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Abstract

In airline planning, tactical decisions related to flight schedule design and fleet assignment play a pivotal role in
enhancing operational efficiency and maximizing revenue. On the other hand, ticket pricing, directly influencing
market share, is inherently affected by the tactical flight timetable, market uncertainties, and passenger choice
behavior. To jointly optimize tactical scheduling decisions and ticket pricing policies, and create optimal interaction
between them, this paper proposes a modern data-driven decision-making framework that blends Distributionally
Robust Optimization (DRO) with Bi-Level Programming (BLP). In this framework, leveraging historical data and
machine learning algorithms, a distributional ambiguity set is first constructed to model uncertainty within the DRO
framework. The BLP formulation then captures the interaction between flight scheduling (upper level) and ticket
pricing (lower level). Additionally, passengers’ choice behavior is incorporated using a Multinomial Logit (MNL)
discrete choice model. To address the computational complexity, a column-and-constraint generation (CCG)
algorithm is adopted, enabling model decomposition and enhancing computational efficiency. Finally, the proposed
model and solution framework are validated through a case study and a series of numerical experiments. Numerical
results demonstrate that, compared to classical approaches, the proposed framework significantly improves market
share and airline revenue, ensures robustness against uncertainty and passenger behavior variability, and enhances
computational tractability.

Keywords: Data-Driven Decision-Making; Distributionally Robust Optimization; Bi-Level Programming; Flight
Scheduling; Ticket Pricing; Decomposition Method.

Introduction

Air mobility is a cornerstone of economic development, international trade, human connectivity, and global
integration. Due to its exceptional speed and efficiency, the aviation sector plays an indispensable role in meeting
origin-destination (O-D) travel demand and fostering a competitive environment for airlines. The enhanced
accessibility and the rapidly growing demand for efficient transport services have considerably expanded air
operations and improved the industry’s profitability. According to reports by the International Air Transport
Association (IATA), over 5 billion passengers travel on commercial flights annually (IATA, 2019), and this number
is projected to grow at an average annual rate of approximately 4.1% through 2045 (Zhou, Liang, Chou, &
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Chaovalitwongse, 2020). This significant revenue potential has motivated airlines to adopt data-driven optimization
methods, particularly those that explicitly address demand uncertainty and passenger preferences in their planning and
decision-making processes.

The airline industry is characterized by several distinct characteristics: resource constraints, high capital investment
requirements, strict regulatory frameworks, a competitive and uncertain market environment, highly interdependent
decisions, and complex planning processes. Therefore, a primary objective for airlines is to maximize the utilization
of available resources, such as flight routes, aircraft fleets, crew rostering, and airport slots, by deploying advanced
optimization models and leveraging data analytics within the operations research framework (Barnhart & Cohn, 2004;
Wandelt et al., 2025).

As shown in Figure 1, the airline planning process can be categorized across three decision-making horizons: strategic,
tactical, and operational. For the strategic horizon, long-term decisions such as fleet acquisition and network design
are addressed. Subsequently, tactical decisions, including flight scheduling and fleet assignment, are made, followed
by operational decisions related to resource allocation. Given their critical influence on efficiency and profitability,
this study focuses on optimizing tactical planning decisions, particularly flight timetables and fleet assignment.
Tactical flight planning comprises three interconnected subproblems: frequency planning, which determines the
number of daily flights on each O-D pair; timetable development, which specifies the departure and arrival times for
each flight; and fleet assignment, which involves allocating the appropriate aircraft to each scheduled flight.
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Figure 1. Decision optimization problem within airline planning process

Due to the dynamic nature of the market, intense competition, and sensitivity to passenger behavior, airlines adopt
decision-support models only if they meet seven essential criteria: (1) integrated decision-making, especially for
flight-scheduling decisions; (2) robustness, adaptability, and recoverability under uncertainty and operational
disruptions; (3) competitive awareness, including the consideration of rivals’ actions ; (4) customer-orientation, by
incorporating passenger preferences to mitigate demand loss; (5) data-driven intelligence, achieved through analytics
and machine learning; (6) coordinated pricing and revenue management, ensuring that pricing policies and flight-
planning decisions interact effectively to maximize market share and profitability; and (7) computational efficiency,
enabled by decomposition techniques and efficient solution algorithms.
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Among these features, Decision integration is particularly critical. Modern flight-planning models that address
interdependencies between scheduling and pricing avoid the inefficiencies inherent in decoupled approaches and thus
enhance profitability (Grosche & Grosche, 2009). Moreover, the inclusion of discrete choice models to capture
passenger decision behavior has gained considerable attention in recent research (Cadarso & Vaze, 2023). This study
advances that trend by explicitly modeling the interaction between tactical flight planning and ticket pricing,
addressing the essential requirements of competitiveness and revenue management coordination.

Uncertainty modeling through data-driven analyses powered by machine-learning algorithms equips contemporary
distributionally robust optimization (DRO) approaches with enhanced robustness properties and risk-mitigation
capabilities (Bertsimas & Thiele, 2006; Ozarik, da Costa, & Florio, 2024). To manage large-scale planning problems,
decomposition-based algorithms (C. Yan, Barnhart, & Vaze, 2022) and metaheuristic search strategies have proven
effective.

Accordingly, the aim of this paper is to provide a modern data-driven decision-making framework for the integrated
optimization of tactical flight planning and ticket pricing. The framework aligns with the seven key features noted
above. It employs a machine-learning-enhanced DRO model to manage uncertainty and ensure solution robustness.
Bilevel programming (BLP) is used to coordinate hierarchical decision levels, while passenger choice behavior is
modeled using an advanced MNL formulation. Lastly, computational efficiency is achieved through the application
of a column-and-constraint generation (CCG) decomposition technique.

The rest of this paper is organized as follows. In Section 2, the relevant literature on airline planning and DRO models
is reviewed. Section 3 formulates the optimization problem that captures the interaction between flight scheduling and
ticket pricing decisions. Section 4 introduces the proposed methodological framework, which consists of data-driven
DRO, BLP, MNL model, and CCG decomposition method. Section 5, based on the proposed methodological
framework, presents the proposed model and solution method for the problem of joint optimization of flight scheduling
and ticker pricing. Section 6 deals with the model implementation and result analysis. Finally, Section 7 concludes
the paper and suggests some recommendations for future research directions.

Relevant Literature

This section provides a general overview of the relevant literature on airline planning problems. Since this research
centers on airline tactical planning, we primarily focus on related works in this area. For a more comprehensive review
of the entire airline planning process, the readers are referred to Eltoukhy, Chan, and Chung (2017) and Zhou et al.
(2020). Furthermore, to specify the reason of selecting DRO approach, the various paradigms for optimization under
uncertainty are classified. Finally, the research gaps which are filled through our contributions are summarized.

Studies on Airline Planning

The profitability of an airline is closely linked to its capacity to design flight schedules that effectively accommodate
passenger demand in competitive markets. Lohatepanont and Barnhart (2004) is widely recognized as one of the
pioneering and most influential works in the field of airline tactical planning, particularly addressing decisions related
to schedule design and fleet assignment. Extending this research, Barnhart, Farahat, and Lohatepanont (2009)
developed a fleet assignment model for specific sub-networks to improve the alignment between fleet capacity and
demand. Further advancements were made by (Sherali, Bae, & Haouari, 2013), who proposed an integrated model
combining schedule design, fleet assignment, and operational considerations such as aircraft rotation, maintenance,
and flight rescheduling.

Several studies, including (Sa, Santos, & Clarke, 2020) and (Birolini, Jacquillat, Cattaneo, & Antunes, 2021),
addressed strategic decisions such as fleet planning and network design. One of the earliest and most frequently cited
works on tactical decision-making in this domain is (Lohatepanont & Barnhart, 2004), which concentrates on schedule
design and fleet assignment. Building on this foundation, Weide, Ryan, and Ehrgott (2010) introduced an iterative
optimization approach for the operational scheduling of fleet and crew. Given the emphasis of this paper, the current
review primarily focuses on the literature of tactical decision-making.
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Understanding passenger choice behavior is essential for aligning tactical flight planning with market demand. As a
crucial determinant of realized demand, passenger preferences directly influence the effectiveness of scheduling and
fleet assignment decisions. In this regard, S. Yan, Tang, and Lee (2007) proposed a flight scheduling model that
incorporates passenger preferences in competitive markets. Similarly, Wei, Vaze, and Jacquillat (2020) introduced an
optimization framework that integrates passenger preferences, capturing how schedule design and fleet assignment
affect ticket purchase decisions. C. Yan et al. (2022) further refined this approach by incorporating price-based
substitution behavior in route and cabin class selection.

Modeling uncertainty is critical for ensuring the robustness and reliability of airline operations. Stochastic
programming and robust optimization are two well-established frameworks for decision-making under uncertainty.
For instance, Sherali and Zhu (2008) developed a two-stage stochastic model for fleet assignment that explicitly
addresses demand uncertainty. Similarly, Kenan, Jebali, and Diabat (2018) proposed a two-stage formulation for
flight scheduling and fleet assignment, accounting for uncertainty in both demand and ticket pricing.

More recent studies have explored integrated models that account for multiple planning dimensions. For example,
Wei et al. (2020) proposed a unified model for scheduling and fleet assignment, while Kiarashrad, Pasandideh, and
Mohammadi (2021) introduced a nonlinear optimization model that integrates scheduling, fleet assignment, and ticket
pricing, capturing competitive network effects. Kiarashrad et al. (2021) addressed supply-demand interactions
through an integrated model for flight scheduling, fleet assignment, and demand generation, employing a nested logit
framework to represent competition between routes. C. Yan et al. (2022) utilized a decomposition approach to manage
network complexity in schedule design and fleet assignment. At the operational level, Ben Ahmed, Hryhoryeva,
Hvattum, and Haouari (2022) explored the integration of fleet assignment with aircraft rotation and crew scheduling.
Lastly, Xu, Adler, Wandelt, and Sun (2024) employed a game-theoretic framework to model competition among
airlines and high-speed rail in the context of ticket pricing, schedule design, and fleet assignment.

These studies underscore the evolution of airline planning research from isolated sub problems toward integrated,
data-driven, and passenger-centric models. Nevertheless, important research gaps remain, which are addressed in the
next section.

Data-Driven Robust Optimization under Uncertainty

The increasing availability of data forms the foundation for designing data-driven decision-making techniques for the
uncertain decision problems (Yang, Xu, Gong, & Rekik, 2024). Data-driven methods outperform traditional SP and
RO approaches by leveraging prior knowledge for more accurate modeling (Papadimitriou, 2016). Data-driven
decision-making is essential when historical data is available, as it provides a realistic representation of uncertainty
sets using statistical tools, in contrast to the unrealistic assumptions, e.g., normal distribution, of classical methods
(Peng & Delage, 2024). Classical approaches typically rely on fixed, predetermined parameters, such as known means
and variances, which may not accurately capture real-world complexity. In contrast, data-driven methods leverage
empirical data to estimate these parameters, enhancing model robustness.

As a modern data-driven approach for decision-making under uncertainty, data-driven robust optimization is a modern
methodology improving optimality robustness and conservatism level by systematically incorporating historical or
real-time data into robust optimization frameworks (Bertsimas & Thiele, 2006). Unlike traditional RO which depends
on a priori theoretical assumptions to define uncertainty sets (Gorissen, Yanikoglu, & Den Hertog, 2015), DDRO
employs statistical analysis, machine learning (ML), or distributionally robust techniques to construct
uncertainty/ambiguity sets directly from empirical data. This paradigm enhances models’ adaptability to real-world
variability while ensuring robustness against worst-case realization.

While conventional DDRO models primarily focus on constructing uncertainty sets through ML algorithms or
statistical hypothesis testing (Bertsimas, Gupta, & Kallus, 2018a; Han, Shang, & Huang, 2021; Shang, Huang, & You,
2017; Zhang, Jia, He, & Chu, 2022), a more advanced paradigm leverages data to generate families of distributions
for distributionally robust optimization models. Data-driven DRO approach synthesizes principles from RO and SP,
ensuring robust expected performance under worst-case probability distributions while achieving enhanced
performance guarantees across both in-sample and out-of-sample scenarios (Van Parys, Esfahani, & Kuhn, 2021).
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DRO, as a modern extension of stochastic optimization models based on the distributional robustness characteristic,
advances classical SP by optimizing decisions over an ambiguity set of probability distributions, thereby
circumventing the risk of relying on a single, potentially misspecified, nominal distribution. The construction of an
ambiguity set is a pivotal step in DRO models, as it delineates a family of probability distributions that are consistent
with the observed data and are statistically similarly distributed. There exist several alternatives for generating this
ambiguity set: (I) Moment-based approaches that utilize known statistical properties, such as means, variances, and
higher-order moments (Delage & Ye, 2010); and (I1) Distance-based or discrepancy-based methods that leverage
various measures, such as metrics (e.g., Wasserstein (Gao, Chen, & Kleywegt, 2024; Mohajerin Esfahani & Kuhn,
2018) ), p-divergences (e.g., Kullback-Leibler (Ben-Tal, Den Hertog, De Waegenaere, Melenberg, & Rennen, 2013)
), likelihood or statistical hypothesis test (Bertsimas et al., 2018a; Bertsimas, Gupta, & Kallus, 2018b; W. Liu, Yang,
& Yu, 2023), total variation (Sun & Xu, 2016), and £,-norms (Huang, Qu, Gong, Goh, & Ji, 2020; Jiang & Guan,
2018), to construct a set of distributions that are sufficiently close to a nominal/reference distribution and constrained
by a predetermined maximum distance. For a more detailed review of alternative approaches for generating ambiguity
sets in DRO models, the reader is referred to Rahimian & Mehrotra (2019), Van Parys et al. (2021), and Zude Wang,
Jiang, Lin, Tao, & Chen (2024).

DRO models have found diverse applications in various fields requiring robust decision-making under uncertainty.
For instance: in finance, DRO enhances portfolio optimization and risk management (Costa & Kwon, 2022).
Healthcare systems employ DRO for adaptive resource allocation and personalized treatment strategies under dynamic
patient demands (Y. Wang, Zhang, & Tang, 2024). Transportation systems utilize DRO for network design, tactical
planning, and traffic management (L. Liu, Song, Wang, & Zhang, 2022; C. Wang, Liu, Zhang, & Miao, 2024; R. Yan,
Liu, & Wang, 2024). Supply chain operations apply DRO for strategic network design, optimal distribution, inventory
control, and logistics management (Gilani & Sahebi, 2022; Gong & Zhang, 2022; Li, Liu, & Yang, 2024). Beyond
these domains, DRO is increasingly adopted in energy systems (Lu & Zhou, 2024; Mohseni & Pishvaee, 2023; Zechen
Wang, Liu, & Huo, 2025), manufacturing and production planning (Metzker, Thevenin, Adulyasak, & Dolgui, 2025;
Razavi Al-e-hashem, Papi, Pishvaee, & Rasouli, 2022), pricing and revenue management systems (Chen & Hu, 2023;
Qiu, Sun, Zhou, & Sun, 2023), confirming its broad applicability. This applicability motivates our research paper to
adopt a novel data-driven DRO model to address uncertainty in the aviation industry.

Research Gaps and Proposed Contributions

An analysis of the existing literature reveals several critical gaps that warrant further investigation: (1) Limited
integration across decision-making levels. (Il) Inadequate modeling of passenger choice behavior. (I11)
Underutilization of data-driven optimization. (IV) Insufficient emphasis on computational efficiency. To fill these
gaps, this study contributes to the literature on tactical flight planning through the following innovations:

1. Integrated Optimization Framework: The paper develops a comprehensive model that simultaneously
optimizes flight frequency, scheduling, and fleet assignment, while coordinating these tactical decisions with
operational ticket pricing policies. The framework accommodates strategic and operational constraints,
including route structure, fleet availability, slot and gate limitations, and passenger behavioral responses.

2. Data-Driven Machine Learning Integration: A novel DRO approach is proposed, enriched with machine
learning techniques to extract statistical insights from historical data. This hybrid approach enables the
construction of a data-driven ambiguity set that enhances decision robustness against demand uncertainty.

3. Enhanced Passenger Choice Modelling: Passenger decision-making is incorporated using an advanced MNL
formulation, which considers booking decisions. The model supports tractability through appropriate
linearization techniques, allowing for realistic yet computationally feasible analysis of passenger behaviour.

4. Computational Tractability: a decomposition-based CCG method is adopted to efficiently solve the final data-
driven DRO model.
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Problem Description

This section formally describes the concern optimization problem, referred to as the Interaction of Flight Scheduling
and Ticket Pricing (IFSTP). In the airline operations context, tactical flight planning serves as a bridge between
strategic decisions, such as network design and fleet acquisition, and operational planning tasks, including aircraft and
crew assignment. The primary objective at this stage is to maximize profitability by optimizing tactical decisions,
namely flight frequency, timetable development, and fleet assignment, while adhering to various operational
constraints such as fleet capacity, seating availability, and slot and gate limitations.

In IFSTP problem, these tactical decisions are coordinated with operational ticket pricing strategies to enhance the
attractiveness of the flight schedule, accounting for both demand uncertainty and the flexibility to adjust prices. The
goal is to increase demand and improve market share through better alignment of schedule planning and price
optimization. Consequently, IFSTP problem involves four interrelated decision variables: (i) determining flight
frequency for each O-D air travel market across different periods; (ii) developing the flight timetable; (iii) assigning
the appropriate fleet type to the selected flight; and (iv) setting operational ticket prices. Beyond satisfying strategic
and operational constraints, the model must also ensure consistency in the space—time network, meaning that the
arrival and departure of each fleet type at every airport and time period must be properly synchronized.

One of the fundamental challenges considered in the IFSTP problem is the inherent uncertainty in travel demand. To
address this, the model must provide a robust solution derived from historical data that not only aims to maximize
expected performance but also mitigates risk under adverse demand scenarios. Importantly, tactical flight scheduling
decisions are made before the realization of actual demand, whereas operational ticket pricing decisions can be
adjusted adaptively once demand information becomes available.

Another critical feature of the model is the explicit incorporation of passenger choice behavior, which significantly
influences realized demand. Each flight itinerary is characterized by attributes such as ticket price, departure time,
service level, and airport access time or cost. These attributes affect the perceived utility of each option, and their
respective weights are used to estimate the probability that passengers will select a particular flight. This behavior is
integrated into IFSTP problem to more accurately reflect market dynamics. In cases of mismatched supply and
demand, or due to specific passenger preferences, some demand may be lost. However, such demand can potentially
be recaptured through adjustments to the flight schedule or pricing strategies.

In addition to demand uncertainty and passenger utility weights, other influential parameters include fleet capacities,
airport constraints, flight durations, fixed and variable costs, and others, as summarized in Table 1. IFSTP model
captures these factors to ensure practical feasibility and solution robustness.

In IFSTP problem, the concept of interaction between flight scheduling and ticket pricing is represented as a
hierarchical, Bi-level framework. At the outer level (the leader), tactical planning decisions, such as flight frequency,
timetable, and fleet assignment, are optimized without complete knowledge of final demand or prices. At the inner
level (the follower), pricing decisions are made in response to the upper-level decisions and the observed demand, to
maximize revenue. The results of this lower-level optimization, including demand and revenue, are fed back into the
upper level, which updates the flight schedule accordingly. This iterative process continues until convergence is
achieved; i.e., when there is no longer an incentive to modify the flight schedule, yielding an integrated plan that is
coherent with both market conditions and operational constraints. Next section provides the proposed solution
framework to solve IFSTP problem.

Proposed Data-Driven and Interactive Solution Framework

To solve IFSTP problem, this study proposes a modern, data-driven decision-making framework that integrates
advanced technigues from robust optimization, hierarchical modelling, and behavioral analysis. Specifically, the
framework incorporates a data-driven DRO approach to capture uncertainty in O-D market demand, a BLP structure
to model the interaction between scheduling and pricing decisions, an MNL model to represent passenger choice
behavior, and a CCG algorithm to enhance computational efficiency through decomposition. Figure 2 illustrates the
overall architecture of the proposed framework, and the key components are described below.
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Figure 2. Proposed methodological framework for solving IFSTP problem
Data-Driven DRO for Decision-Making under Uncertainty
In general, an optimization under uncertainty problem is expressed as follows:

min F(x) + R(x; 6) )

where x € X represents the decision variables, and 6 denotes the uncertain parameters. Additionally, F(x) and
R(x; 6) represent the uncertainty-independent and uncertainty-dependent parts of the objective function, respectively.
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If, in addition to x, wait-and-see variables are also included in Model (1), R(x; 6) is determined by solving an inner
optimization problem, known as the recourse problem, that depends on the first-stage variables x and the observed
uncertainty 6.

If a support set @ for the uncertain parameters 8, along with a specified probability distribution fg is available, SP
approach is used, optimizing the expected performance under the distribution f. If only the support set @ is
considered, and no probability distribution is available, RO approach optimizes the performance under the worst-case
scenario within the support set ®. Finally, in DRO, instead of a single probability distribution, a distributional
ambiguity set (DAS) P is constructed for 8, especially based on historical data, and the expected performance of the
system under the worst distribution belonging to P is optimized. Therefore, the formulation of an uncertain
optimization problem using SP, RO, and DRO approaches can be summarized as follows:

I{ SP == mEiF? F(x) + Efo [R(x; 6)]
RO := min F(x) + sup{R(x;0)}
2€X 0ed

\PRO = min F(x) + sup (Ey [R(x; )]}

O]

mi;? F(x) + R(x;0) Reformulation under Uncertain 6
x€E

To construct the proposed data-driven DAS, we first consider © = {6° = (6¢,69%,...6%) |0 =1,2,...,N} as the
dataset available for the uncertain parameter 6. Then, the Kernel Density Estimation (KDE) method is employed to
define an empirical/nominal probability distribution. As a non-parametric technique, KDE does not require prior
assumptions and estimates the probability distribution as follows (Parzen, 1962; Weglarczyk, 2018):

fo®) = mZOﬂ[“ (%)) 0= (0,003, .6, ®

m=1

where K (u) =\/%e_“2/2 is a Gaussian kernel satisfying the conditions ¥ (u) =0 and fueRK(u)duz 1.
1

Furthermore, £ > 0 denotes the smoothing parameter. Empirically, the smoothing parameter is set as 4, = G, (%)g
where &, represents the estimated standard deviation of the component m in the dataset D (Silverman, 2018).

After constructing a nominal distribution from the available dataset, the £,-norm is employed to measure the distance
between probability distributions:

(o 90) = 1fo) = G0l = [ 1£o®) = go@]d0 @

6€0

Based on this, the following DAS is formulated to generate distributions close to the nominal distribution £ (8):

Pr, = {fo € BO)| [Ifo() —FoOl, <6, fyee fo(0) d0 = 1} ©)

where f, € B(0©) denotes a real-valued Borel-measurable function, whose distance from the empirical distribution fg
does not exceed 4.

To determine the parameter § in a data-driven manner, Hoeffding’s inequality can be utilized, establishing that
2NS2 1M _, 43,

Prob (||f(; ~fell, < 6) >1— 2exp (— 1?271‘4) Thus, it can be concluded that, at a confidence level of 1 —

€, the maximum distance between the true distribution of the uncertain parameters 8 and the nominal distribution fg
can be computed as (Hoeffding, 1994):

5= KM 1l (2)
ST A (28" e ©)
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in which K = sup % (u) .
ueR
To account for disjunctions and multiple scenarios in the dataset D, and to enable second-stage decision variables to

adapt to each scenario, the dataset D is classified into x clusters using the Fuzzy C-Means (FCM) algorithm (Bezdek,
Ehrlich, & Full, 1984), thereby discretizing DAS defined in Equation (5). The optimal number of clusters « is
determined via a Golden-Section Search that maximizes between-cluster variance (BCV) while minimizing within-
cluster variance (WCV). We then define the scenario set = = {1,2, ..., k} and construct the finite support set © as
follows:

N * o
=1H 59
Q= {95201\1—0

*

o0=1Mo¢

S € E} U]

where ;. is the output of the FCM algorithm and represents the degree of membership of each observation to each
cluster. For each scenario ¢ € =, the empirical probability n? = ! >Z’g’=1u;§fg,(00) can be

K ZN *  Fa(6°
5[21( o=1y'o€lf®( )
estimated using the derived KDE and the membership degrees of data points within the respective cluster. By

aggregating these probabilities, the nominal discrete distribution 7° = [r2, 72, ..., w2]Tis considered as a substitute
for Equation (3). Finally, the proposed DAS based on the norm £, is constructed as follows:

Py, = {n = [nf]sea € R%

where e = [1,1,...,1]7 is the unit vector, and & represents the data-driven distance derived from Equation (6).
Consequently, the proposed DRO model is formulated as follows:

||1t—1t°||1S8,eTn=1} 8)

DRO := min F(x) + ”?:5( . ;R;R(x; 0s) ¢ s.t. Py,
( Yeesls <0
n;—n?Sng(fea %)
mg — 1 < vg V(§ EE)
DsesTle =1
e > 0V (£ € B)
v >0V (¢ €E)

=<{mT= [nf]fEE

Multinomial Logit Model for Incorporating Discrete Choices

Passenger decisions are influenced by various factors, such as ticket price, departure time, trip duration, airport access
time/cost, service quality, and flight punctuality. Each factor contributes to the overall utility of a flight option, with
associated weights reflecting the relative importance perceived by passengers. Given the set of factor values V and
their corresponding weights B, the utility of each flight option is computed through a compensatory—non-
compensatory relationship as follows:

1
U=FWV,p)-» U=+ E BiV; + min B;V; (10)
2\ 4 7 ieg
134

where g is the set of factors, and ; and V; represents the weight and the normalized value of each factor, respectively.

After estimating the utility of each available flight option, discrete choice models (DCMs) can be applied to determine
the probability of passengers selecting a given alternative. A prominent DCM in air transportation research is the
Multinomial Logit Model (MNL), which serves as the foundation for this analysis (Cao, Kleywegt, & Wang, 2022;
Wei et al., 2020). This study employs an augmented version of the MNL model, named AMNL, in which the
sensitivity to utility is explicitly incorporated. This sensitivity parameter reflects passengers’ tendency to favor a high-
utility option over alternatives with lower utilities.
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Given a set £ of flight options offered by an airline, where U, denotes the utility of each flight [ € £ and U, represents
the utility of competing alternatives, the probability of selecting each option under the proposed AMNL model is
calculated as follows:

9\~
e (1—19>Ul

Dler e(%ﬁﬁ’ + e(%)”"

P = (11)

where 0 < 9 < 1 is the augmenting parameter to reflect passengers’ sensitivity to utility differences. As 9 increases,
passengers are more likely to choose the option with the highest utility; as it decreases, their selections become more
random based on uniform distribution. Using the selection probability of each flight option, the maximum attainable
market share for each option can be considered equal to its probability, while the total market share captured by all
options sums to one. This property allows AMNL function to be reformulated using linear relationships, which will
be used in the proposed optimization model.

Bi-level Programming for Decisions Interaction

In decision-making processes involving interactions between primary/tactical decisions (e.g., flight schedule
development) and secondary/operational decisions (e.g., ticket pricing), a nested optimization framework can
effectively capture their mutual dependencies. For this purpose, BLP models have been proposed (Kalashnikov,
Dempe, Pérez-Valdés, Kalashnykova, & Camacho-Vallejo, 2015). Specifically, BLP models possess a leader-follower
structure in which the outer/leader-level decisions must be optimized while considering the optimality of the
inner/follower-level decisions, and the inner-level optimization itself is conditioned on the leader’s decisions. This
action-reaction structure, also known as a Stackelberg game, enables the interaction between flight scheduling and
ticket pricing in a way that, first, flight schedule development takes into account ticket pricing optimization and the
pursuit of greater market share, and second, ticket pricing decisions are made with the consideration of the designed
flight schedule.

In general, BLP models are presented as follows:
max F; (xy; x3)
x1€81 (x5
s.t. 12)

x5 = argmax F,(x5; x;)
X2€82(x1)

In BLP Model (12), the optimal value of the upper-level objective function, F; (x;; x3), and its corresponding solution
space, S, (x3), depend on the optimal response of the lower-level decision variables (x3), whereas the feasible region
S, (x7) and the optimality status of the lower level are also influenced by the leader’s decision (x;).

One classical approach to solving the aforementioned BLP model involves replacing the optimality constraints of the
inner optimization problem, with equivalent Karush-Kuhn-Tucker (KKT) conditions. This reformulation converts the
BLP into a Mathematical Programming with Equilibrium Constraints (MPEC). Other solution approaches for BLP
models include heuristic search techniques and evolutionary heuristic algorithms (Calvete, Gale, & Mateo, 2008).
Moreover, in situations where the lower-level decisions directly affect either the feasible space or the objective value
of the upper-level problem, an interactive and iterative solution approach can be employed.

In the proposed interactive solution method, an initial solution for the upper-level problem is fed into the lower-level
problem. Given this fixed upper-level solution, the lower-level problem is solved to obtain the corresponding x;. The
obtained value of x; is then used to update the upper-level decision if necessary. This iterative process continues until
the upper-level decision no longer tends to change, at which point an equilibrium solution is reached.

Proposed Optimization Model and Solution Method

This section presents the mathematical formulation of the IFSTP problem, based on the proposed DRO and BLP
frameworks. It also describes the interactive, decomposition-based solution approach used to efficiently solve the
resulting model. All mathematical symbols and notation used in the formulation are summarized in Table 1.
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Table 1. Symbols used to problem formulation

Sets

A Set of airports.

M Set of air-travel O-D markets that can be served by the airline (M € A X A).

P Set of dayparts (Early Morning (4 AM - 8 AM); Morning (8 AM - 11 AM); Midday (11 AM - 2 PM);
Afternoon (2 PM - 6 PM); Evening (6 PM - 9 PM); Night (9 PM — 12 AM (Midnight)).

T Set of all 30-minute time segments in a day (7 = {1,2,3, ..., |T[}).

TP Subset of time segments belongs to daypart p € P during which a flight leg can depart the origin airport.

F Set of aircraft fleet types.

Loy Set of time-based replications of a flight leg can be executed to serve air-travel market m € M.

L Set of all potential flight to be executed to serve O-D market (£ = Umenr Lim)-

B Subset of airport for initial location of airline aircrafts.”

g Uncertainty set.

Py, Ambiguity Set.

Parameters

Ampe Demand for air-travel market m € M during daypart p € P (Uncertain).

T Probability distribution over uncertainty set

ME,, Maximum flight frequency can be operated to serve the market m € M during daypart p € P.

o} Fare of flight leg [ € £ to serve one demand of the corresponding market.

0Cy¢ Operating cost for flight leg [ € £ operated by fleet type f € F.

SCp, Setup cost of serving air-travel market m € M once.

(0, - D)) Origin and Destination airports of flight leg I € L serving an O-D market.

& Departure time of flight leg [ € L.

A, Duration of flight leg [ € L.

Vs Seating capacity, i.e., the number of seats, of each aircraft in fleet type f € F.

NAg Number of available aircraft of fleet type f € F.

SAgp Slot availability at airport a € A during daypart p € P.

GAgp Gate availability at airport a € A during daypartp € P.

Uimp Utility estimated for flight leg I € £ in serving demand d ..

Om Adjusting coefficient that represents the intensity of utility sensitivity in market m € M.

Tactical Decisions — Flight Scheduling and Fleet Assignment ( Upper-Level of BLP )

xXf Binary variable: if flight leg [ € L is assigned to fleet type f € F, 1; otherwise, 0.

Ny Frequency of flights to serve market m € M during daypart p € P. (dependent on x)

g,}a Number of ground aircraft belonging to the fleet f € F in space-time node (a,t) € V.

g?a Number of ground aircraft belonging to the fleet f € F initially located at airport a € A.

Operational Decision — Ticket Pricing and Market Share (Lower-Level of BLP)

Pis Price of flight leg [ € £ under scenario ¢ € E.

Simp Share of market can be achieved by flight leg [ € £ from demand &,

{l’g Auwuxiliary variable to determine capacity shortage of flight leg [ € £ under scenario ¢ € E.

R Operational revenue obtained by selling tickets.
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Proposed DRO-BLP Model for IFSTP Problem

In this section, the proposed BLP model, incorporating the DRO approach to handle uncertainty, is presented.
Constraints (13)-(23) represent the upper-level of BLP model, where the tactical decision-making for the flight
schedule is optimized. Constraints (24)-(29) formulate the lower-level problem of BLP structure, focusing on the
optimization of pricing decisions. It should be noted that the tactical flight scheduling decisions are treated as fixed
parameters in the lower-level model, while the market share outcomes derived from pricing decisions in the lower-
level model are considered fixed parameters in the upper-level model.

MAX R — Z Z SCMmyp + Z Z 0Cs x5, (13)

MEM peP fEF leL
Zxﬂgl V(l € L) (14)
feF
> Ha=Na; V(feR) (15)
a€B
0 _
Fra =0 (16)
fEF a€EA\B
gafca=gafc‘_ll+ Z xXf — Z xXf V(fEfF,an‘l,tET) (17)
leL: (§;=t—A; AD;=a) leL: (6;=t AO;=a)
xﬂ+z xf1 SSAap V(aEa‘l,pE:P) (18)
fEF 1eL: (5;€TP NOj=a) fEF IeL: (6;+A1€TP AD;=a)
xp < GAgp V(a€A,p €EP) (19)
fEF 1eL: (6;€TP AD;=a)
Nmp = Z Z xp V(M € M,p € P) (20)
fEF 1€Lyy:6,€TP
Ny < MFEpy, ¥V (m € M, p € P) (21)
fEF MEM peP
{ xp € {0,1} 23)
Nmp € Z+'g’jt”a € ngnga €EZy
MAX R — z g z PieCis (24)
§eE leL
R = min PRI IPIT (25)
eE leL MEM peP
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O Ve

€<m)ul Pie — Polg ~ (26)

Simps < N R 1+ V{leLmeM,pePEEE)
Zl/eL 6<1_’9m)ul’ + e(l_ﬂm)uo polf

Zﬁzmpfﬁl VimeM,peP,éEE) @7)
1€Lm
Z Z oyt Simps < Z ViE + (G V(L€ LEER) 28)
MmeM peP fEF
{plg’ € R, » Bimpe € Ry, Zl-'g; € R, (29)

Objective (13) aims to maximize profit, where R denotes the total ticket revenue obtained from the lower-level
optimization. Eq. (14) ensures that no more than one fleet type is assigned to any given flight. Constraints (15) and
(16) regulate the initial positioning of aircraft at their designated home bases. Constraint (17) enforces network flow
balance by managing the inflow and outflow of aircraft at each airport over time. Constraints (18) and (19) impose
airport slot and gate availability limits across different time intervals. Constraints (20) and (21) control the number of
flights operated in each O-D market and enforce upper bounds on flight frequency. Constraint (22) links the tactical
and operational layers by requiring that fleet assignment decisions accommodate the estimated passenger demand
derived from the pricing model. Finally, Constraint (23) defines the feasible domains of the tactical decision variables.

At the lower-level of BLP model, Constraint (24) formulates the operational objective function associated with the
average revenue generated from ticket sales, wherein the opportunity cost due to capacity shortages has also been
deducted. Constraint (25), based on DRO approach, calculate the expected profit under worst-case probability
distribution of uncertain demand. Passenger choice behavior is incorporated in Constraint (26) using the proposed
AMNL model, which estimates maximum market shares based on perceived utility and adjusts them according to

price differences relative to competitors (@). Constraint (27) ensures that the cumulative market share of all
01§

flights within each O-D market does not exceed one. Constraint (28) accounts for flight capacity limitations and
introduces an auxiliary variable (ZE to capture shortages. Finally, the feasible domains for the lower-level decision
variables (prices, market shares, and capacity shortages) are defined in Constraint (29). In the next section, an
interactive and decomposition-based solution method is presented to efficiently solve the proposed model.

Decomposition-based Column-and-Constraint Generation Method

To improve computational efficiency, particularly in large-scale planning problems, a decomposition-based solution
approach is adopted using CCG method. This technique has proven effective in solving robust optimization problems,
especially two-stage DRO models (Zeng & Zhao, 2013). Recent studies demonstrated that CCG algorithm often
outperforms traditional methods, such as Benders decomposition, in terms of convergence properties and efficiency
(Zujian Wang & Qi, 2020).

In CCG method for solving DRO models, the main problem is decomposed into a Relaxed Master Problem (RMP)
and one or more Sub problems (SubP). In RMP, the first-stage variables are optimized, and by solving the SubP, new
constraints (rows) corresponding to pessimistic uncertainty scenarios, along with optimal values for the second-stage
variables (columns), are generated and added to the RMP. It should be noted that in DRO models, the pessimistic
probability distributions are also generated iteratively and incorporated as new constraints in the evaluation of the
expected performance under the worst-case distribution.

The proposed DRO-BLP model can be compactly formulated as follows:
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maxR —c'x
x€S}
t.

S.
| max, R—P(G:0;) (30)

R = nng?l’?l z nfiR(p,‘S; 9;)
§e€E

where S denotes the set of constraints (14)-(23) at the upper-level, which also depends on the decisions .5 obtained

from the lower-level, and S?2 represents the feasible region resulting from constraints (25)-(29) at the lower-level,

which in turn depends on the flight schedule design decisions x from the upper level. Furthermore, the expressions

R —cTx and R — P({; ;) are the objective function values at the upper and lower levels, respectively, where
P((; 6;) captures the opportunity cost arising from insufficient flight capacity. Algorithm 1 shows the proposed

decomposition-based solution method based on CCG, coordinating the interactions between the upper-level and
lower-level decisions.

Algorithm 1. Proposed Column-and-Constraint Generation (CCG) Method
Input: DRO-BLP Model (30)

c={0},n’,=1,¢=—0,5=0,R =0, OPT=NO.

Output: Optimal decision (x*, p*,s*) , Optimal profit ¢*.

o Define RMP:
RMP:=maxR —c"x
xESZI

o Define SubP (Column/Variable s Generator)

SubP = max, R—P((;6g) s.t. R < TeeaTER(P,3;6¢) VY (c €C)
o Define Row/Constraint Generator

ETIDRA)IDI W

§eE leL MEM peEP
s.t.

ZU§S5V

é€E
Ty — g SV V(E €E)
T — e S v V(€ €E)

Zﬂ.’;:l

fez

While OPT =NO Do

Solve RMP;
% < argmaxRMP ;

Solve SubP under fixed Z;
(7,3,0) < argmax SubP;

Solve Constraint Generator under fixed p, 3;
7" © argmin Yeea s [Zzec I_Jlg Ymen Lpep dmplempf]"
m eRY,v eR
IfR—c"% > ¢ Then
peR-C"%
C e Ccufk};
kek+1;
Else OPT = YES;
End

End
x ez (p’,8) € (p,8); 0" < ¢;
Return (x*,p*, 8", ¢").
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Computational Result and Analysis

In this section, to investigate the applicability of the proposed DRO-BLP model for the IFSTP problem and to evaluate
the performance of the interactive and decomposition-based solution approach using CCG, we implement the model
on a case study of Iranian airlines as well as several randomly generated experimental instances.

Experimental Setup

Air tour airline (iranairtour.ir) is one of the Iranian carriers whose flight network is illustrated in Figure 3. The airline's
fleet consists of 4 Airbus A300-600 aircraft with a seating capacity of 224-273 passengers, 4 Airbus A310 aircraft
with a capacity of 245 passengers, 2 Airbus A320 aircraft with a capacity of 174—-180 passengers, and 6 McDonnell
Douglas MD-82 aircraft with a capacity of 158—163 passengers. In addition to this real case, 10 random test instances
is generated, whose scales are specified in Table 2. For all experimental instances, the earliest and latest departure
times are set to 4:00 AM and 12:00 AM (Midnight), respectively. Given that the day is divided into 30-minute time
slots, the total number of periods is |T°| = 40. For each of the six dayparts, early morning (4 AM — 8 AM), morning
(8 AM — 11 AM), noon (11 AM — 2 PM), afternoon (2 PM — 6 PM), evening (6 PM — 9 PM), and night (9 PM — 12
AM), the maximum flight frequency (M F,,,,) per O-D market is set between 2 and 4 flights. The slot access constraints

( SAgp) and gate access constraints (GAg,,) are set within the range of 5 to 10.

Considering that all flights are domestic, the maximum flight duration (4;) is assumed to be 2 hours, equivalent to
four time intervals of 30 minutes. The operational cost (OC;f) and setup cost (SC,,) for each flight are randomly
assigned within the ranges of 20-30 USD and 4-6 USD, respectively. The ticket price for each flight (p;) is also
randomly assigned within the range of 30-50 USD. Finally, the sensitivity-to-utility parameter (39,,,) is set to 0.5 for
the case study, while for the experimental instances it is randomly generated within the range [0, 1].

Table 2. The scale of test instances

Scales
Instances

Al Il Ll |F]) (e NAp)
1 10 30 1200 3 20
2 12 35 1400 3 25
3 15 40 1600 4 30
4 17 40 1600 4 35
5 20 50 2000 4 40
6 25 60 2400 5 45
7 30 70 2800 5 50
8 35 80 3200 6 60
9 40 90 3600 7 70
10 50 100 4000 8 80
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Figure 3. Domestic route network of Air tour airline (iranairtour.ir)
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To construct DAS required by the DRO model, a dataset of 365 observations is randomly generated for each
experimental instance. In the first phase of the proposed data-driven DRO approach, ML algorithm previously
described is applied to process these data and produce the initial nominal distribution via KDE and uncertainty
clustering using FCM. Figure 4 illustrates a simple 2-D example of this process with k = 10. Finally, the maximum
risk level issetto ¢ = 0.05 when constructing DAS, ensuring greater confidence that the true probability distribution
is covered.

To execute the experimental instances, a personal computer equipped with a Windows operating system, an Intel(R)
Core (TM) i7 CPU @ 2.50 GHz, and 16 GB of RAM is utilized. The optimization approach is implemented using the
academic version of the Gurobi solver in Python (GurobiPy).

3 .' ° ',:;.o%" ':g o0 ‘.c o
210 ..‘. *%. N ®o .
5 ° .?." : :."J. ..:.

; % . we ®

0 50 100 150 200 250

e 100
L S O-D market |

(a). Dataset (b). KDE to Estimate Nominal Distribution (c). Reference Distribution by KDE-FCM
Figure 4. Constructing a reference distribution using the proposed KDE-FCM method for DRO model

Evaluating the Robustness of Proposed DRO model

To evaluate the performance of the proposed data-driven DRO approach in the presence of uncertainty, we compare
it with two alternative methods: (i) the classical SP approach that relies solely on the nominal/empirical probability
distribution of uncertain parameters (SP-N), and (ii) the Expected Value Replacement (EVR) approach, which replaces
the uncertain parameters with their average expected values.

To this end, we simulate the realization of uncertain parameters in 15 independent scenarios; 10 of which are in-
sample and the remaining 5 are out-of-sample. In each realization, the profit is computed using each of DRO, SP-N,
and EVR approaches. The value of uncertainty modeling is assessed based on the following evaluation metrics:

1 15 ZSP-N _ ZEVR
VSP = 1—52 VSP, ; VSP, = 7R
i=1
1 15
VDR?'8 = —Z VDR}"® ZPRO — Z3PN
1540 VDR = —— e (31)
VDR™* = max VDR, !
i=1:15
1 2; — PR
VPI = 1—521 VPlL ; VP[L = W
=

where ZEVR, ZSP~N and ZPRO denote the profits obtained from the EVR, SP-N, and DRO approaches, respectively,
in each simulation of uncertain parameters, and Z; represents the maximum profit achievable under perfect
information.

The Value of Stochastic Programming (VSP) quantifies the average relative improvement in profit obtained by
adopting the SP-N approach over the EVR method. Next, the Distributional Robustness Values (VDR?9 and VDR™)
capture the relative performance gain achieved by introducing distributional robustness through the proposed DRO
approach as compared to the classical SP-N method. These indicators compute, respectively, the average and the
maximum achievable relative profit improvements due to DRO. Finally, the Value of Perfect Information (VPI)
compares the average profit obtained from the DRO solution with the profit under perfect information. This metric
indicates to what extent acquiring more information/data about the uncertain parameters or their tendency toward
being deterministic can be beneficial.
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Figure 5. Comparing the profit after 15 realization of uncertain parameters

As illustrated in Figure 5, SP-N approach generally outperforms EVR, and although DRO does not consistently
improve on SP-N, it typically yields higher profits with lower risk. In Table 3, the positive values of the VSS and
VDR metrics demonstrate the value of accounting for uncertainty and modeling it through the proposed DRO
approach. It is also observed that the DRO approach generally performs better under pessimistic conditions compared
to the classical SP approach, while their average performances are relatively close. Furthermore, the positive value of
VPI indicates that, despite the use of the data-driven DRO approach, increasing the amount of available data and
reducing the parameters’ uncertainty can enhance the average profit by 12.36%. The superior performance of DRO
approach is also validated across 10 additional test instances, as shown in Figure 6, where its higher robustness is
confirmed in terms of higher average profit and lower profit variance.
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Figure 6. Robustness performance of uncertainty programming paradigms

Table 3. Evaluation criteria to determine the value of robustness in uncertainty
Criteria
VSP VDR?'8 VDR™a*  VPI
10.20 2.86 1522  12.36

Finally, a sensitivity analysis of the risk level parameter € on the average profit of the proposed DRO approach has
been conducted. As seen in Figure 7, by varying the risk level within the range of 14% to 16%, more than a 25%
increase in the average profit can be achieved under the DRO approach, which can be considered an optimal calibration
of the risk level in constructing the ambiguity set for the DRO model.
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Figure 7. Optimal risk level in constructing ambiguity set for DRO model

The Benefits from Interaction Between Flight Scheduling and Pricing Decisions

This subsection examines the benefits reached by explicitly modeling the interaction between tactical flight scheduling
and operational ticket pricing decisions, particularly as influenced by passengers' sensitivity to utility (9,,). To this
end, the proposed model, which integrates AMNL and BLP components, is compared with non-interactive models
that ignore passengers' choice behavior.

Table 4 summarizes the results across all test instances and different levels of 9,,. As demonstrated, the proposed
interactive model consistently generates higher profits than non-interactive models, particularly when passengers
show greater sensitivity to flight utility. This improvement is achieved through the interaction of pricing and
scheduling decisions and the incorporation of passenger choice behavior. These results confirm the value of the
proposed approach in facilitating decision interaction and embedding choice behavior within the model.

Table 4. Comparison of the profit obtained by proposed interactive model relative to non-interactive model
Profit obtained by iterative and non-initiative models

Instance (9, < 0.35) (035 <9, <0.7) O > 0.7)
inu’e\ll'zzt-ive Interactive profit |'TlP>r0V€ imzzst-ive Interactive profit Imgrove imslrzst-ive Interactive profit Improve
profit (proposed mode) (5] profit (proposed mode) (¢B) profit (proposed mode) ()

1 713.17 744.62 441 681.52 751.24 10.23 662.70 720.94 8.79
2 895.88 923.42 3.07 895.18 976.49 9.08 882.94 920.41 4.24
3 1284.20 1394.87 8.62 1205.44 1428.87 18.54 1154.65 1262.48 9.34
4 1731.88 1844.87 6.52 1560.96 2006.36 28.53 1498.77 1761.28 17.52
5 1804.55 2059.10 1411 1702.84 2252.10 32.26 1619.53 1986.52 22.66
6 1864.98 221791 18.92 1819.25 2373.37 30.46 1808.84 2160.96 19.47
7 2003.16 2193.43 9.50 1836.64 2322.14 26.43 1768.60 2104.17 18.97
8 2155.75 2384.51 10.61 2120.92 2523.97 19.00 2035.18 2361.60 16.04
9 2782.24 3135.04 12.68 2579.37 3306.75 28.20 2558.51 3111.96 21.63
10 3734.13 4383.29 17.38 3466.62 4580.57 32.13 3316.54 4221.34 27.28

Computational Efficiency of Proposed CCG Method

As previously mentioned, the proposed DRO-BLP model can be solved by two methods. In the classical method, a
single-level model can be obtained through MPEC approach, which can be solved using linear programming solvers
such as Gurobi. In this section, the computational efficiency of the proposed interactive and decomposition-based
approach using CCG is evaluated and compared with the traditional MPEC method.

Both methods are applied to the test instances, with a time limit of 300 minutes for each run. Table 5 shows the
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resulting objective values and computational times. For small-sized instances, both approaches yield similar results,
although CCG method exhibits lower runtime. As problem size increases, the classical MPEC method not only
requires significantly more time, but also the quality of its objective value considerably deteriorates in comparison
with the proposed CCG-based method.

Table 5. Comparing the performance of proposed CCG relative to the classical MPEC for solving DRO-BLP model

MPEC-Guroble Pr_oposed CCC_; Profit improvement
Instance Profit  Run-time Profit Run-time o
(109) (min) (109 (min) ’
1 744.62 19.41 744.62 5.12 0.00
2 974.41 47.39 953.42 8.31 -2.15
3 1402.44 73,51 1394.87 19.41 -0.54
4 1844.87 149.41 1844.87 38.94 0.00
5 2141.19 235.41 2059.10 53.48 -3.83
6 2017.94 300 2217.91 79.57 9.91
7 1941.34 300 2193.43 92.64 12.99
8 2089.04 300 2384.51 107.28 14.14
9 2351.41 300 3135.04 114.74 33.33
10 3052.81 300 4383.29 134.86 43.58

Conclusion

Flight scheduling and fleet assignment represent critical tactical decisions in airline planning. When integrated with
operational decisions such as ticket pricing, they play a pivotal role in determining overall airline revenue and market
performance. This study investigates the interaction of flight scheduling and ticket pricing (IFSTP) problem, with the
objective of maximizing airline profitability under uncertain demand and passenger choice behavior.

To model passenger choice behavior, we developed an augmented multinomial logit (AMNL) model and applied a
bi-level programming (BLP) framework to coordinate scheduling and pricing decisions. To address demand
uncertainty, we proposed a data-driven distributionally robust optimization (DRO) approach, where the distributional
ambiguity set (DAS) was constructed using an £:-norm-based structure. This set was derived from historical demand
data using a machine learning algorithm that integrates kernel density estimation (KDE) and fuzzy C-Means clustering
(FCM).

The numerical results demonstrate the critical role of demand uncertainty in the IFSTP model. Ignoring uncertainty
not only increases profit volatility but also reduces average profitability significantly. A comparison between the
proposed data-driven DRO model and classical approaches shows that the proposed model outperforms traditional
stochastic programming methods in terms of profit robustness, particularly in out-of-sample scenarios. Furthermore,
assessing the interaction between scheduling and pricing decisions reveals that the proposed model, which accounts
for passenger choice behavior, consistently yields higher profit than non-integrated models, especially in markets with
greater sensitivity to flight utility. The evaluation of the proposed CCG solution method confirms its computational
efficiency, particularly for solving large-scale problem instances.

From a theoretical perspective, this research contributes a novel data-driven DRO framework and an interactive
decomposition-based solution methodology for solving bi-level programming problems, with potential applications
in other competitive decision-making contexts within transportation systems. In addition, the proposed AMNL model
captures passenger choice behavior and sensitivity to flight attributes. From a practical perspective, the proposed
DRO-BLP model serves as a robust and modern decision-support tool for airlines, enabling the integration of tactical
flight scheduling and operational pricing decisions while directly incorporating parameter uncertainty to derive robust
solutions. The CCG algorithm further ensures the computational tractability of large-scale instances.

For future research, one promising direction is to incorporate strategic-level fleet planning decisions and examine their
impact on schedule design. This would allow airlines to increase market share through optimal fleet investments and
flight schedule adjustments. Additionally, considering weather-induced disruptions in the flight schedule and
developing real-time rescheduling strategies could further enhance the practical applicability and attractiveness of the
proposed model for airline companies.
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