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Abstract 

The school bus routing problem (SBRP) represents a variant of the well-known vehicle routing problem. The main goal 

of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order 

to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs 

two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the 

proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. 

Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a 

feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search 

algorithm) and I-ILS (a variant of Insertion with Iterated Local Search algorithm) are proposed to solve SBRP.  Our 

experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in 

shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing 

metaheuristics suggested for SBRP.  
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1. Introduction 

Transporting students to and from a school is a challenging problem for any local government trying to optimize its 

budget. This requires an efficient coordination and planning of an urban transportation network. The problem of student 

transportation is qualitatively different from traditional vehicle routing problems, since “students are not simple 

packages, as in the case of pick-up and delivery of goods, and because these services are provided through the public 

sector (Bowerman & Calamai, 1995)”. There is a large body of research conducted on this problem, called School Bus 

Routing Problem (SBR). In the general definition, SBRP seeks to transport students to and from school in a safe and 

convenient way. Considering real-life applications, SBR needs to take into account additional constraints as well as 

factors linked to the usability of the transportation network. For these reasons, SBRP has a more complex formulation 

and, in general, it requires more complex solution strategy than Vehicle Routing Problem (VRP). Overall, traditional 

VRP aims at finding a set of optimal routes for vehicle, in which each vehicle (the bus for SBRP) travels from a given 

depot (the school in the SBRP), serves a given set of customers (the stops where students wait for the bus to reach the 

school in the SBRP), and returns to the same depot (the school in the SBRP) at the end of the route. Among the many 

variants that have been made in connection with school bus routing problem, this paper deals just with a single school 

without time window. The SBRP under consideration consists of the following decisions. A set of potential bus stops 

needs to be created, such that they present at least a maximum distance from the locations where students actually live 

collecting students. Afterward, the definition of optimized bus routes consists of the selection of these bus stops to 

guarantee that all students are able to reach the school while satisfying the maximum capacity of the buses. Therefore, 

SBRP can be decomposed into three sub-problems: (1) the selection of the minimal set of bus stops to be included in  
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each route, which allows the collection of all students; (2) the allocation of students to stops such that the bus capacity 

is not exceeded, and (3) the definition of bus routes, which includes the selected bus stops so that the total length of 

routes is minimized. This paper addresses these three sub-problems, embedding them into one single optimization 

procedure. In previous studies, significant efforts have been made to develop heuristics that explore only the feasible 

search space. However, a variety of problems can be efficiently solved if the solution algorithm considers both feasible 

and infeasible solutions in a wider search area. For instance, Brandao (2006) presented a strategy that implemented 

efficient switching between feasible and infeasible search areas. This approach has been called Strategic Oscillation. It 

is obvious that carrying out strategic oscillation requires an efficient use of large neighborhood operators. It has to be 

noted that the main component of this algorithm is referred to as oscillating local search (OLS) strategy that relies on the 

ability of infeasible portions of the search space. As mentioned, the aim of the oscillation is to continually move from 

the feasible to the  infeasible space and vice versa, having at the same time a span to control the number 

of movements between infeasible and/or feasible states. This transition is set by considering a dynamically 

adjusted penalty which is applied to infeasible solutions. To the best of our knowledge, the application of strategic 

oscillation in an SBRP context is new. In this paper, we develop an iterated local search algorithm that uses a strategic 

oscillation for transition between feasible and infeasible solutions. This approach embeds six neighborhood structures in 

a variable neighborhood descent methodology.  

The two heuristics of insertion iterated local search and the nearest neighborhood iterated local search have been 

abbreviated as I-ILS and N-ILS, respectively. To test and validate the proposed metaheuristics, we used sets of instances 

for SBRP. The remainder of the paper is organized as follows. In Section 2, the literature concerning SBRP and related 

problems is briefly discussed. In Section 3, the problem is described and its mathematical formulation is given. Section 

4 illustrates the solution approach and metaheuristic configuration. Computational experiments are presented in Section 

5. Finally, Section 6 concludes the paper and provides some suggestions for future research. 

2. Literature review 

Many variants of SBRP have been suggested by researchers in recent decades. A comprehensive description of school 

bus routing problem and a relatively broad survey could be found in Park and Kim (2010). In their study, they categorized 

the existing works in the literature on SBRP in five categories: data preparation, bus stop selection, bus route generation, 

school bell time, and bus scheduling.  

 Considering the objective functions used in SBRP, the majority of researchers aim at minimizing the number of buses 

used in the solution and the total distances traveled by buses. Only a few SBRP studies have considered load balancing 

and maximum route length as an objective function. Some applications could be found in Angel et al. (1972), Newton 

and Thomas (1974), Verderber (1974), Gavish and Shlifer (1979), Bodin and Berman (1979), Dulac et al. (1980), 

Desrosiers et al. (1981), and Swersey and Ballard (1984). Also, a number of authors have attempted to incorporate some 

typical features of SBRP into the objective function. For instance, Bowerman et al. (1995) considered the minimization 

of total walking distance of students.  

Regarding the solution approach point of view, it has to be pointed out that the most efficient heuristic methods for SBRP 

recently published are Tabu search (Pacheco et al., 2013) and approximation algorithm (Bock et al., 2011).  

Multi vehicle covering route problem and capacitated m-ring star problem are similar to SBRP. In the former case, the 

total route length and the number of stops to be contained in the route are limited (Hachicha et al., 2000). Capacitated 

m-ring star problem (Baldacci et al., 2007) differs from SBRP in that it supposes customers and transition points to 

represent students and stops, respectively. Besides, in the capacitated m-ring star, there is no limitation concerning which 

student can be allocated to which stop. Lastly, in this problem, the number of rings (routes) is predefined.  

Later studies have addressed the composite nature of SBRP which can be solved through different sub-problems by using 

two different solution approaches: Allocation–Routing-Location (ARL) and Location- Allocation- Routing (LAR). In 

the LAR strategy, bus stops are determined in the first phase, and then students are assigned to those stops. Afterward, 

bus routes are generated. Thus, both bus stops selection and student allocation to the stops are independent of route 

generation, resulting in drawbacks such as an exceeding number of routes. For more details, the reader is referred to 

Bodin and Berman, 1979; Dulac et al., 1980; Desrosiers et al., 1981 and 1986a.  

To overcome this problem, a variant of ARL strategy is used that considers students who are grouped in clusters. These 

latter are designed based on one single route which satisfies the capacity constraint. Subsequently, for each cluster, bus 

stops selection and route generation to visit these stops will occur. Lastly, students in the cluster are allocated to the bus 

stops. This way the method can surmount some problems associated with LAR strategy. Chapleau et al. (1985) and 

Bowerman et al. (1995) proposed some heuristic algorithms using the ARL strategy.  
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Efficient application of ARL approach can be found in Bowerman et al. (1995), where a multi-objective formulation of 

the urban school bus routing problem is presented. The problem involves minimizing several objectives such as the 

number of routes, the total route length, a variety of students assigned per each route, the variation in route length, and 

the total walking distance covered by students from their homes to bus stops. The advantage of applying ARL strategy 

is that it allows an efficient load balance in allocating students to each cluster. Moreover, the number of bus routes can 

be kept to the minimum level because both objectives mentioned above (minimization of the number of routes and load 

balancing) are independent of both bus stop locations and the routes generated to serve these stops. The only drawback 

concerns balancing the route length. In fact, due to the potential dispersion of students within a cluster, ARL strategy 

cannot efficiently cope with this objective. From another point of view, ARL and LAR strategies have so far represented 

two alternative approaches for “bus route generation.” Location, allocation, and routing denote sub-problems (1), (2), 

and (3) discussed in the introduction.  

 Concerning the vehicle routing problem, most strategies employed for the generation of routes use either first-route-

then-cluster (or ARL) or first-cluster-then-route (or LAR) approaches. Both of these strategies possess a heuristic nature. 

Bodin and Berman (1979) implemented “first-route–then-cluster “approach. In this method, a long route visiting all the 

nodes in the network is first generated by solving a traveling salesman problem heuristic. Secondly, the long route is 

partitioned into smaller routes to satisfy some predefined constraints (e.g. bus capacity, the maximum travel time of 

students, and the maximum number of students who could be allocated to an allowable bus stop). 

In the strategy known as first-cluster–then-route, initially students are grouped in the clusters. Subsequently, the number 

of stops is determined for each cluster, and a route is generated for each cluster while satisfying predefined constraints. 

Several studies investigating first-cluster–second-route strategy have been carried out (Dulac et al., 1980; Chapleau et 

al., 1985; Bowerman et al., 1995). All researchers have adopted a two-step strategy, namely ARL and LAR in order to 

deal with SBRP by solving its sub-problems separately. However, both approaches offer a weak global optimization 

solution method. An interesting area of research, which has not received much attention so far, concerns the idea of 

considering bus stop selection and route generation simultaneously. Based on the argument mentioned above, it is evident 

that a solution method which combines the advantages of both bus stop selection the route generation could be very 

valuable to SBRP. This integrated approach has been examined by Schittekat et al. (2013), Riera-Ledesma. (2013), and 

Kinable et al. (2014). Application of strategic oscillation is not new in the literature on vehicle routing problem; however, 

no study has been conducted in the area of SBRP. In this paper, we take a closer look at investigating SBRP problem, 

proposing two effective metaheuristic approaches. The objective of our problem is to minimize total bus travel distance. 

Our contribution is fivefold: 1) Solving SBRP by using an iterated local search heuristic that makes use of a strategic 

oscillation. 2) Suggesting two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local 

Search algorithm) and I-ILS (a variant of Insertion with Iterated Local Search algorithm). Both metaheuristics are based 
on three stages: constructive stage, intensification stage and diversification stage.3) Optimal solutions for small 

instances of the problem are found using CPLEX solver. 4) The key components of each metaheuristic are investigated 

and tuned. 5) Once the best parameter setting for each of the metaheuristics is obtained, we will compare our solution 

methods (I-ILS and N-ILS) with the best-known solution existing in the literature, proposed by Schittekat et al.(2013). 

3. Problem definitions 

The SBRP studied here is a generalization of the well-known vehicle routing problem (VRP), where a single school, one 

type of students, and identical buses with a fixed capacity are employed. The goal is to optimize the total traveling 

distance as in the traditional VRP. Since SBRP extends VRP, it could be considered NP-hard as well. The following table 
summarizes the symbols included in the model.  

Table 1. Symbol used in mathematical model 
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The following model is built based on the formulation of Toth and Vigo (2002). A formulation of SBRP is shown 

below. (To conduct the formulation, we have referred to Schittekat et al., 2013).  
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The objective function (1) minimizes the total travel distance handled by all buses. Due to constraint (2), for each stop i 

the number of arcs entering it is exactly the same as the number of arcs going out from it. Constraint (3) guarantees that 

each stop is visited only once, except for stop 0 which is associated with the school. Constraint (4) enforces that each 

student is to be picked up at the stop where he/she walks to. Constraint (5) guarantees that the capacity of buses is not to 

be exceeded. Inequalities (6) impose that picking up a student in a non-visited stop by bus k is not possible. Constraint 

(7) states that each student is picked up only once. Constraint (8) forces the connectivity of the route performed by bus 

k. This constraint shows sub-tour elimination constraints. Finally, constraints (9), (10), and (11) define the domain of the 

decision variables which are all binary. The MIP formulation addressed in this section has been solved using CPLEX 

solver in GAMS software and tested on a set of small instances (Appendix A). When the instance size increases, the 

computing time rises, and the exact method is only able to solve 43 instances, up to 10 stops and 200 students, to 

optimality in less than one hour. Thus, CPLEX solver is impractical to be employed for larger instances. For this reason, 

we have developed a metaheuristic approach described in the next section.  

4. Metaheuristic Configurations 

Our results demonstrate that the exact method is only able to solve the easiest 43 instances in less than one hour and is 

not practical in the case of larger instances. Therefore, a fast and robust solution mechanism ought to be used. 

Furthermore, the quality of solutions, i.e. determining the minimum travel distance taken by bus, is an imperative aspect 

which must be guaranteed. Hence, two metaheuristics, named N-ILS and I-ILS, are developed in this paper in order to 

solve SBRP in a reasonable computation time and to reach near optimal solutions. The configurations N-ILS and the I-

ILS are associated with the class of iterated local search (ILS) metaheuristic (see Lourenco et al., (2010)).  Both 

metaheuristics are based on three stages: constructive stage, intensification stage, and diversification stage. Note that 

the proposed metaheuristics differ only in the constructive stage which is used to generate initial solutions for SBRP 

(see Algorithm 1). Intensification and diversification stages are the same in both metaheuristics. The constructive stage 

used in the N-ILS is based on the nearest neighborhood heuristic, while that of I-ILS uses an insertion heuristic. The 

solutions obtained through these heuristics serve as inputs for the intensification stage, which is based on an oscillating 

local search (OLS) heuristic. The latter consists of two levels: (1) improvement level by a variable neighborhood descent 
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(VND) heuristic, which is a variant of variable neighborhood search (VNS) (Hansen and Mladenovic, 1999) and (2) re-

optimization level, which uses remove and redistribution operators. These two stages are executed sequentially (See 

section 4.3). The VND heuristic used during the improvement phase includes six local search operators: three intra-route 

operators and three inter-route operators. Intra- route operators attempt to improve the solution by changing a single 

route at a time.On the other hand, inter-route operators change more than one route simultaneously. The VND heuristic 

stop once local optima are reached. In order to further re-optimize the search process, the results achieved during the 

first stage are used as inputs for the second step (called re-optimization stage) which consists of two types of operations: 

remove and redistribution heuristics. In order to investigate unexplored areas of the solution space and escape from local 

optima, two diversification strategies are used (see Section 4.5). The former perturbs the current solution by partially 

destroying and rebuilding a restricted number of routes, while the second one applies double -swap move (1, 1) 

(Subramanian & Drummond, 2010). In short, two swap movements are executed in sequence randomly. In our 

metaheuristic, the capacity constraint is relaxed to allow an oscillation between feasible and infeasible solutions. In the 

remaining sections, the main components of the metaheuristic are described. Furthermore, we discuss the important 

components affecting the performance of the algorithm. In this section, we also focus on the analysis of metaheuristic 

configuration by describing the application of each element separately. In Algorithm 1, ILS metaheuristic uses the 

construction phase only once and iterates the local search a number of times, starting from a perturbed solution. The ILS 

metaheuristic terminates when a maximum number of iterations ( ) is reached. 

 

4.1. Nearest Neighbourhood with Greedy Randomized Selection Mechanism (NNg) 

A nearest neighbourhood heuristic with a greedy randomized selection process represents the first constructive heuristic 

developed in this paper (see Talarico, L. et al., 2015). At the beginning of the algorithm, a student allocation problem 

(see section 4.4) is solved for each stop. After implementing student allocation heuristic, we applied a variant of the 

nearest neighbourhood constructive heuristic. This heuristic is modified as follows: a greedy randomized selection 

mechanism is employed instead of a greedy selection process; consequently, the next stop in the current route is randomly 

chosen from a restricted candidate list (RCL) containing the   first closest non-visited stops. It should be noted that the 

allocation of students to  stops is not executed every time that a stop is added to the current solution. After non-visited 

stop are selected, the capacity constraint is checked. If a feasible solution for student allocation problem is found, the 

addition of a new stop in the current route is evaluated. If it is not possible to include additional stops, the current route 

is closed,and a new route is constructed from the school to new non-visited stops.  

4.2. Insertion Heuristic with Greedy Randomized Selection Mechanism (Ig) 

The second constructive heuristic is an insertion one, similar to that presented by Campbell and Savelsbergh (2004). Like 

the modified nearest neighbourhood heuristic, a student allocation problem is solved for each stop at the beginning of 

the algorithm.  After student allocation heuristic is implemented, our version of the insertion heuristic is modified in two 

stages. 1) A greedy randomized selection mechanism is incorporated instead of a greedy heuristic mechanism. It 

determines a restricted candidate list of   least-cost positions for inserting each non-visited stop into one of the current 

routes. 2) With regard to the capacity constraint, feasibility check is performed every time that the non-visited stop is 

considered for insertion. However, feasibility check is terminated when no feasible insertion position is found for the 

remaining non-visited stops. In this case, insertion happens by the cheapest possible position without considering 

feasibility check. It means that only stage 1 is considered. This shows that the result of the insertion heuristic may produce 

either a feasible solution or one with less violated capacity while the order of insertions does not lead to building a 

feasible solution.  

4.3.  Oscillating Local Search (LOS) Heuristic  

The aim of strategic oscillation is to allow temporary exploration of the infeasible part of the solution space (see Toth & 

Vigo, 2003). The strategy adopts a procedure to find new promising feasible search spaces. It is important to note that 
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the idea of an excursion in the infeasible area is controlled by a dynamically adjusted penalty function which is multiple 

to the cost of the infeasible solution. The cost function described in this paper, has been introduced by Brandao (2006) 

and consists of two terms: 

( , ) ( ) ( )Cost s Cost s d s                                                                                (12) 

The first term denotes the total travel distance covered by all buses (objective function), while the second term ( )d s  is 

obtained by the sum of all excess loads traveled by each bus (violations of bus capacity) and multiplied by the value of 

a penalty  .This latter is dynamically updated throughout the exploration process. If all of the bus routes are satisfied 

with respect to the capacity constraint, the second term is set to zero. The value of the penalty   emphasizes the effect 

of capacity violation on the total solution cost. The pseudo-code of the oscillating local search strategy is shown in 

Algorithm 2. OLS takes as input parameters the initial penalty 0 , an initial solution oS
,
 and penalty increasing factor

 . The initial solution oS is generated by the constructive phase (described in section 4.1and 4.2) or diversification 

phase (outlined in section 4.5).  

In the first level of Algorithm 2, OLS heuristic initially attempts to employ the improvement level performed by a 

variable neighbourhood descent heuristic using 6 well-known operators: three intra-route operators and three inter-route 

operators. Relocate, Exchange and Two-Opt as intra-route operators and Relocate, Exchange, and Two-Opt as inter-

routes. All these operators are applied sequentially. This improvement procedure is repeated until a local optima solution 

is found (line 13 of pseudo-code). After exploring the first level, one has to evaluate the feasibility of locally optimal 

solution actS  (line 14 of pseudo-code). If the locally optimal solution is not feasible, the value of   rises in order to 

better explore the feasible region (Lines 26 and 27 of pseudo-code). On the other hand, if a feasible solution is found, 

the algorithm works as follows. The solution obtained from the first stage (VND heuristic) serves as input for the second 

stage (re optimization level) for further improvement. The second phase consists of two operators: remove and 

redistribution operators (described in section 4.4). After the second stage is explored, verification is executed whether 

the solution of the second stage actS
   is better than the best feasible solution found so far (Lines 18 and 19 of pseudo-

code). If so, the new solution actS
   is accepted and the value of   is set back to 0  (line 21 of pseudo-code). But if 

actS
  is worse than the best feasible solution found so far, OLS heuristic stops its execution (Line 23 of pseudo-code). 

This is mainly because exploration has been oriented around the same feasible local optimal solution (i.e., cycling around 

the same feasible solution), or that the algorithm is searching around an unpromising region of the solution space which 

contains a weak feasible solution).  

To conclude, while the algorithm explores the feasible segment of the solution space for a relatively high number of 

iterations, the value of  tends to restrict a deeper exploration of infeasible areas of the solution space. In contrast, if the 

algorithm explores infeasible segments of the solution space for a larger number of iterations, the value of   rises with 

the intention of guiding the exploration to a feasible region. Thus, the value of   could help to investigate the 

effectiveness of exploration in the solution space. Additionally, in OLS, the value of   rises when there is no feasible 

local optimal solution, and this value is set back to 0   when the best feasible solution is reached. The values of   and 

  are two important parameters that significantly affect the performance of OLS. The value of   represents the 

capability of the heuristic to explore infeasible portions of the solution space. In other words, this value is associated 

with a maximum violation of the bus capacity constraint in OSL heuristic. As shown in Algorithm 2, a larger value of 

  drives the algorithm back into the feasible solution space. Hence, a smaller capability of exploring the infeasible 

segment of the solution space. The value of    is initially set to 0   and then systematically multiplied by the value of

 . The term   denotes the transition speed from the infeasible to the feasible space, and it influences the capability to 

find feasible regions with a better solution. A high value of   allows the penalty   to increase; thereby, OLS is pushed 

to reach a feasible solution in a shorter time. 
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It might happen during the course of the algorithm that the value of   is enlarged so that it reaches the predefined value 

of u .
 In this situation, a point can be reached where the current solution becomes far from a feasible case. In order to 

deal this problem, a restore operator is implemented to return back feasible solution in two sates. In the first stage, this 

procedure attempts to allocate students to the allowable stops in other routes, when possible. This process continues until 

the whole eligible stops as well as routes are investigated. At the end of the first stage, if there is no violated route, a 

feasible solution is found. If it is not the case, the solution of the first step enters the second step, called split procedure.  

4.4. Allocation Heuristic Sub-Problem 

We consider student allocation in two positions: first, in the constructive phase when the stops are selected, the routes 

are built and the feasibility of the solution in term of student allocation is preserved; second, during the second level of 

the oscillating strategy stage where the current solution is re-optimized. Before applying remove and redistribution 

operators, feasibility check or student re-allocation must take place. Due to the nature of our problem, it is not necessary 

to check feasibility during the first stage of OLS.  

The heuristic procedure used to assign students to stops during the constructive heuristic works as follows. Each student 

needs to be allocated to only one potential stop based on stop reachability. To support this decision, a list of stops from 

which the walking distance is not greater than the maximum walking distance is generated in a preliminary stage. The 

list of students is then sorted following an increasing order of the number of allowable stops. The heuristic initially starts 

allocating students from the top of the list to the first available stop that is in a reachable distance. The list of students is 

explored sequentially. This simple rule allows critical students who have only one or few allowable stops to be assigned 

first. The drawback of this procedure is that sometimes, during the heuristic, no stop with available capacity is left for 

some students in the list. If this happens, a repair procedure is put in place to allocate unassigned students. To this end, 

the congested stops, having no remaining capacity where to host an unassigned student, should be identified. 

In order to make room in these congested stops, a list is developed for those students who have already been assigned to 

these stops, and, consequently, the highest number of non-congested alternative stops where students can theoretically 

be reallocated is determined. Then, a student is randomly selected from this list and reallocated to another alternative 

Algorithm 2. Oscillating local search (OLS) heuristic 
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non-congested stop. Afterward, a room is created to allocate the unassigned student in the congested stop. The heuristic 

thus continues until the list of unassigned students is emptied.  

The student reallocation mechanism employed before applying remove and redistribution operators is a slightly different 

procedure than the one used to allocate students in the initial solution (constructive phase).  

The remove operator tries to remove the stop from the solution, thereby decreasing the total traveling distance.  For this 

reason, before applying the move, a student allocation sub-problem must be solved. If the latter produces a feasible 

solution, the move is performed.   

More specifically, in the remove operator, once a stop is selected to be removed, the students who have ben assigned to 

it need to be reassigned to a new stop or distributed among the existing routes by solving an allocation sub-problem. The 

allocation sub-problem for remove operator works as follows: first, the stop to be removed is chosen. A list of students 

is created so as to be assigned to this stop. The students in the list are successively sorted according to an 

increasing number of stops among other routes where they can walk to. With these students, the number of stops where 

they might be potentially reallocated is specified. Then, a student is selected from the top of the list and reallocated to 

another alternative stop included in another route, without violating the capacity constraint of the routes. This procedure 

terminates when all students in the list have been investigated. If all students could be successfully assigned to the 

potential stops, the remove operator is executed; otherwise, it is discarded.  

Redistribution operator, as its name suggests, is meant to establish a desirable balance between routes. More precisely, 

incorporating the set of intra and inter-route operators during the improvement phase leads to the unbalanced distribution 

of students amongst routes. In other words, some routes might contain a large number of students, and some others could 

have only a few students. To make a balance in the correct solution, a specific redistribution operator will re-optimize 

the current capacity distribution among routes. In practice, this heuristic is basically constructed to minimize the 

corresponding deviation of the loading value of the routes via distributing students among routes in a proportionate 

manner. It is assumed that the total number of students and occupied capacity of each route are represented with ns 

and cr, respectively, while Alr denotes the average loads on all generated routes. Creating a list that would contain routes 

ranked in decreasing order of occupied capacity is the starting point of the proposed method. This list includes only those 

routes which feature an occupied capacity greater than Alr,. Then, we preced by performing the following step until all 

routes in the list have been considered. In the beginning, a route is selected from the top of the list for all students. Some 

students are transferred to another route by considering student allocation sub-problem. This method is repeated and then 

a student allocation sub-problem is solved as long as  cr − Alr ≤ 0. If the selected routes do not find an available position 

for possible students, the next route in the list will be considered. Note that this procedure does not improve our results 

directly and only affects the desirable distribution of students in the current solution. 

4.5. Metaheuristic Structures and Diversification Strategies 

After the intensification phase, a local optimum is found, and the metaheuristic attempts to escape from this point by 

destroying part of the current solution. This would increase the chance to reach a global optimum by starting from the 

perturbed solution and adopting local search. In fact, the primary goal of diversification mechanisms is to provide a good 

starting point for the intensification stage. 

In this paper, two variants of diversification mechanisms are used so that in the case of a deficiency in one operator 

escaping from the local optima, other operators may result in more efficient outcomes. Therefore, two kinds of 

diversifications are employed: Repair –Destroy and Double Swap which are applied by a random selection mechanism.  

4.5.1 Destroy and Repair Method  

This perturbation mechanism, called destroy and repair method, tries to iteratively explores different parts of the solution 

space by removing stops and reinserting them in other locations. This mechanism takes into account two parameters as 

input: the percentage of routes to be destroyed (denoted by  ) and is the total number of routes contained in the current 

solution ( k ). During the perturbation heuristic, a destroy-and-repair operator is employed. 

In the destroy phase, a random route is selected from the alternative solution; all stops are removed and added to the list 

of non-visited stops, called U. This step is repeated k   times. During the repair phase, a new solution (x) is generated 

by creating new routes that include all non-visited stops existing in the U list. These new routes are generated by using 

the nearest neighbourhood with a greedy randomized selection mechanism described before. In other words, the next 

stop in the current route is randomly chosen from a restricted candidate list containing the first   closest non-visited 

stops. This process continues until the list of the non-visited stops is emptied. 
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4.5.2 Double swap  

The method consists of repeating two times a swap movement implemented between different routes which are randomly 

selected. To do so, at each time, the swap operator exchanges the positions of two stops between different routes. Since 

double swap operator works on the basis of exchanging the position of two stops between different routes, the results of 

the solution may lead to an infeasible case. In other words, during double swap operation it may happen that those stops 

with a large number of students to be exchanged between routes produce an infeasible solution. This can reach the point 

where neither the constructive nor the diversification heuristics would guarantee providing a feasible solution, something 

which is expected from the oscillating local search heuristic (see Section 4.3) 

5. Computational experiments  

This section describes the experiments used to test both metaheuristics (N-ILS and I-ILS). Since SBRP has been studied 

before, our computational experimental is conducted based on the two data sets. The first data set (data set I), containing 

a set of 104 instances taken from the available benchmark instances proposed by Schittekat (2013), has been employed 

and grouped in three sets of small, medium, and large instances: set S having instances with 5 to 10 stops, set M 

containing 20 stops, and set L having 40 up to 80 stops. All these instances present a variety of features such as the 

number of stops, number of students, bus capacity, and maximum walking distance of students from the selected stops. 

These instances can be downloaded from http://antor.uantwerpen.be/metaheuristic-for-the-school-bus-routing-problem-with-bus-

stop-selection/. The instance names present SSSS-s _u _c _w_ that means a number of stops, students, a bus capacity, and 

a walking distance of students, respectively. 

The second data set (data set II) refers to newly generated data and contains 30 instances. The problem size for this data 

set includes the number of stops ranging from 6 to 8, the number of student ranging from 30 to 120, and the number of 

walking distance ranging from 5 to 40. Like data set I, only one school is considered for these instances. To generate 

data set II, 5 parameters need to be defined per instance in the first stage, including pn  (number of stops), sn (number 

of students), ,d dx y ( x and y coordinates of the school), and maxw  (maximum walking distance for each student to reach 

a bus stop). The x and y coordinates of the school are (75,75) . All instances are randomly generated in the Euclidean 

square between (0,0) and max max( , y )x . The values of max max( , )x y are set to (150, 150). The procedure of creating data set 

II is like that proposed by Schittekat et al. (2013). Experimental analysis is conducted in three stages. In the first stage, 

the key components of each metaheuristic, presented in Section 4, are investigated and tuned in such a way that each 

metaheuristic generates, on average, the best solutions (instances are drawn from data set I). In the second stage, once 

the best parameter setting for each of the metaheuristics is obtained, we will compare our solution (I-ILS and N-ILS) 

methods to the best-known solution taken from the literature (i.e., the best solutions found by the metaheuristic as 

published in Schittekat et al. (2013)). All instances used for the second stage are taken from data set I. In the third stage, 

we have used 30 instances taken from the dataset II to compare our solution method. As no solution for data set II was 

referred to in Schittekat et al., (2013), we attempt to compare our solution methods with the exact method found by 

GAMS software. The first stage of the experiments is presented in sections 5.1 and 5.2, while the second and the third 

stages are presented in section 5.3.  

5.1.  Parameter configuration 

Both metaheuristics, presented in section 4, have several parameters that are essential to be set. The main idea underlying 

this analysis is to identify the best components that significantly influence both the solution quality and the computing 

time.  

In order to calibrate both metaheuristics, a subset of instances has been used in a full factorial experiment, combining all 

parameters setting. The testing set was made up by 14 instances (8 instances from set S, 4 instances from set M, and 2 

instances from set L). Each of these instances is run five times. A brief description of the parameters that have been tuned 

as well as the tested values is presented in Table 2. 

As mentioned before, two performance measures were considered: the average solution cost and the average computation 

time. It is worth mentioning that the maximum number of iterations is not included in the list of parameters which have 

been analyzed, because a large number of iterations will generate better solutions in a longer computational time. Hence, 

in this stage, the number of iterations has been fixed to 300. In the second phase, we performed some tests to assess the 

convergence of the algorithm (see section 5.2). The multi-way ANOVA method is used to analyze these runs through 

SAS software indicating the P-value of F-test (Table 3). The P-value indicates significant effects of the associated 

parameter on both the solution cost and the computation time. In this context, significant parameters are highlighted in 

bold. In Table 4, the best parameters setting for both N-ILS and I-ILS are shown. 
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Table 2. Heuristic parameters and the tested levels 

 

                      Table 3. P-Values of F-tests                                             Table 4. Best parameter settings for both metaheuristics 

 

 

Based on P-value, it seems that all local search operators, percentage number of routes to be destroyed ( ) , as well as 

the value of initial penalty 0( ) are important parameters that influence both the solution quality and the computing time. 

Unexpectedly, the computing time and quality of solution are influenced by neither the multiplicative factor ( ) nor the 

size of restricted candidate list ( ) .  

It means that the performance of metaheuristics is insensitive with respect to the values of  and ( ) . Additionally, 

examination of the results of the ANOVA Table reveals that the interaction of parameters  and 0  have a significant 

impact on both the quality of solution and computing time. Thus, the capability of the algorithm to transfer between the 

feasible and infeasible portions of the solution space and also the percentage number of routes to be destroyed are key 

features of our metaheuristics. What matters is the capability to search into the infeasible portion of solution space, not 

whether it accelerates the speed of transition from the infeasible to a feasible part of solution space or not.  

5.2.   Effect of the number of iterations on the performance of metaheuristics 

In this section, we investigate the effect of the number of iterations on the performance of both metaheuristics. To this 

end, a trade-off between the computing time and quality of the solution has been studied. Two metaheuristics were 

considered for this analysis (I-ILS and N-ILS). Each metaheuristic was run 10 times on all instances employed in section 

5.1, using 6 different number of iterations. For both metaheuristics, the number of iterations ( )
 
 were equal to 100, 200, 

400, 800, 1000, and 1200. The values employed for other parameters are taken from Table 4, featuring the best parameter 

obtained from the full factorial analysis. For each test set including 12 instances, we report :(1) the percentage gap 

between the best solutions calculated after 10 runs and the best-known solutions obtained from SBRP instances, which 

is related to the capacity of the solution to find a better solution; (2) percentage gap between the average cost of the 

solutions calculated after 10 runs and the best- known solutions obtained from SBRP instances, associated with 

Parameters Description Value No of levels 

Repetition Number of  iterations 300 1 

N1= Relocate- within Relocate intra-route operator On, Off 2 

N2= Relocate - between Relocate inter-route operator On, Off 2 

N3=Exchange - within Exchange intra-route operator On, Off 2 

N4= Exchange-between Exchange intra-route operator On, Off 2 

N5= Two -opt- within Two -opt  intra-route operator On, Off 2 

N6= Two -opt -between Two -opt intra-route operator On, Off 2 

N7=Redistribution Student transfer operator On, Off 2 

N8=Remove Remove operator  On, Off 2 

   
Maximum percentage number of routes in 

best solution found so far to be destroyed  

10%,15%,20% 25%,30%, 40%, 

50% 
7 

0   Initial penalty 0, 1, 2, 5, 10, 100 6 

   
The multiplicative factor employed to 

increase the penalty 
1,2,5,10 4 

   Size of the restricted candidate list  1, 2, 3, 4, 5 5 
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robustness analysis. The best-known solutions are taken from Schittekat et al. (2013). The aggregated results of both 

analyses are shown in Table 5. In Table 5, the second column represents the metaheuristic used. The third column 

illustrates the percentage of the best gap (% Best Gap), and the next column stands for the average percentage gap (% 

Avg.Gap). Ultimately, the final column indicates the total computing time required to solve 12 instances. As expected, 

a larger value of  
 
improves the quality of solutions and the robustness of both metaheuristics. However, as the value 

of   increases from 100 to 200, the computational time augments by a factor of approximately 1.9. When the values of  

  increase from 200 to 400, the computational time rises by a factor of 1.43 (for I-ILS metaheuristic) and 1.34 (for N-

ILS metaheuristic). This is mainly due to the stopping criterion implemented in the OLS heuristic. This heuristic stops 

its execution because either exploration has been oriented around the same feasible local optimal solution (i.e., cycling 

around the same feasible solution), or that the algorithm explores an unpromising region of the solution space that 

contains a weak feasible solution). In general, we can conclude that a high quality of the initial solution makes OLS 

heuristic require a small number of iterations to find better results. This can reach the point where a shorter execution 

time is needed for  OLS heuristic when the search explores the most promising region of the solution space (i.e., solution 

areas close to the good solution). The probability of this exploration rises when a remarkable number of iterations is 

executed.  

Table 5. Computational results 

 

Unsurprisingly, if the number of iterations increases from 800 to 1000, the capacity of both metaheuristics for finding a 

better solution decreases. In other words, setting the value of iteration greater than 800 makes a little improvement in 

both % Best Gap and % Avg Gap while computing time increases. Hence, in order to make a trade-off between the 

computing time and quality of the solution, the number of iterations of 400 seems to be suitable to find the best solutions 

for the majority of instances and to be fixed for our problem. It can be seen in Table 5 that N-ILS outperforms I-ILS from 

all points of view.  Moreover, regarding the computing time, N-ILS was on average 19% faster than I-ILS. 

5.3. Comparison of the Metaheuristics On the Basis of Dataset I  

Having determined the best parameters setting for each solution approach, we compared both metaheuristics in terms of 

solution quality and computation time by doing some tests on small, medium, and large instances. The solution 

approaches have been coded using Java language. To test and compare I-ILS and N-ILS, each metaheuristic was run 10 

times on all instances and the results were compared with the best-known solutions found by Schittekat, (2013). As 

explained before, the experimental analysis was performed on 104 instances consisting of three subsets named, 

respectively, Set S, Set M, and Set L, where Set S contains 48 instances with a number of stops ranging from 5 to 10, 

Set M consists of 24 instances with 20 stops, and Set L is comprised of 32 instances with a number of stops ranging from 

40 to 80. Also, four maximum values are considered for the walking distances: 5, 10, 20, and 40. In Appendix A, the 

results of the experiments are reported for each metaheuristic configuration using the parameter setting described in 

Section 5.1. The aggregated results for each subset of instances are summarized in Table 6 (a); each metaheuristic 

presents the percentage gap between the best solutions found after 10 runs and the best-known solutions averaged over 

all instances for each of the three sets of S, M, and L. Table 6 (b) displays the percentage gap between the average cost 

of solutions calculated after 10 runs and the best-known solutions averaged over all instances for each of the sets of S, 

M and L. This implies the robustness of each metaheuristic configuration. The best-known solutions are taken from 

Schittekat et al. (2013). In our approach, to have a fair comparison between competing algorithms, a fixed number of 

iterations )400( is set for both I-ILS and N-ILS to solve each instance. In Table 6 ((a) and (b)), the first column represents 

the metaheuristic used, while the next three columns classify the set of instances (from small to large). As it can be 

observed from Table 6 (a), for small and medium sets, the N-ILS gives on average lower percentage gaps from the best- 

known solutions, while I-ILS can generate smaller percentage gaps from the best-known solutions for the instances in 

set L. In terms of robustness, on average N-ILS excelled I-ILS for small, medium, and large sets).On average, N-ILS 

metaheuristic surpassed I-ILS approach with respect to quality of the solution (the best gap from the best-known solution 

for N-ILS equals 2.08% and for I-ILS it equals 2.17 %) and robustness (the average gap from the best-known solution 
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for N-ILS is 3.29 % and for I-ILS it is 3.48 %). With regard to computing time, Table 7 shows that I-ILS was totally 10 

% slower than N-ILS.  
Table 6. Results obtained by solving the instances contained in Sets S, M, and L 

Metaheuristic SET S 

(percent) 

SET M 

(percent) 

SET L 

(percent) 

Average  

(percent) 

(a). Best gap from best-known solutions 

N-ILS 1.83 2.09 2.31 2.08 

I-ILS 2.04 2.19 2.29 2.17 

 (b). Robustness of each metaheuristic  

N-ILS 3.06 3.29 3.53 3.29 

I-ILS 3.32 3.51 3.60 3.48 

 

Table 7. Total average computing time of each metaheuristic (per second) 
Metaheuristic SET S SET M Set L  All 

N-ILS 347.33 1799.57 53326.50 55474 

I-ILS 369.22 1928.52 59064.56 61362 

 

5.3.1. Comparison of the Metaheuristics on the Basis of Data Set II 

 
The performance of the proposed heuristic for SBRP has been investigated by considering the newly generated instance 

(data set II). We solved all the 30 instances using I-ILS and N-ILS metaheuristics. Each metaheuristic was run 10 times 

on all 30 instances, and the results were compared with the exact solution found by GAMS/CPLEX solver (see Appendix 

B for further results, Table 10). The aggregated results of instances are summarized in Table 8. It has to be mentioned 
that the calculation methodology of %Best Gap is like that presented in section 5.3. Observing Table 8 given to the best 

gaps from the exact solution, one can see that N-ILS generated solutions whose average value is at least 0.29% lower 

than that of I-ILS heuristic.  

 Furthermore,  N-ILS was able to find optimal solutions for 33% of the instances and obtained relatively small 

optimality gaps in all other cases, while this number was 7 (23%) for ILS. 

Table 8. Results obtained by solving the instances contained in data set II 
Metaheuristic Best gap from best-known solutions 

Percent  

No. of optimal solution  

N-ILS 0.91 % 10/30 

I-ILS 1.20% 7/30 

6. Conclusion  

In this paper, we proposed two metaheuristics to solve the school bus routing problem. The main constituent of the 

metaheuristics is represented by an oscillating local search that follows three features: during the search process, infeasible 

segments of the solution space are explored. The second feature is applicable when the value of the violation increases. 

In this way, restore operator tries to move the exploration back into the feasible portion of the solution space. The last 

feature is meant to employ a set of large neighbourhoods to better explore a large search space. Experiments were 

conducted on two data sets: data set I, which is associated with a set of 104 SBRP instances of benchmark introduced by 

Schittekat et al. (2013) and data set II, which is related to newly generated instances. For data set I, the formulation 

presented in Section 3 was solved accurately using CPLEX solver in GAMS software.  Since only the 43 easiest instances 

can be solved in this way, two different metaheuristics were proposed to solve small, medium, and large problem instances 

in a reasonable time. For each metaheuristic, statistical analysis was carried out to obtain the best heuristic parameters 

setting. Having determined the best parameters setting for each solution approach, we compared both metaheuristics in 

terms of solution quality, robustness, and computing time in the case of all instances. The results of the computational 

experiments imply that N-ILS is very competitive in comparison to the best metaheuristic presented by Schittekat et al. 

(2013). In order to find the number of optimal solutions obtained by each metaheuristic, the results of the computational 

suggested that N- ILS metaheuristic excelled ILS metaheuristic, and 23 of its instances were matched with the best-known 

solution. Also, better solutions were found for 2 instances. I-ILS ranked second, as 19 of the instances were matched with 

the best-known solution. With regard to computing time, N-ILS metaheuristic finds near-optimal solutions in a limited 

time. As a key result, this research suggests that N-ILS metaheuristic is the best solution approach with respect to the 

quality of the solution, robustness, and computing time. Regarding data set II, it is noteworthy that both metaheuristics 

were compared with the 30 newly generated instances. Since no solution for data set II was considered in Schittekat et al., 

we used an exact approach to compare the results of both metaheuristics. Considering the average performance of the two 

metaheuristics, the results demonstrated the superiority of N-ILS for the respective instances. Besides, totally 10 instances 
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(33%) contained in data II could be solved to optimality using N-ILS metaheuristic. As for ILS metaheuristic, this number 

was 7 (23%). 

As far as quality of the solution, robustness, as well as computing time are concerned, the main conclusion of the present 

study consists of the fact that N-ILS metaheuristic is the better solution approach than I-ILS in both datasets studied here. 

Future research could be aimed at addressing additional objective functions, constraints, and features to model real-life 

situations. In particular, minimization of the walking distance of students from their houses to stops can also be dealt with 

as either a second objective function or embedded in the current one. A second research line consists of finding better 

ways to check student allocation feasibility before applying each improvement operator. To this end, further studies may 

be focused on reducing the computational complexity of the local search operators by, say, testing efficient data structures.  
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