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Abstract 
Recently, Kharazmi and Saadatinik (2016) introduced a new family of lifetime distributions called hyperbolic cosine – 

F (HCF) distribution. In the present paper, it is focused on a special case of HCF family with exponentiated exponential 

distribution as a baseline distribution (HCEE). Various properties of the proposed distribution including explicit 

expressions for the moments, quantiles, mode, moment generating function, failure rate function, mean residual lifetime, 

order statistics and expression of the entropy are derived. Estimating parameters of HCEE distribution are obtained by 

eight estimation methods: maximum likelihood, Bayesian, maximum product of spacings, parametric bootstrap, non-

parametric bootstrap, percentile, least-squares and weighted least-squares. A simulation study is conducted to examine 

the bias, mean square error of the maximum likelihood estimators. Finally, one real data set has been analyzed for 

illustrative purposes and it is observed that the proposed model fits better than Weibull, gamma and generalized 

exponential distributions.  

Keywords:  
Hyperbolic cosine function; Exponentiated exponential; Hazard function; Mean residual lifetime; Maximum likelihood 

estimates. 

 

1. Introduction 

In last three decades or so, an extensive research works have appeared in the literature on the theory of statistical 

distributions. Statistical models are commonly applied to describe real world phenomena. Classical distributions have 

been extensively used for modeling data in several areas such as engineering, actuarial, environmental and medical 

sciences, biological studies, demography, economics, finance and insurance. However, in many applied areas such as 

lifetime analysis, finance and insurance, there is a clear need for extended forms of these distributions. For that reason, 

several methods for generating new families of distributions have been studied. The well-known generators are the 

following:: Azzalini’s skew family by Azzalini (1985), Marshal-Olkin generated family (MO-G) by Marshall and Olkin 

(1997), exponentiated family (EF) of distributions by Gupta et al. (1998), beta-G by Eugene et al. (2002)and Jones 

(2004), Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011  (  McDonald-G (Mc-G) by Alexander et al. (2012), 

gamma-G (type 1) by Zografos and Balakrishnan (2009), gamma-G (type 2) by Ristić and Balakrishnan (2012), gamma-

G (type 3) by Torabi and Hedesh (2012), log-gamma-G by Amini et al.(2014), logistic-G by Tahir et al. (2016), 

exponentiated generalized-G by Cordeiro et al. (2013), geometric exponential-Poisson family by Nadarajah et al. 

(2013a), truncated-exponential skew-symmetric family by Nadarajah et al. (2014), logistic-generated (Lo-G) family by 

Torabi and Montazari (2014), Transformed-Transformer (T-X) by Alzaatreh et al. (2013), exponentiated (T-X) by 

Alzaghal et al. (2013), Weibull-G by Bourguignon et al. (2014), Exponentiated half logistic generated family by 

Cordeiro et al. (2016), Kumaraswamy Odd log-logistic-G by Alizadeh et al. (2015b), Kumaraswamy Marshall-Olkin by 
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Alizadeh et al. (2015c), Beta Marshall-Olkin by Alizadeh et al. (2015a), Type Half-Logistic family of distributions by 

Cordeiro et al. (2015) and Odd generalized exponential-G by Tahir et al. (2015). These families of distributions have 

received a great deal of attention in recent years. 

 

Kharazmi and Saadatinik (2016) introduced a new family of distributions by using the hyperbolic cosine function. This 

new class of distributions is obtained by compounding a baseline F distribution with the hyperbolic cosine function. This 

technique resulted in adding an extra parameter to a family of distributions for more flexibility. The hyperbolic cosine 

function has similar name to the trigonometric functions, but it is defined in terms of the exponential function as follows: 

𝑐𝑜𝑠ℎ(𝑥) =
𝑒𝑥 + 𝑒−𝑥

2
.                                                                 

 This function is even and has a Taylor series expression with only even exponents for 𝑥 𝑎𝑠 

𝑐𝑜𝑠ℎ(𝑥) = ∑
𝑥2𝑛

(2𝑛)!

∞

𝑛=0

.                                                                                                                                                                     (1) 

Throughout the present paper, we use series expression (1) to obtain statistical and reliability properties of the HSF 

family of distributions. According to Kharazmi and Saadatinik (2016) a random variable 𝑋 has a hyperbolic cosine-F 

(HCF) distribution if its cumulative distribution function (CDF) is given by 

𝐺(𝑥) =
2 𝑒a

e2a−1
sinh (a 𝐹(𝑥)),                                                                                                                                                         (2)                                             

Where𝑥 > 0 , 𝑎 > 0. In relation (3) the baseline  𝐹(𝑥) can be the CDF of any random variable. Kharazmi and Saadatinik 

(2016) assumed 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 (the exponential distribution function). This new model is called HCE by them. 

Several interesting properties of this distribution have been established by authors. Moreover, it is investigated that the 

HCE model has increasing, decreasing and upside-down bathtub shaped hazard rate functions. 

 

 It is well known that the exponentiated exponential (EE) Gupta and Kundu (1999) distribution is one of the most widely 

used lifetime distribution in reliability engineering and other disciplines. However, the EE distribution does not exhibit 

a bathtub or upside-down bathtub shaped hazard rate function and thus it cannot be used to model the complex lifetime 

of a system. Hence a number of extensions of the EE distribution are introduced to overcome this shortage. 

 

 The aim of the present paper is to introduce hyperbolic cosine-exponentiated exponential (HCEE) model and study its 

different properties. The rest of the paper is organized as follows. In Section 2, we introduce a new model so-called 

HCEE model and discuss some general properties of this distribution. In Section 3, we obtain some statistical and 

reliability functions of HCEE model. We discuss different estimation procedures of unknown parameters in Section 4. 

In Section 5, a Monte Carlo simulation study is conducted to examine the bias and mean square error of the maximum 

likelihood estimators for each parameter. The analysis of one real data set has been presented in Section 6. Finally in 

Section 7 we conclude the paper. 

 

2. Hyperbolic cosine – exponentiated exponential (HCEE) distribution 

Consider the generalized exponential (GE) (or exponentiated exponential (EE)) distribution of Gupta and Kundu (1999) 

with the CDF 𝐹(𝑥) = (1 − 𝑒−𝜆𝑥)𝛽.  

Definition1: The random variable 𝑋 is said to have the hyperbolic cosine exponentiated exponential (HCEE) 

diostribution, if the PDF of 𝑋 is 

𝑔(𝑥, 𝑎, β, 𝜆) =
2a 𝑒a

e2a − 1
𝛽𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛽−1  cosh (a(1 − 𝑒−𝜆𝑥)

𝛽
)                                                                                  (3) 

                                

where𝑥 > 0 , 𝑎 > 0 , β > 0  , 𝜆 > 0. We will denote it as 𝐻𝐶𝐸𝐸(𝑎, β, 𝜆). Fig 1 shows the shapes of 𝐻𝐶𝐸𝐸(𝑎, β, 𝜆) for 

different values of parameters. Clearly, changing parameters of model cause different skewness in PDF. So this model 

can be applied in many applications. 
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Figure 1. Plots of the 𝐻𝐶𝑊(𝑎, 𝛽, 𝜆) for different values of parameters. 

An interesting motivation for introducing this new model is an application in reliability.  Suppose that the failure of a 

device occurs due to the presence of an unknown number,2𝑁 + 1, of initial defects of some kind. Let 𝑌1, . . . , 𝑌2𝑁+1 denote 

the failure times of the initial defects. Let 𝑋 denote the failure time of the device. Then𝑋 =  𝑚𝑎𝑥(𝑌1, . . . , 𝑌2𝑁+1 ). 
Suppose 𝑁 is a discrete random variable with a probability mass function: 

 

𝑃(𝑁 = 𝑛) = {
2𝑒𝑎

𝑒2𝑎 − 1

𝑎2𝑛+1

(2𝑛 + 1)!
        𝑛 = 0,1,2, …      

0                             𝑜. 𝑤.            

 

Where0 <  𝑎 <  ∞. Suppose also that 𝑌1 , . . . , 𝑌2𝑁+1 is a random sample from the Weibull distribution with pdf 𝑓(𝑥) =
𝛽𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛽−1 and cdf 𝐹(𝑥) = (1 − 𝑒−𝜆𝑥)𝛽, then 

 𝑓𝑋|𝑁=𝑛(𝑥) = (2𝑛 + 1)𝑓(𝑥)𝐹
2𝑛(𝑥), 

So the marginal probability density function of 𝑋 is given by (3). 

On the other hand, using the series expansion (1), the HCEE distribution can be stated as a mixtures of exponentiated−𝐹 

(𝐹𝛼(𝑥)) distributions as follows: 

𝑔(𝑥) =
2a 𝑒a

e2a − 1
𝑓(𝑥) cosh(a 𝐹(𝑥)) = ∑𝑤(𝑎, 𝑛)𝑓𝑈(𝑥)

∞

𝑛=0

, 

Where 𝑈 ∼ exponentiated −𝐹 as 

𝑓𝑈(𝑥) = (2𝑛 + 1)𝑓(𝑥)𝐹
2𝑛(𝑥) 

And  𝑤(𝑎, 𝑛) =
2𝑎𝑒𝑎

𝑒2𝑎−1

𝑎2𝑛

(2𝑛+1)!  
. 

 

3. Statistical and reliability properties 

In this section, we study several statistical and reliability properties of the HCEE distribution, such as the survival 

function (SF), conditional survival function (CSF), failure rate (or hazard) function (FR), moment generating function 

(MGF), mean residual life (MRL) time and 𝑗th moment.                                                              

3.1. Survival, quantile, conditional reliability and failure rate function 

The CDF of HCEE using (3) can be written as 

𝐺(𝑥, 𝑎, β, 𝜆) =
2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆𝑥)𝛽).                                                                                                                              (4) 

Also, survival and quantile functions are simply given by 
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𝐺̅(𝑥, 𝑎, β, 𝜆) = 1 − 𝐺(𝑥, 𝑎, β, 𝜆) = 1 −
2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆𝑥)𝛽) ,                                                                                (5) 

                              

𝑥𝑝 = −
1

𝜆
(log(1 − (

arcsinh (
𝑒2𝑎 − 1
2𝑒𝑎

𝑝)

𝑎
)
1
β)) = 

                               

−
1

𝜆

(

 
 
 
 

log

(

 
 
 
 

1 − (

log(
𝑒2𝑎 − 1
2𝑒𝑎

𝑝 + √(
𝑒2𝑎 − 1
2𝑒𝑎

𝑝)
2

+ 1)

𝑎
)
1
β

)

 
 
 
 

)

 
 
 
 

,     0 ≤ 𝑝 ≤ 1      

the last equation comes from this fact that arcsinh(𝑥) = log (𝑥 + √𝑥2 + 1). Also conditional reliability function is given 

by 

𝐺̅(𝑥, 𝑎, β, 𝜆|𝑡) =
𝐺̅(𝑥 + 𝑡, 𝑎, β, 𝜆)

𝐺̅(𝑡, 𝑎, β, 𝜆)
=
1 −

2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆(𝑥+𝑡))𝛽)

1 −
2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆(𝑥+𝑡))𝛽)

 ; 𝑥 > 0 , 𝑡 > 0.  

From (3) and (4) it is easy to verify that the failure rate function is given by 

 

                                  

ℎ(𝑥, 𝑎, β, 𝜆) =

2a 𝑒a

e2a − 1
𝛽𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛽−1  cosh(a(1 − 𝑒−𝜆𝑥)𝛽)

1 −
2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆 x

β 
))

.                                                                                      (6) 

                               

The failure rate is a key notion in reliability and survival analysis for measuring the ageing process. Understanding the 

shape of the failure rate is important in reliability theory, risk analysis and other disciplines. The concepts of increasing, 

decreasing, bathtub shaped (first decreasing and then increasing) and upside-down bathtub shaped (first increasing and 

then decreasing) failure rates for univariate distributions have been found very useful in reliability theory. The classes 

of distributions having these ageing properties are designated as the IFR, DFR, BUT and UBT distributions, respectively. 

For the HCEE distribution hazard rate function can be decreasing, increasing, upside-down bathtub-shaped and constant. 

The behavior of the hazard function (6) is difficult to determine analytically. Fig 2 shows some samples of possible 

shapes of the hazard rate function in IFR, DFR and BUT cases for certain values of the vector(𝑎, 𝛽, 𝜆).  

 
Figure 2. Failure rate function shapes for selected values of the parameters. 

 

 

3.2. Moment generating function and mean residual life time 

Now let us consider different moments of the 𝐻𝐶𝐸𝐸(𝑎, 𝛽, 𝜆) distribution. Some of the most important features and 

characteristics of a distribution can be studied through its moments, such as moment generating function, the 𝑗th moment 

and interested reliability properties such as mean residual life time. The moment generating function of 𝐻𝐶𝐸𝐸(𝑎, 𝛽, 𝜆) 
using (1) and (3) is immediately written as  
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𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) =

2𝛽𝑎 𝑒𝑎

𝑒2𝑎 − 1
∑∑∑

𝑎2𝑛(−1)𝑚+𝑙

(2𝑛)!

∞

𝑙=0

∞

𝑛=0

∞

𝑚=0

(
𝛽 − 1

𝑚
) (
2𝑛𝛽

𝑙
)

𝜆

𝜆(𝑚 + 𝑙 + 1) − 𝑡
.  

The 𝑗th moment of the HCEE distribution can be derived as 

𝜇𝑗 = 𝐸(𝑋
𝑗) =

2𝛽𝑎 𝑒𝑎

𝑒2𝑎 − 1
∑∑∑

𝑎2𝑛(−1)𝑚+𝑙

(2𝑛)!

∞

𝑙=0

∞

𝑛=0

∞

𝑚=0

(
𝛽 − 1

𝑚
) (
2𝑛𝛽

𝑙
)

𝜆 𝑗!

(𝜆(𝑚 + 𝑙 + 1))𝑗+1
. 

In particular, its mean and variance are given by 

𝐸(𝑋) =
2𝛽𝑎 𝑒𝑎

𝑒2𝑎 − 1
∑∑∑

𝑎2𝑛(−1)𝑚+𝑙

(2𝑛)!

∞

𝑙=0

∞

𝑛=0

∞

𝑚=0

(
𝛽 − 1

𝑚
) (
2𝑛𝛽

𝑙
)

𝜆

(𝜆(𝑚 + 𝑙 + 1))2
 

And  

𝑉𝑎𝑟 (𝑋) = 𝜇2 − 𝜇1
2. 

One of the well-known properties of the life time distribution is mean residual life time. For the HCEE distribution it can 

be written as 

𝑚(𝑡) = 𝐸(𝑋 − 𝑡|𝑋 > 𝑡) =
2𝑎 𝑒𝑎

𝑒2𝑎 − 1 − 2𝑒𝑎 𝑠𝑖𝑛ℎ  𝑎(1 − 𝑒−𝜆𝑡
𝛽
)
× 

                                                              

2𝑎 𝑒𝑎

𝑒2𝑎 − 1
∑∑∑

𝑎2𝑛(−1)𝑚+𝑙

(2𝑛)!

∞

𝑙=0

∞

𝑛=0

∞

𝑚=0

(
𝛽 − 1

𝑚
) (
2𝑛𝛽

𝑙
)
𝑒−𝜆(𝑚+𝑙)𝑡

𝜆(𝑚 + 𝑙)
 .  

3.3. Order statistics, stress-strength parameter and Shannon entropy measure 

Here we provide some results about order statistics, stress-strength parameter and Shannon entropy of HCEE distribution. 

Let 𝑋1 ,  𝑋2  , . . . , 𝑋𝑛 be a random sample from a 𝐻𝐶𝐸𝐸(𝑎, β, 𝜆), and let 𝑋𝑖:𝑛denote the 𝑖𝑡ℎ order statistic. The PDF of 𝑋𝑖:𝑛 

is given by 

𝑓𝑋𝑖:𝑛(𝑥) = 

𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!

2𝑎 𝑒𝑎𝛽𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)
𝛽−1

 cosh (𝑎(1 − 𝑒−𝜆𝑥)
𝛽
)

𝑒2𝑎 − 1
× 

(
2 𝑒𝑎

𝑒2𝑎 − 1
𝑠𝑖𝑛ℎ(𝑎(1 − 𝑒−𝜆𝑥)𝛽))

𝑖−1

(1 −
2 𝑒a

e2a − 1
sinh(a(1 − 𝑒−𝜆𝑥)𝛽))

𝑛−𝑖

. 

 

Now we discuss about the stress-strength parameter. Suppose 𝑋1  ∼  𝐻𝐶𝐸𝐸(𝑎1 , β1 , 𝜆1) and  

𝑋2  ∼  𝐻𝐶𝐸𝐸(𝑎2 , β2, 𝜆2) are independently distributed, then 

𝑃(𝑋1 < 𝑋2) =
2a2𝑒

a1+a2

(𝑒2a1 − 1)(𝑒2a2 − 1)
× 

∑∑∑∑∑𝜆2𝛽2

∞

𝑗=0

a1
2𝑛+1 a2

2𝑚 

(2𝑛 + 1)! (2𝑚)!

∞

𝑘=0

∞

𝑙=0

(−1)𝑘+𝑙+𝑗(𝛽1(2𝑛+1)
𝑘

)(2𝛽2𝑚
𝑘
) (𝛽1−1

𝑗
)

(𝜆1𝑙𝛽1(2𝑛 + 1) + 𝜆2(2𝑘𝛽2𝑚 + 𝑗(𝛽1 − 1) + 1))

∞

𝑚=0

∞

𝑛=0

. 

The entropy of a random variable measures the variation of the uncertainty. A large value of entropy indicates the greater 

uncertainty in the data. Shannon entropy of 𝐻𝐶𝐸𝐸(𝑎, β, 𝜆)Can be obtained as 

𝐻(𝑋) = − 𝑙𝑜𝑔 (
2𝑎 𝑒𝑎

𝑒2𝑎−1
) − log(𝛽𝜆) + 𝜆𝐸(𝑋) − (𝛽 − 1)𝐸(log(1 − 𝑒−𝜆𝑥))      − 𝐸 (log 𝑐𝑜𝑠ℎ(1 − 𝑒−𝜆𝑥)

𝛽
). 

 
4. Different Methods of Estimation 

In this section, we describe the eight estimation methods considered in this paper for estimating the parameters 𝑎, 𝛽 and 

𝜆 of the HCEE distribution. For all methods we consider the case when 𝑎, 𝛽 and 𝜆 are unknown. 

4.1. Maximum likelihood estimation 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the distribution with density 𝑓(𝑥, 𝜃). The likelihood function based on 

observed values 𝑥1, 𝑥2, … , 𝑥𝑛 is given by 

𝐿(𝜃, 𝒙) = ∏ 𝑓(𝑥𝑖 , 𝜃))
𝑛
𝑖=1                                                                                                                                                (7) 

By maximizing (7) the Maximum likelihood estimate of 𝜃 (MLE) is obtained. In case of the HCEE distribution, the log-

likelihood function of the parameter is given as 
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𝑙(𝑎, 𝛽, 𝜆, 𝒙) = 𝑙𝑜𝑔 (𝐿(𝑎, 𝛽, 𝜆, 𝒙))

= 𝑛 𝑙𝑛
2𝑎 𝑒𝑎

𝑒2𝑎 − 1
+ 𝑛 𝑙𝑛 𝜆𝛽 − 𝜆∑𝑥𝑖

𝑛

𝑖=1

+ (𝛽 − 1)∑ln(1 − 𝑒−𝜆𝑥𝑖)

𝑛

𝑖=1

+∑𝑙𝑛 𝑐𝑜𝑠ℎ 𝑎(1 − e−𝜆𝑥𝑖)
𝛽

𝑛

𝑖=1

. 

So, the MLEs of 𝑎, 𝛽 and 𝜆, say 𝑎̂, 𝛽̂ and 𝜆̂, respectively, can be obtained as the solutions of 

𝑑𝑙 

𝑑𝑎 
= 𝑛(

𝑎 + 1

𝑎
−

2𝑒2𝑎

𝑒2𝑎 − 1
) +∑

(1 − 𝑒−𝜆𝑥𝑖)𝛽  𝑠𝑖𝑛ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽

𝑐𝑜𝑠ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽

𝑛

𝑖=1

= 0, 

𝑑𝑙

𝑑𝛽
=
𝑛

𝛽
+∑𝑙𝑛 (1 − 𝑒−𝜆𝑥𝑖)

𝑛

𝑖=1

+∑
𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽𝑙𝑛(1 − 𝑒−𝜆𝑥𝑖)  𝑠𝑖𝑛ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽

𝑐𝑜𝑠ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽

𝑛

𝑖=1

= 0, 

𝑑𝑙

𝑑𝜆
=
𝑛

𝜆
−∑𝑥𝑖

𝑛

𝑖=1

+ (𝛽 − 1)∑
𝑥𝑖𝑒

−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖

𝑛

𝑖=1

+∑
𝑥𝑖𝑎𝛽 𝑒

−𝜆𝑥𝑖(1 − 𝑒−𝜆𝑥𝑖)𝛽−1  𝑠𝑖𝑛ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽

𝑐𝑜𝑠ℎ 𝑎(1 − 𝑒−𝜆𝑥𝑖)𝛽
= 0

𝑛

𝑖=1

. 

Due to the non-linearity of these equations the MLEs of parameters can be obtained numerically. We use the optim 

function from the statistical software R (R Development Core Team, 2011) to solve these equations.  

4.2. Maximum product of spacings estimator 

Maximum product of spacings (MPS) method was introduced by Cheng and Amin (1983) as an alternative to the MLE 

method. Ranneby (1984) derived the MPS method from an approximation of the Kullback-Leibler divergence (KLD). 

Kullback-Leibler divergence between 𝑓(𝑥, 𝜃)  and 𝑓(𝑥,  𝜃0) is given by 

𝐾𝐿𝐷(𝑓(𝑥,  𝜃0)||𝑓(𝑥, 𝜃)) = ∫𝑓(𝑥,  𝜃0) log (
𝑓(𝑥,  𝜃0)

𝑓(𝑥, 𝜃)
)𝑑𝑥.                        

The KLD is zero if and only if 𝑓(𝑥, 𝜃)  =  𝑓 (𝑥,  𝜃0 ) for all𝑥. 

Let 𝑥1, … , 𝑥𝑛 be a sample from a CDF 𝐹(𝑥, 𝜃). Let 𝑓(𝑥, 𝜃) denote the corresponding PDF. For estimating 𝜃 a perfect 

method should make the KLD between the model and the true distribution as small as possible. In applications, this can 

be approximated by estimating 

1

𝑛
∑log [

𝑓 (𝑥𝑖 ,  𝜃0 )

𝑓(𝑥𝑖 , 𝜃)
].                                                                                                                                                                     

𝑛

𝑖=1

(8) 

So, by minimizing (8) with respect to𝜃, the estimator of 𝜃0  can be found. Ranneby (1984) suggested another 

approximation of the KLD, namely 

1

𝑛
∑ log [

𝐹 (𝑥(𝑖),  𝜃0 ) − 𝐹 (𝑥(𝑖−1), 𝜃0 )

𝐹 (𝑥(𝑖), 𝜃 ) − 𝐹 (𝑥(𝑖−1), 𝜃 )
],                                                                                                                                  

𝑛+1

𝑖=1

(9) 

Where  𝑥(𝑖), 𝑖 =  1 , 2 , . . . , 𝑛 denotes the ordered sample and  𝐹(𝑥(0)) = 0, 𝐹(𝑥(𝑛+1)) = 0 .   

The estimator obtained by minimizing (9) is called the MPS estimator of 𝜃0. It is clear that minimizing (9) is equivalent 

to maximizing  

∑log [𝐹(𝑥(𝑖), 𝜃) − 𝐹(𝑥(𝑖−1), 𝜃)]

𝑛+1

𝑖=1

. 

In case of the HCEE distribution, the MPSs of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝑀𝑃𝑆, 𝛽̂𝑀𝑃𝑆 and 𝜆̂𝑀𝑃𝑆, respectively, can be obtained by 

minimizing 

∑log [𝐺(𝑥(𝑖), 𝑎, 𝛽, 𝜆) − 𝐺(𝑥(𝑖−1), 𝑎, 𝛽, 𝜆)]

𝑛+1

𝑖=1

= 

∑log [
2 𝑒a

e2a − 1
sinh (a(1 − 𝑒−𝜆𝑥(𝑖))

𝛽
) −

2 𝑒a

e2a − 1
sinh (a(1 − 𝑒−𝜆𝑥(𝑖−1))

𝛽
)]

𝑛+1

𝑖=1

.         

With respect to 𝑎, 𝛽 and 𝜆. 

4.3. Estimators based on percentiles 

Estimation based on percentiles was originally explored by Kao (1958, 1959). In fact the nature of percentiles estimators 

is based on distribution function can be obtained by minimizing 

∑[𝑥(𝑖) − 𝐹
−1(𝑝𝑖 , 𝜃)]

2
𝑛

𝑖=1

,                                                    
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Where 𝑝𝑖  =
𝑖

𝑛+1
 and 𝑥(𝑖);  𝑖 =  1 , . . . , 𝑛 denotes the ordered sample. So to obtain the PC estimator of 𝑎 and 𝜆, we use 

the same method as for the ML estimator. In case of the HCEE distribution, the PCEs of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝑃𝐶𝐸 , 𝛽̂𝑃𝐶𝐸 

and 𝜆̂𝑃𝐶𝐸, respectively, can be obtained by minimizing 

∑[𝑥(𝑖) − 𝐺
−1(𝑝𝑖 , 𝑎, 𝛽, 𝜆)]

2 =

𝑛

𝑖=1

 

∑[𝑥(𝑖) +
1

𝜆
𝑙og (1 − (

log (
𝑒2𝑎 − 1
2𝑒𝑎

(
𝑖

𝑛 + 1
) + √(

𝑒2𝑎 − 1
2𝑒𝑎

(
𝑖

𝑛 + 1
))
2

+ 1)

𝑎
)
1
𝛽)]2 

𝑛

𝑖=1

           

with respect to 𝑎, 𝛽 and 𝜆. 

4.4. Least squares and weighted least squares estimators 

In this section, we derive regression based estimators of the unknown parameter. This method was originally suggested 

by Swain et al. (1988) to estimate the parameters of beta distributions. It can be used for some other distributions also. 

Suppose 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 is a random sample of size 𝑛 from a CDF 𝐹 (·) and suppose 𝑋(𝑗 , 𝑖 =  1 , 2 , . . . , 𝑛 denote the 

ordered sample in ascending order. The proposed method uses 𝐹(𝑋(𝑗)). For a sample of size 𝑛, we have 

𝐸[𝐹(𝑋(𝑗))] =
𝑗

𝑛 + 1
  , 𝑉𝑎𝑟[𝐹(𝑋(𝑗))] =

𝑗(𝑛 − 𝑗 + 1)

(𝑛 + 1)2(𝑛 + 2)
 ,                          

𝐶𝑜𝑣[𝐹(𝑋(𝑗)), 𝐹(𝑋(𝑙))] =
𝑗(𝑛 − 𝑙 + 1)

(𝑛 + 1)2(𝑛 + 2)
 ,    𝑗 < 𝑙. 

Using the expectations and the variances, two variants of the least squares method follow. 

 

Method 1: Least squares estimators 

The least squares estimators can be obtained by minimizing 

∑[𝐹(𝑥(𝑗)) −
𝑗

𝑛 + 1
]
2

     

𝑛

𝑗=1

 

with respect to the unknown parameters. In case of the HCEE distribution, the LSEs of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝐿𝑆𝐸 , 𝛽̂𝐿𝑆𝐸  

and 𝜆̂𝐿𝑆𝐸, respectively, can be obtained by minimizing 

∑[𝐺(𝑥(𝑗), 𝑎, 𝛽, 𝜆) −
𝑗

𝑛 + 1
]2

𝑛

𝑗=1

= 

∑[
2𝑒𝑎

𝑒2𝑎 − 1
sinh (a(1 − 𝑒−𝜆𝑥(𝑗))𝛽) −

𝑗

𝑛 + 1
]

2

                                           

𝑛

𝑗=1

 

with respect to 𝑎, 𝛽 and 𝜆. 

Method 2: Weighted least squares estimators 

The weighted least squares estimators can be obtained by minimizing 

∑𝑤𝑗 [𝐹(𝑥(𝑗)) −
𝑗

𝑛 + 1
]
2𝑛

𝑗=1

                                                         

with respect to the unknown parameters, where 

𝑤𝑗 =
1

  𝑉𝑎𝑟[𝐹(𝑋(𝑗))]
=
(𝑛 + 1)2(𝑛 + 2)

𝑗(𝑛 − 𝑗 + 1)
 

In case of the HCEE distribution, the WLSEs of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝑊𝐿𝑆𝐸 , 𝛽̂𝑊𝐿𝑆𝐸 and 𝜆̂𝑊𝐿𝑆𝐸, respectively, can be obtained 

by minimizing 

∑𝑤𝑗[𝐺(𝑥(𝑗), 𝑎, 𝛽, 𝜆) −
𝑗

𝑛 + 1
]2

𝑛

𝑗=1

= 

∑𝑤𝑗[
2𝑒𝑎

𝑒2𝑎 − 1
sinh(a(1 − 𝑒−𝜆𝑥(𝑗))𝛽) −

𝑗

𝑛 + 1
]2

𝑛

𝑗=1

                                   

with respect to 𝑎, 𝛽 and 𝜆. 

4.5. Bootstrap estimator (bootstrap confidence intervals) 

 The uncertainty in the parameters of the fitted distribution can be estimated by parametric (resampling from the fitted 

distribution) or nonparametric (resampling with replacement from the original data set) bootstraps resampling Efron and 

Tibshirani (1994). These two parametric and nonparametric bootstrap procedures are described as follows. 
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Parametric bootstrap procedure 

1. Estimate 𝜃 (vector of unknown parameters), say 𝜃̂, from sample on the MLE procedure. 

2. Generate a bootstrap sample {𝑋1
∗, … , 𝑋𝑚

∗ }, using 𝜃̂. Obtain the bootstrap estimate of 𝜃, say 𝜃̂∗, from the bootstrap 

sample based on the MLE procedure. 

3. Repeat Step2 NBOOT times. 

4. Order 𝜃̂∗1, … , 𝜃̂
∗
𝑁𝐵𝑂𝑂𝑇  as 𝜃̂∗(1), … , 𝜃̂

∗
(𝑁𝐵𝑂𝑂𝑇). Then obtain 𝛾 −quantiles and 100(1 − 𝛾)% confidence intervals of 

parameters. 

In case of the HCEE distribution, the parametric bootstrap estimators (PBs) of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝑃𝐵, 𝛽̂𝑃𝐵   and 𝜆̂𝑃𝐵, 

respectively. 

Nonparametric bootstrap procedure 

1. Generate a bootstrap sample {𝑋1
∗, … , 𝑋𝑚

∗ } with replacment from original data set. Obtain the bootstrap estimate of 𝜃 

with MLE procedure, say 𝜃̂∗ using the bootstrap sample. 

2. Repeat Step2 NBOOT times. 

3. Order 𝜃̂∗1, … , 𝜃̂
∗
𝑁𝐵𝑂𝑂𝑇  as 𝜃̂∗(1), … , 𝜃̂

∗
(𝑁𝐵𝑂𝑂𝑇).Then obtain 𝛾 −quantiles and 100(1 − 𝛾)% confidence intervals of 

parameters. 

In case of the HCEE distribution, the nonparametric bootstrap estimators (NPBs) of 𝑎, 𝛽 and  , say 𝑎̂𝑁𝑃𝐵 , 𝛽̂𝑁𝑃𝐵 and 𝜆̂𝑁𝑃𝐵, 

respectively. 

4.6. Bayesian estimation 

In this section, we have a short note on the Bayes estimation of the parameters of HCEE distribution.To do this, 

assume that the vector of unknown parameters (𝑎, 𝛽, 𝜆) have independent prior distributions. Then, by attention to 𝑎 >
 0, 𝛽 > 0 and  𝜆 >, we consider 

𝑎~𝐺𝑎𝑚𝑚𝑎(𝑏, 𝑐), 𝛽~𝐺𝑎𝑚𝑚𝑎(𝑑, 𝑒)   and 𝜆~𝐺𝑎𝑚𝑚𝑎(𝑓, 𝑔) 

where all of 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 and 𝑔 are positive parameters. Then, the joint posterior probability density function of 𝛼 and 𝜆 

given 𝑥  =  (𝑥1  ,  𝑥2 , . . . ,  𝑥𝑛 ) can be written as: 

𝜋∗(𝑎, 𝛽, 𝜆|𝑥) ∝ 𝜋(𝑎, 𝛽, 𝜆)𝑓(𝑥, 𝑎, 𝛽, 𝜆) 

where 𝜋(𝛼, 𝛽, 𝜆) is the joint prior distribution of the parameters. Since this posterior distribution is cumbersome, we can 

not provide posterior estimates of the parameters theoretically, but, by using MCMC algorithm in WINBUGS software 

we will obtain this estimators. The Bayesian estimators (Bs) of 𝑎, 𝛽 and 𝜆, say 𝑎̂𝐵, 𝛽̂𝐵 and 𝜆̂𝐵, respectively. 

 

5. Simulations 

In this section, we perform a simulation study to investigate the finite sample properties of ML 

estimators described in Section 4. To conduct the experimental study, we generate 5000 

synthetic samples of size n = 10, 30, 50, 100 and 200 from HCEE with true selected parameters 𝐶1 = (𝑎 = 1, 𝛽 = 2, 𝜆 =
2) and 𝐶2 = (𝑎 = 2, 𝛽 = 2, 𝜆 = 2). To examine the estimation accuracies, the absolute bias and the mean squared error 

(MSE) are computed. Figures 3 -6 show a graphical representation of the absolute bias and the MSE of the parameter 

estimates as a function of sample size n.  

 

Figure 3. Absolute bias of selected parameters (𝑎 = 1, 𝛽 = 2, 𝜆 = 2) for HCEE model. 
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 Figure 4. Absolute MSE's of selected parameters(𝑎 = 1, 𝛽 = 2, 𝜆 = 2) for HCEE model. 

 

Figure 5. Absolute bias of selected parameters (𝑎 = 2, 𝛽 = 2, 𝜆 = 2) for HCEE model. 

 

 Figure 6. Absolute MSE's of selected parameters(𝑎 = 2, 𝛽 = 2, 𝜆 = 2) for HCEE model. 
 

Clearly, the bias and MSE of three parameters converge to zero when n increases. 

6. Data analysis and application 

In this section, we illustrate the usefulness of the HCEE distribution. First, the parameters of HCEE distribution are 

estimated for the yarn data set by eight estimation methods. Second, we fit the HCEE model to this data by ML method 

and compare the results with the gamma ,Weibull and generalized exponential (GE) with respective densities 

          𝑓𝑔𝑎𝑚𝑚𝑎(𝑥) =
1

Γ(𝛼)
𝜆𝛼𝑥𝛼−1𝑒−𝜆𝑥,      𝑥 ≥ 0 
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     𝑓𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥) =
𝛽

𝜆𝛽
𝑥𝛽−1𝑒−(

𝑥
𝜆
)𝛽 , 𝑥 ≥ 0, 

       𝑓𝐺𝐸(𝑥) = 𝛼𝜆𝑒
−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛼−1,      𝑥 ≥ 0 . 

 

Yarn data 

The data set relates to the time-to-failure of apolyester/viscose yarn in a textile experiment for testing the tensile fatigue 

characteristics of yarn. It consists of a sample of 100 cm yarn at 2.3% strain level (see Oluyede et al., 2016). The data 

are given below:                                                  

86  146  251  653  98  249  400  292  131  169  175  176  76  198  180  321  42  220  157  264  88  262  195  364  15  264  

229  90  196  250  325  180  149  224  282  121  61  20  38  180  211  246  597  135  40  40  341  151  65  337  38  166  

229  185  423  182  497  186  81  279  124  571  353  315  93  244  61  55  55  568  188  185  246  71  398  290  338  400  

198  143  277  194  286  236  239  829  203  396  393  284  20  264  105  203  124  137  135  350  193  188.                                                                                                                                                

Before analyzing this data set, we use the scaled-TTT plot to verifiy our model validity, see Aarset (1987). It allows to 

identify the shape of hazard function graphically. We provide the empirical scaled-TTT plot for the yarn data. Fig. 7 

shows the scaled-TTT plots is concave. It indicates that the hazard function is increasing; therefore it verifies our model 

validity.  

 
Figure 7. Scaled-TTT plot for the yarn data. 

 

Now we apply different estimation methods for the parameters of HCEE distribution. Also, the performances of 

estimators can be compared through log-likelihood function. Table 1 shows the estimation of parameters of HCEE 

distribution and corresponding log-likelihood function for the yarn data that obtained by eight estimation methods: 

maximum likelihood, Bayesian, maximum product of spacings, parametric bootstrap, non-parametric bootstrap, 

percentile, least-squares and weighted least-squares. 

 

Table 1. Estimates of the parameters and the corresponding log-likelihood for the yarn data. 

 

Method      Estimate of  𝑎    Estimate of  𝛽     Estimate of  𝝀    Log-likelihood 

 

MLE                 2.490 1.879            0.009              -624.566 

LSE                  3.120                1.593            0.0097            -624.198 

WLSE              3.122               1.484             0.0094            -624.206 

PCE                  2.469               1.624             0.0086            -624.325 

MPS                 3.030                1.435            0.0086            -624.723 

PB                    2.395               1.946             0.0092            -623.965 

NPB                 2.458               1.931             0.0093            -623.917 

Bayes estimation under quadratic loss function 

B 2.357               1.901             0.0102             -625.451 

Bayes estimation under absolute loss function 

B 2.883               1.823              0.0102           - 624.343 
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Here, we fit the HCEE distribution to the yarn data and compare it with the gamma, generalized exponential and Weibull 

densities. Table 2 shows the MLEs of parameters, log-likelihood, Akaike information criterion (AIC), Cramér–von Mises 

(𝑊∗) and Anderson–Darling (𝐴∗) statistics for the yarn data. The selection criterion is that the lowest AIC, 𝐴∗ and 

𝑊∗correspond to the best fit model. Thus, the HCEE distribution provides the best fit for the yarn data set as it shows 

the lowest AIC, 𝐴∗ and 𝑊∗ than other considered models. The relative histograms, fitted HCEE, gamma, generalized 

exponential and Weibull PDFs for the yarn data are plotted in Fig 8(a). The plots of empirical and fitted survival 

functions, P-P plots and Q-Q plots for the HCEE and other fitted distributions are displayed in Fig 8(b), Fig 8(c) and Fig 

8(d), respectively. These plots also support the results in Table 2. 

Table 2. The MLEs of parameters for the yarn data. 

Model          MLEs of parameters                         Log-likelihood      AIC A∗            W∗ 

HCEE     𝐚̂ = 2.490,  𝛌̂ = 0.009,𝛃̂ = 1.879   -623.901 1253.802   0.337    0.052 

gamma     α̂ = 2.238, 𝛌̂̂ = 0.316,   ---      -625.244    1254.489    0.667   0.123                                                                 

Weibull    β̂ = 1.604, λ̂ = 247.903, 

 ---      

-625.199    1254.398    0.529   0.092   

GE             α̂ = 2.384, λ̂ = 0.007,   ---      -625.693    1255.386    0.529   0.152                                              

 

   

 

Figure 8(a). The fitted PDFs and the relative histogram for the yarn data set. 
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Figure 8(b). Empirical and fitted survival functions for the yarn data set. 

 

Figure 8(c). P-P plots of fitted PDFs for the yarn data set. 
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Figure 8(d). Q-Q plots of fitted PDFs for the yarn data set. 

 

7. Conclusions 

We introduce a new model, so-called the HCEE distribution that is a special cases of HCF family of distributions 

proposed by Kharazmi and Saadatinik (2016). It is expected that this family will be widely applicable in reliability theory, 

risk analysis and other disciplines. The HCEE distribution, is very strong competitor to other well-known distributions 

commonly used in literature for fitting statistical data. Estimation of parameters is approached by the methods of 
maximum likelihood, Bayesian, maximum product of spacings, parametric bootstrap, non-parametric bootstrap, 

percentile, least-squares and weighted least-squares. A simulation study is conducted to examine the bias, mean square 

error of the maximum likelihood estimators. Moreover, one application of the HCEE distribution to real data set is 

provided to illustrate that this distribution provides a better fit than Weibull, gamma and generalized exponential 

distributions. 
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