that no WIP is bought, i.e. a solution in which the value of Cmax and objective function value are equal to zero, and call this

solution δ' with the objective value called Obj1. Consider the schedule generated in Algorithm 1 (denoted by δ) and perform the

following algorithm.

For j= 1 to maxJ do

 For f= 1 to l do

For i= 1 to n do

For y= 1 to m do

{

If (j ≤ Ji, and operation (i,j,y,f) is a scheduled operation in δ) then

{

If (pcijf − spijf + cijyf .ltijyf +tfc.(max(0,Cmaxyf+max(0,CTi(j−1)f − Cmaxyf)+ ltijyf−Cmax(δ')))+ c'ijyf.(utijyf −

ltijyf)<0)

{

If (j=1)

{

Vijf = 1,

Uijf = 1,

}

If (j>1 and Ui(j−1)f=0 and =0)

{

Vijf = 1,

Uijf = 1,

}

 }

If(spi(j−1)f−spijf + cijyf .ltijyf +tfc.(max(0,Cmaxyf+max(0, CTi(j−1)f − Cmaxyf)+ ltijyf−Cmax(δ')))+ c'ijyf.(utijyf −

ltijyf)<0)

{

If (j>1 and Ui(j−1)f>0)

{

Ui(j−1)f = 0,

Uijf = 1,

}

}

}

j 1

ixfx 1

V





85

Ziaee

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

If (Uijf > 1)

{

Schedule operation (i,j,f) in δ' assuming that its machine and its position are the same as those in δ.

Considering this change, recompute the completion time of all operations in δ'. If the objective value of the obtained solution is less

than Obj1, then set Obj1 to it.

}

}

If the objective value of the best obtained solution (i.e. Obj1) is less than the best objective value obtained so far, then consider it (i.e.

the solution corresponding to Obj1) as the best solution obtained so far.

Figure 4. Pseudocode of Algorithm 4

5. Computational results

In this section, the results of computational experiments are presented. As mentioned earlier, to the best of our knowlede,

there is no reference in the literature regarding the general problem defined in this paper and so there is no mathematical

model and no solution method for the problem in the literature. Therefore, we compared the computational results of the

proposed heuristic method with those of the proposed MILP model. First, some preliminary experiments have been

conducted for the parameter settings of Algorithm 1. Regarding the test on various values for the parameters of this

algorithm and considering the computational results, we have used the settings of Table 1 for benchmarking the presented

heuristic. As it can be seen in the table, we let variables Wr to take the value 0 because of their different dimensions.

Table 1. Parameter settings for Algorithm 1

Parameter L_W1 L_W2 L_W3 L_W4 L_W5
* L_W6

* L_W7 L_W8 L_W9

Value 0 0 0 0 ‒2 0 0 0 0

Parameter U_W1 U_W2 U_W3 U_W4 U_W5 U_W6 U_W7 U_W8 U_W9

Value 1 1 1 1 0 2 1 1 1

* W6 {‒2,0}, W7 {0,2}; i.e. the step length for W6 and W7 is 2, and the step length for all other Wr is 1.

The benchmark problems used were derived from 20 FJSP benchmark problems of (Fattahi et al., 2007) (denoted by

SFJS1-SFJS10 and MFJS1-MFJS10). The instances have been achieved by supposing that for each instance, all the

FMUs share the same characteristics and by replicating the data describing the related FJSP for each FMU. In other

words, for each instance, the following data are the same for all the FMUs: n, mf, Ji, aijf, ltijyf, utijyf, cijyf, c'ijyf. The data

related to n, mf, Ji and aijf are the same as those from (Fattahi et al., 2007). The values of ltijyf are also the same as Tijy

(processing times) in (Fattahi et al., 2007). Other parameters have been obtained by the following equations:

fcf = INT(Random(0,1)*50)+50, for instances: SFJS1-SFJS10,

fcf = INT(Random(0,1)*100)+100, for instances: MFJS1-MFJS10,

pcijf = INT(Random(0,1)*10000)+10000(j+1), for instances: SFJS1-SFJS10,

spijf = INT(Random(0,1)*10000)+ 10000(j+3), for instances: SFJS1-SFJS10,

pcijf = INT(Random(0,1)*10000)+10000(j), for instances: MFJS1-MFJS10,

spijf = INT(Random(0,1)*10000)+ 10000(j+3), for instances: MFJS1-MFJS10,

utijyf = 1.3 ltijyf, cijyf = INT(Random(0,1)*15)+5, c'ijyf = 2 cijyf.

Random(0,1) is a random real number between 0 and 1 generated from uniform distribution. The function INT(α) rounds

the real number α down to the nearest integer. Cases with two, three or four FMUs have been taken into account, leading

to a total of 60 instances. The distance from FMUs to jobs has been considered negligible.

The platform of our experiments was a Pentium IV, 2.2 GHz and 2.0 GB RAM PC. All the benchmark instances were

solved by the proposed MILP model and by using the software LINGO Release 8.0 (LINDO Systems Inc., 1999) that

uses the algorithm of Branch and Bound to optimally solve the problem. We used the default settings of the solver. The

running time limit for each instance was 1800 CPU seconds and no MFJS instance could be optimally solved in this

time. The algorithms of the heuristic were coded in C language. The computational results for the three categories of the

problem instances, i.e. the instances with two, three and four FMUs are shown in Table 2(a,b). In this table, the first

column indicates the name of each problem instance. The second column refers to the size of each instance consisting of

four numbers which mean the number of jobs, operations, machines and FMUs, respectively. Note that, in any of these

test problems, all the jobs have the same number of operations. The first set of columns denoted by MILP contains the

results of the proposed MILP model obtained by the Lingo software, and the second set denoted by Heuristic contains

those of the proposed heuristic approach. Obj and CPU time (s) represent the objective function value and the

computational time in seconds, for each instance, respectively. It must be noted that, the computational time of the

 

86

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

heuristic for SFJS instances was very low and only one sec on average, so its elapsed times are not reported in the table;

and the computational time of the MILP for all MFJS instances is 1800 sec as mentioned earlier. RPD is the relative

percentage deviation and calculated as follows:

,

where Obj* is the objective function value obtained by the corresponding method and Obj** is the best objective function

value achieved by the two models (i.e. either the MILP or the Heuristic). The best values of variables Wr (i.e. Wr*),

r=1,2,…,9; are also reported in the table. The average value of each variable Wr, r=1,2,…,6 can be considered as the

relative effect of the corresponding criterion on the quality of solutions. For example, the average value of W2 is near

zero in the table that means crit2 has little effect on obj. Of course, as it can be seen, the values of each variable Wr,

r=1,2,…,6 have relatively high variance in the table, meaning that they are dependent on the specifications of problem

instance under consideration and on the values of other variables Wr. The proposed algorithm selects for each instance,

the best combination of values of Wr, leading to the best result. Average value of W5 is negative in the table, that means

it has adverse effect on obj. Average value of W9 in the table is nearer 0 than 1. It is because the machines with larger

skyf which are firstly selected for scheduling have more sensibility and effect on the objective value. As shown in the

table, average RPD value for the MILP and SFJS instances is 0 compared to 3.75 for the heuristic; and the average

computational time for the heuristic is one sec compared to 23.63 sec for the MILP. Similarly, for the MFJS instances,

average RPD value for the MILP is 5.76 compared to 5.07 for the heuristic; however, the average computational time

for the heuristic is 206.25 sec compared to 1800 sec for the MILP. For the MFJS instances, despite the significant

difference between the computational time of the two methods, average RPD value of the heuristic is approximately the

same as that of the MILP; the heuristic can also find better objective value than the MILP for 13 out of 30 problems, that

means the proposed heuristic is an effective and efficient method, especially for larger size problems.

Table 2(a). Computational results for the proposed MILP model and heuristic method

MILP Heuristic

Obj CPU time (s) RPD Obj RPD W1 W2 W3 W4 W5 W6 W7 W8 W9

SFJS1-2FMUs 2.2.2.2 56396 0.00 0.00 56396 0.00 0 0 1 0 -2 2 1 0 0

SFJS2-2FMUs 2.2.2.2 37952 0.00 0.00 37952 0.00 0 0 0 0 0 0 1 0 1

SFJS3-2FMUs 3.2.2.2 65478 1.00 0.00 65312 0.25 1 0 1 1 -2 2 0 0 0

SFJS4-2FMUs 3.2.2.2 58928 1.00 0.00 58600 0.56 1 0 0 1 -2 2 0 0 0

SFJS5-2FMUs 3.2.2.2 75747 1.00 0.00 73366 3.14 0 0 1 1 -2 2 1 0 0

SFJS6-2FMUs 3.3.3.2 70864 8.00 0.00 70754 0.16 0 0 1 1 -2 2 1 0 1

SFJS7-2FMUs 3.3.5.2 71149 5.00 0.00 66704 6.25 0 0 0 1 -2 2 0 0 0

SFJS8-2FMUs 3.3.4.2 66363 17.00 0.00 66098 0.40 0 0 1 1 -2 2 1 0 0

SFJS9-2FMUs 3.3.3.2 93473 15.00 0.00 89884 3.84 0 0 1 1 -2 2 1 0 0

SFJS10-2FMUs 4.3.5.2 72883 89.00 0.00 69831 4.19 0 0 1 0 -2 2 1 0 0

SFJS1-3FMUs 2.2.2.3 46908 1.00 0.00 43749 6.73 1 0 0 1 -2 2 1 0 0

SFJS2-3FMUs 2.2.2.3 31960 0.00 0.00 30741 3.81 1 0 0 0 -2 2 0 0 0

SFJS3-3FMUs 3.2.2.3 67264 2.00 0.00 63229 6.00 0 1 0 0 -2 0 1 1 0

SFJS4-3FMUs 3.2.2.3 32181 3.00 0.00 30863 4.10 0 0 0 1 0 2 0 0 1

SFJS5-3FMUs 3.2.2.3 67631 4.00 0.00 67292 0.50 0 0 1 0 -2 2 1 0 0

SFJS6-3FMUs 3.3.3.3 55891 16.00 0.00 54780 1.99 1 0 0 0 -2 2 0 0 0

SFJS7-3FMUs 3.3.5.3 41731 18.00 0.00 37816 9.38 0 0 1 0 0 2 0 1 0

SFJS8-3FMUs 3.3.4.3 85093 21.00 0.00 82560 2.98 1 0 0 1 -2 2 1 0 0

SFJS9-3FMUs 3.3.3.3 76873 26.00 0.00 75289 2.06 0 1 0 1 0 2 0 0 0

SFJS10-3FMUs 4.3.5.3 59312 146.00 0.00 56944 3.99 1 0 0 1 -2 2 0 0 0

SFJS1-4FMUs 2.2.2.4 50223 1.00 0.00 48902 2.63 0 0 1 0 -2 0 1 0 0

SFJS2-4FMUs 2.2.2.4 42248 1.00 0.00 41513 1.74 1 0 0 1 -2 2 1 0 0

SFJS3-4FMUs 3.2.2.4 53603 6.00 0.00 51492 3.94 1 0 0 0 -2 2 0 0 0

SFJS4-4FMUs 3.2.2.4 33033 3.00 0.00 29312 11.26 0 0 0 0 0 2 0 0 1

SFJS5-4FMUs 3.2.2.4 73937 2.00 0.00 70212 5.04 0 0 0 1 0 0 1 0 0

SFJS6-4FMUs 3.3.3.4 57878 13.00 0.00 54502 5.83 0 0 0 0 0 0 0 1 1

SFJS7-4FMUs 3.3.5.4 55201 10.00 0.00 51674 6.39 0 1 0 0 0 0 1 1 1

SFJS8-4FMUs 3.3.4.4 69883 19.00 0.00 67934 2.79 0 1 0 1 0 2 1 0 0

SFJS9-4FMUs 3.3.3.4 73976 35.00 0.00 71374 3.52 0 0 1 1 -2 2 1 0 0

SFJS10-4FMUs 4.3.5.4 48851 245.00 0.00 44420 9.07 0 0 1 1 -2 2 0 0 0

Average 23.63 0.00 3.75 0.30 0.13 0.40 0.57 -1.40 1.60 0.57 0.13 0.20

Name Size

Table 2(b). Computational results for the proposed MILP model and heuristic method

100

** *

**

Obj Obj
RPD

Obj


 

87

Ziaee

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

MILP Heuristic

Obj RPD Obj CPU time (s) RPD W1 W2 W3 W4 W5 W6 W7 W8 W9

MFJS1-2FMUs 5.3.6.2 124282 0.00 121413 10 2.31 0 0 1 0 0 2 0 1 0

MFJS2-2FMUs 5.3.7.2 119693 0.00 107124 12.344 10.50 1 0 1 0 -2 2 0 0 0

MFJS3-2FMUs 6.3.7.2 164710 0.00 160937 22.797001 2.29 0 1 1 0 0 2 0 1 0

MFJS4-2FMUs 7.3.7.2 182612 0.00 173234 33.75 5.14 0 0 1 0 -2 2 0 0 0

MFJS5-2FMUs 7.3.7.2 221849 0.00 183652 43 17.22 0 0 1 1 -2 2 0 0 0

MFJS6-2FMUs 8.3.7.2 251564 0.00 231823 53.639999 7.85 0 0 1 0 0 2 0 0 0

MFJS7-2FMUs 8.4.7.2 185832 6.98 199771 139.078003 0.00 0 1 1 0 -2 2 1 0 0

MFJS8-2FMUs 9.4.8.2 216609 3.54 224553 218.360001 0.00 0 0 1 0 0 0 0 1 0

MFJS9-2FMUs 11.4.8.2 308290 0.00 290876 494.578003 5.65 0 0 0 1 0 2 0 0 1

MFJS10-2FMUs 12.4.8.2 274744 6.40 293533 600.531006 0.00 0 1 1 1 0 2 1 0 0

MFJS1-3FMUs 5.3.6.3 100378 0.00 90924 14.156 9.42 0 0 0 1 0 2 1 0 0

MFJS2-3FMUs 5.3.7.3 112290 0.00 108298 13.157 3.56 1 0 0 1 -2 2 1 0 0

MFJS3-3FMUs 6.3.7.3 133365 1.57 135496 30.514999 0.00 0 1 1 1 -2 2 1 0 0

MFJS4-3FMUs 7.3.7.3 143262 7.47 154828 44.172001 0.00 0 1 1 1 0 2 0 0 0

MFJS5-3FMUs 7.3.7.3 186368 0.00 166471 49.264999 10.68 0 0 1 1 -2 2 1 0 0

MFJS6-3FMUs 8.3.7.3 215946 0.00 181144 84 16.12 0 0 0 1 0 2 0 0 1

MFJS7-3FMUs 8.4.7.3 159075 17.00 191658 185.828995 0.00 0 0 1 1 -2 2 0 0 0

MFJS8-3FMUs 9.4.8.3 210714 0.00 208668 297.078003 0.97 0 0 1 0 0 0 0 1 0

MFJS9-3FMUs 11.4.8.3 207229 19.48 257348 631.937012 0.00 0 0 1 0 -2 2 0 1 0

MFJS10-3FMUs 12.4.8.3 255893 11.44 288952 790.625 0.00 1 0 0 1 -2 2 0 0 0

MFJS1-4FMUs 5.3.6.4 86936 0.00 68222 16.063 21.53 1 0 0 1 -2 2 1 0 0

MFJS2-4FMUs 5.3.7.4 99869 0.00 91247 16.875 8.63 0 1 0 1 0 0 0 0 1

MFJS3-4FMUs 6.3.7.4 121187 0.00 86875 35.905998 28.31 1 0 0 0 -2 0 0 1 0

MFJS4-4FMUs 7.3.7.4 149112 0.00 147122 53.5 1.33 0 0 1 1 -2 2 1 0 0

MFJS5-4FMUs 7.3.7.4 118810 10.60 132892 50.922001 0.00 1 0 0 1 -2 2 0 0 0

MFJS6-4FMUs 8.3.7.4 142371 0.00 141632 88.578003 0.52 0 1 0 0 0 0 0 0 0

MFJS7-4FMUs 8.4.7.4 110570 24.23 145937 224.686996 0.00 0 0 0 0 0 2 0 1 0

MFJS8-4FMUs 9.4.8.4 105725 27.92 146680 306.157013 0.00 0 0 0 0 0 0 1 0 0

MFJS9-4FMUs 11.4.8.4 178345 23.00 231615 670.640015 0.00 0 1 0 0 0 0 0 0 0

MFJS10-4FMUs 12.4.8.4 209749 13.09 241352 955.453003 0.00 0 0 1 1 -2 2 0 0 0

Average 5.76 206.25 5.07 0.20 0.27 0.57 0.53 -1.00 1.53 0.30 0.23 0.10

Name Size

6. Conclusion

In this paper, for the first time in the literature, we integrated production scheduling decisions and WIPs planning

decisions in a distributed environment. The paper investigated the distributed and flexible job shop scheduling problem

(DFJSP) under the assumption that the WIPs can be bought from the market instead of manufacturing them in-house,

and they also can be sold in the market instead of processing their remaining operations and selling the end products. It

was also assumed that the processing time of each operation is a variable that has a known lower limit and a known upper

limit. Moreover, there is a processing cost for each operation. We proposed a MILP model to solve this general problem

whose optimal solution simultaneously makes a plan for buying and selling the WIPs, makes a scheduling plan for all

the FMUs, and determines the values of the processing times of the operations. The optimal solution obtained by this

MILP model allows heuristic algorithms to be compared to an optimal solution rather than a solution obtained by another

heuristic. A fast heuristic algorithm was also developed to solve the problem very quickly. The two proposed methods,

i.e. the MILP model and the heuristic, were compared with each other using some problem instances. Computational

results showed that the proposed heuristic is computationally efficient and useful in practical problems. Some points and

directions for future research are as follows:

 Different sequences of algorithms 2-4 may lead to better performance of the heuristic.

 At each step of Algorithm 2 ,the elimination of only one WIP was tested. One can simultaneously test the elimination

of different sets of WIPs at each step and select one with best objective function value.

 At each step of Algorithm 3, the decreasing of the processing time of each operation up to (utijyf − ltijyf) was tested.

One can test the decreasing of the processing times in lower amounts, for example 1/2(utijyf − ltijyf) or 1/3(utijyf − ltijyf).

References

Baker K. (1974). Introduction to sequencing and scheduling. NewYork: Wiley.

Chan F.T.S., Chung S.H. and Chan P.L.Y. (2005). An adaptive genetic algorithm with dominated genes for distributed

scheduling problems. Expert Systems with Applications, Vol.29, pp. 364–371.

Chan F.T.S., Chung S.H. and Chan P.L.Y. (2006a). Application of genetic algorithms with dominated genes in a

distributed scheduling problem in flexible manufacturing. International Journal of Production Research, Vol. 44 (3),

pp. 523–543.

88

Modeling and solving the distributed and flexible job shop scheduling ...

Int J Supply Oper Manage (IJSOM), Vol.4, No.1

Chan F.T.S., Chung S.H., Chan L.Y., Finke G. and Tiwari M.K. (2006b). Solving distributed FMS scheduling problems

subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, Vol. 22, pp.

493–504.

Demir Y. and Isleyen K. (2013). Evaluation of mathematical models for flexible job-shop scheduling problems. Applied

Mathematical Modeling, Vol. 37, pp. 977–988.

Fattahi P., Mehrabad M.S. and Jolai F. (2007). Mathematical modeling and heuristic approaches to flexible job shop

scheduling problems. Journal of Intelligent Manufacturing, Vol. 18, pp. 331–342.

Gao J., Chen R. and Deng W. (2013). An efficient tabu search algorithm for the distributed permutation flowshop

scheduling problem. International Journal of Production Research, Vol. 51 (3), pp. 641-651.

Garey M.R., Johnson D.S. and Sethi R. (1976). The complexity of flow shop and job-shop scheduling. Mathematics of

Operations Research, Vol. 1 (2), pp. 117–129.

Giovanni L. D. and Pezzella F. (2010). An improved genetic algorithm for the distributed and flexible job-shop

scheduling problem. European Journal of Operational Research, Vol. 200, pp. 395–408.

Jia H.Z., Fuh J.Y.H., Nee A.Y.C. and Zheng Y.F. (2002). Web-based multi-functional scheduling system for a distributed

manufacturing environment. Concurrent Engineering-Research and Applications, Vol.10(1), pp. 27–39.

Jia H.Z., Fuh J.Y.H., Nee A.Y.C. and Zhang Y.F. (2003). A modified genetic algorithm for distributed scheduling

problems. Journal of Intelligent Manufacturing, Vol. 15, pp. 351–362.

LINDO Systems Inc. (1999). LINGO User’s Guide. LINDO Systems Inc.: Chicago.

Özgüven C., Ozbakır L. and Yavuz Y. (2010). Mathematical models for job-shop scheduling problems with routing and

process plan flexibility. Applied Mathematical Modelling, Vol. 34, pp. 1539–1548.

Pan C.H. (1997). A study of integer programming formulations for scheduling problems. International Journal of

Systems Science, Vol. 28 (1), pp. 33–41.

Pinedo M. (2002). Scheduling: theory, algorithms and systems. Englewood cliffs, NJ: Prentice-Hall.

Rosenau M.D. (1996). The PDMA Handbook of New Product Development. Wiley, New York.

Unlu Y. and Mason S.J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel

machine scheduling problems. Computers and Industrical Engineering, Vol. 58, pp. 785–800.

Wang B. (1997). Integrated product, process and enterprise design. Chapman & Hall, London.

Wang L. and Shen W. (2007). Process Planning and Scheduling for Distributed Manufacturing. Springer, London.

Wang S.-Y., Wang L., Liu M. and Xu Y. (2013). An effective estimation of distribution algorithm for solving the

distributed permutation flow-shop scheduling problem. International Journal of Production Economics, Vol. 145 (1).

pp. 387–396..

Zhang Q., Manier H. and Manier M.-A. (2012). A genetic algorithm with tabu search procedure for flexible job shop

scheduling with transportation constraints and bounded processing times. Computers & Operations Research, Vol. 39,

pp. 1713–1723.

Ziaee M. (2014). A heuristic algorithm for the distributed and flexible job-shop scheduling problem. Journal of

Supercomputing, Vol. 67, pp. 69–83.

89

file:///F:/content/978-1-84628-751-0/
file:///F:/content/1860-5168/

