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Abstract 

In airline planning, tactical decisions related to flight schedule design and fleet assignment play a pivotal role in 

enhancing operational efficiency and maximizing revenue. On the other hand, ticket pricing, directly influencing 

market share, is inherently affected by the tactical flight timetable, market uncertainties, and passenger choice 

behavior. To jointly optimize tactical scheduling decisions and ticket pricing policies, and create optimal interaction 

between them, this paper proposes a modern data-driven decision-making framework that blends Distributionally 

Robust Optimization (DRO) with Bi-Level Programming (BLP). In this framework, leveraging historical data and 

machine learning algorithms, a distributional ambiguity set is first constructed to model uncertainty within the DRO 

framework. The BLP formulation then captures the interaction between flight scheduling (upper level) and ticket 

pricing (lower level). Additionally, passengers’ choice behavior is incorporated using a Multinomial Logit (MNL) 

discrete choice model. To address the computational complexity, a column-and-constraint generation (CCG) 

algorithm is adopted, enabling model decomposition and enhancing computational efficiency. Finally, the proposed 

model and solution framework are validated through a case study and a series of numerical experiments. Numerical 

results demonstrate that, compared to classical approaches, the proposed framework significantly improves market 

share and airline revenue, ensures robustness against uncertainty and passenger behavior variability, and enhances 

computational tractability. 

Keywords: Data-Driven Decision-Making; Distributionally Robust Optimization; Bi-Level Programming; Flight 

Scheduling; Ticket Pricing; Decomposition Method. 

Introduction  

Air mobility is a cornerstone of economic development, international trade, human connectivity, and global 

integration. Due to its exceptional speed and efficiency, the aviation sector plays an indispensable role in meeting 

origin-destination (O-D) travel demand and fostering a competitive environment for airlines. The enhanced 

accessibility and the rapidly growing demand for efficient transport services have considerably expanded air 

operations and improved the industry’s profitability. According to reports by the International Air Transport 

Association (IATA), over 5 billion passengers travel on commercial flights annually (IATA, 2019), and this number 

is projected to grow at an average annual rate of approximately 4.1% through 2045 (Zhou, Liang, Chou, & 

http://www.ijsom.com/
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Chaovalitwongse, 2020). This significant revenue potential has motivated airlines to adopt data-driven optimization 

methods, particularly those that explicitly address demand uncertainty and passenger preferences in their planning and 

decision-making processes. 

The airline industry is characterized by several distinct characteristics: resource constraints, high capital investment 

requirements, strict regulatory frameworks, a competitive and uncertain market environment, highly interdependent 

decisions, and complex planning processes. Therefore, a primary objective for airlines is to maximize the utilization 

of available resources, such as flight routes, aircraft fleets, crew rostering, and airport slots, by deploying advanced 

optimization models and leveraging data analytics within the operations research framework (Barnhart & Cohn, 2004; 

Wandelt et al., 2025). 

As shown in Figure 1, the airline planning process can be categorized across three decision‐making horizons: strategic, 

tactical, and operational. For the strategic horizon, long-term decisions such as fleet acquisition and network design 

are addressed. Subsequently, tactical decisions, including flight scheduling and fleet assignment, are made, followed 

by operational decisions related to resource allocation. Given their critical influence on efficiency and profitability, 

this study focuses on optimizing tactical planning decisions, particularly flight timetables and fleet assignment. 

Tactical flight planning comprises three interconnected subproblems: frequency planning, which determines the 

number of daily flights on each O-D pair; timetable development, which specifies the departure and arrival times for 

each flight; and fleet assignment, which involves allocating the appropriate aircraft to each scheduled flight. 

 

 

Figure 1. Decision optimization problem within airline planning process  

 

Due to the dynamic nature of the market, intense competition, and sensitivity to passenger behavior, airlines adopt 

decision‐support models only if they meet seven essential criteria: (1) integrated decision‐making, especially for 

flight‐scheduling decisions; (2) robustness, adaptability, and recoverability under uncertainty and operational 

disruptions; (3) competitive awareness, including the consideration of rivals’ actions ; (4) customer‐orientation, by 

incorporating passenger preferences to mitigate demand loss; (5) data-driven intelligence, achieved through analytics 

and machine learning; (6) coordinated pricing and revenue management, ensuring that pricing policies and flight‐

planning decisions interact effectively to maximize market share and profitability; and (7) computational efficiency, 

enabled by decomposition techniques and efficient solution algorithms. 
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Among these features, Decision integration is particularly critical. Modern flight-planning models that address 

interdependencies between scheduling and pricing avoid the inefficiencies inherent in decoupled approaches and thus 

enhance profitability (Grosche & Grosche, 2009). Moreover, the inclusion of discrete choice models to capture 

passenger decision behavior has gained considerable attention in recent research (Cadarso & Vaze, 2023). This study 

advances that trend by explicitly modeling the interaction between tactical flight planning and ticket pricing, 

addressing the essential requirements of competitiveness and revenue management coordination. 

Uncertainty modeling through data-driven analyses powered by machine-learning algorithms equips contemporary 

distributionally robust optimization (DRO) approaches with enhanced robustness properties and risk-mitigation 

capabilities (Bertsimas & Thiele, 2006; Özarık, da Costa, & Florio, 2024). To manage large-scale planning problems, 

decomposition-based algorithms (C. Yan, Barnhart, & Vaze, 2022) and metaheuristic search strategies have proven 

effective. 

Accordingly, the aim of this paper is to provide a modern data-driven decision-making framework for the integrated 

optimization of tactical flight planning and ticket pricing. The framework aligns with the seven key features noted 

above. It employs a machine-learning-enhanced DRO model to manage uncertainty and ensure solution robustness. 

Bilevel programming (BLP) is used to coordinate hierarchical decision levels, while passenger choice behavior is 

modeled using an advanced MNL formulation. Lastly, computational efficiency is achieved through the application 

of a column-and-constraint generation (CCG) decomposition technique. 

The rest of this paper is organized as follows. In Section 2, the relevant literature on airline planning and DRO models 

is reviewed. Section 3 formulates the optimization problem that captures the interaction between flight scheduling and 

ticket pricing decisions. Section 4 introduces the proposed methodological framework, which consists of data-driven 

DRO, BLP, MNL model, and CCG decomposition method. Section 5, based on the proposed methodological 

framework, presents the proposed model and solution method for the problem of joint optimization of flight scheduling 

and ticker pricing. Section 6 deals with the model implementation and result analysis. Finally, Section 7 concludes 

the paper and suggests some recommendations for future research directions. 

Relevant Literature  

This section provides a general overview of the relevant literature on airline planning problems. Since this research 

centers on airline tactical planning, we primarily focus on related works in this area. For a more comprehensive review 

of the entire airline planning process, the readers are referred to Eltoukhy, Chan, and Chung (2017) and Zhou et al. 

(2020). Furthermore, to specify the reason of selecting DRO approach, the various paradigms for optimization under 

uncertainty are classified. Finally, the research gaps which are filled through our contributions are summarized. 

Studies on Airline Planning 

The profitability of an airline is closely linked to its capacity to design flight schedules that effectively accommodate 

passenger demand in competitive markets. Lohatepanont and Barnhart (2004) is widely recognized as one of the 

pioneering and most influential works in the field of airline tactical planning, particularly addressing decisions related 

to schedule design and fleet assignment. Extending this research, Barnhart, Farahat, and Lohatepanont (2009) 

developed a fleet assignment model for specific sub-networks to improve the alignment between fleet capacity and 

demand. Further advancements were made by (Sherali, Bae, & Haouari, 2013), who proposed an integrated model 

combining schedule design, fleet assignment, and operational considerations such as aircraft rotation, maintenance, 

and flight rescheduling. 

Several studies, including (Sa, Santos, & Clarke, 2020) and (Birolini, Jacquillat, Cattaneo, & Antunes, 2021), 

addressed strategic decisions such as fleet planning and network design. One of the earliest and most frequently cited 

works on tactical decision-making in this domain is (Lohatepanont & Barnhart, 2004), which concentrates on schedule 

design and fleet assignment. Building on this foundation, Weide, Ryan, and Ehrgott (2010) introduced an iterative 

optimization approach for the operational scheduling of fleet and crew. Given the emphasis of this paper, the current 

review primarily focuses on the literature of tactical decision-making. 
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Understanding passenger choice behavior is essential for aligning tactical flight planning with market demand. As a 

crucial determinant of realized demand, passenger preferences directly influence the effectiveness of scheduling and 

fleet assignment decisions. In this regard, S. Yan, Tang, and Lee (2007) proposed a flight scheduling model that 

incorporates passenger preferences in competitive markets. Similarly, Wei, Vaze, and Jacquillat (2020) introduced an 

optimization framework that integrates passenger preferences, capturing how schedule design and fleet assignment 

affect ticket purchase decisions. C. Yan et al. (2022) further refined this approach by incorporating price-based 

substitution behavior in route and cabin class selection. 

Modeling uncertainty is critical for ensuring the robustness and reliability of airline operations. Stochastic 

programming and robust optimization are two well-established frameworks for decision-making under uncertainty. 

For instance, Sherali and Zhu (2008)  developed a two-stage stochastic model for fleet assignment that explicitly 

addresses demand uncertainty. Similarly, Kenan, Jebali, and Diabat (2018)  proposed a two-stage formulation for 

flight scheduling and fleet assignment, accounting for uncertainty in both demand and ticket pricing. 

More recent studies have explored integrated models that account for multiple planning dimensions. For example, 

Wei et al. (2020)  proposed a unified model for scheduling and fleet assignment, while Kiarashrad, Pasandideh, and 

Mohammadi (2021) introduced a nonlinear optimization model that integrates scheduling, fleet assignment, and ticket 

pricing, capturing competitive network effects. Kiarashrad et al. (2021)  addressed supply-demand interactions 

through an integrated model for flight scheduling, fleet assignment, and demand generation, employing a nested logit 

framework to represent competition between routes. C. Yan et al. (2022) utilized a decomposition approach to manage 

network complexity in schedule design and fleet assignment. At the operational level, Ben Ahmed, Hryhoryeva, 

Hvattum, and Haouari (2022) explored the integration of fleet assignment with aircraft rotation and crew scheduling. 

Lastly, Xu, Adler, Wandelt, and Sun (2024)  employed a game-theoretic framework to model competition among 

airlines and high-speed rail in the context of ticket pricing, schedule design, and fleet assignment. 

These studies underscore the evolution of airline planning research from isolated sub problems toward integrated, 

data-driven, and passenger-centric models. Nevertheless, important research gaps remain, which are addressed in the 

next section.  

Data-Driven Robust Optimization under Uncertainty  

The increasing availability of data forms the foundation for designing data-driven decision-making techniques for the 

uncertain decision problems (Yang, Xu, Gong, & Rekik, 2024). Data-driven methods outperform traditional SP and 

RO approaches by leveraging prior knowledge for more accurate modeling (Papadimitriou, 2016).  Data-driven 

decision-making is essential when historical data is available, as it provides a realistic representation of uncertainty 

sets using statistical tools, in contrast to the unrealistic assumptions, e.g., normal distribution,  of classical methods 

(Peng & Delage, 2024). Classical approaches typically rely on fixed, predetermined parameters, such as known means 

and variances, which may not accurately capture real-world complexity. In contrast, data-driven methods leverage 

empirical data to estimate these parameters, enhancing model robustness. 

As a modern data-driven approach for decision-making under uncertainty, data-driven robust optimization is a modern 

methodology improving optimality robustness and conservatism level by systematically incorporating historical or 

real-time data into robust optimization frameworks (Bertsimas & Thiele, 2006). Unlike traditional RO which depends 

on a priori theoretical assumptions to define uncertainty sets (Gorissen, Yanıkoğlu, & Den Hertog, 2015), DDRO 

employs statistical analysis, machine learning (ML), or distributionally robust techniques to construct 

uncertainty/ambiguity sets directly from empirical data. This paradigm enhances models’ adaptability to real-world 

variability while ensuring robustness against worst-case realization.  

While conventional DDRO models primarily focus on constructing uncertainty sets through ML algorithms or 

statistical hypothesis testing (Bertsimas, Gupta, & Kallus, 2018a; Han, Shang, & Huang, 2021; Shang, Huang, & You, 

2017; Zhang, Jia, He, & Chu, 2022), a more advanced paradigm leverages data to generate families of distributions 

for distributionally robust optimization models. Data-driven DRO approach synthesizes principles from RO and SP, 

ensuring robust expected performance under worst-case probability distributions while achieving enhanced 

performance guarantees across both in-sample and out-of-sample scenarios (Van Parys, Esfahani, & Kuhn, 2021).  
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DRO, as a modern extension of stochastic optimization models based on the distributional robustness characteristic, 

advances classical SP by optimizing decisions over an ambiguity set of probability distributions, thereby 

circumventing the risk of relying on a single, potentially misspecified, nominal distribution. The construction of an 

ambiguity set is a pivotal step in DRO models, as it delineates a family of probability distributions that are consistent 

with the observed data and are statistically similarly distributed. There exist several alternatives for generating this 

ambiguity set: (I) Moment-based approaches that utilize known statistical properties, such as means, variances, and 

higher-order moments (Delage & Ye, 2010); and (II) Distance-based or discrepancy-based methods that leverage 

various measures, such as metrics (e.g., Wasserstein (Gao, Chen, & Kleywegt, 2024; Mohajerin Esfahani & Kuhn, 

2018) ), φ-divergences (e.g., Kullback-Leibler (Ben-Tal, Den Hertog, De Waegenaere, Melenberg, & Rennen, 2013) 

), likelihood or statistical hypothesis test (Bertsimas et al., 2018a; Bertsimas, Gupta, & Kallus, 2018b; W. Liu, Yang, 

& Yu, 2023), total variation (Sun & Xu, 2016), and ℓ𝑝-norms (Huang, Qu, Gong, Goh, & Ji, 2020; Jiang & Guan, 

2018), to construct a set of distributions that are sufficiently close to a nominal/reference distribution and constrained 

by a predetermined maximum distance. For a more detailed review of alternative approaches for generating ambiguity 

sets in DRO models, the reader is referred to Rahimian & Mehrotra (2019), Van Parys et al. (2021), and Zude Wang, 

Jiang, Lin, Tao, & Chen (2024).  

DRO models have found diverse applications in various fields requiring robust decision-making under uncertainty. 

For instance: in finance, DRO enhances portfolio optimization and risk management (Costa & Kwon, 2022). 

Healthcare systems employ DRO for adaptive resource allocation and personalized treatment strategies under dynamic 

patient demands (Y. Wang, Zhang, & Tang, 2024). Transportation systems utilize DRO for network design, tactical 

planning, and traffic management (L. Liu, Song, Wang, & Zhang, 2022; C. Wang, Liu, Zhang, & Miao, 2024; R. Yan, 

Liu, & Wang, 2024). Supply chain operations apply DRO for strategic network design, optimal distribution, inventory 

control, and logistics management (Gilani & Sahebi, 2022; Gong & Zhang, 2022; Li, Liu, & Yang, 2024). Beyond 

these domains, DRO is increasingly adopted in energy systems (Lu & Zhou, 2024; Mohseni & Pishvaee, 2023; Zechen 

Wang, Liu, & Huo, 2025), manufacturing and production planning (Metzker, Thevenin, Adulyasak, & Dolgui, 2025; 

Razavi Al-e-hashem, Papi, Pishvaee, & Rasouli, 2022), pricing and revenue management systems (Chen & Hu, 2023; 

Qiu, Sun, Zhou, & Sun, 2023), confirming its broad applicability. This applicability motivates our research paper to 

adopt a novel data-driven DRO model to address uncertainty in the aviation industry. 

Research Gaps and Proposed Contributions 

An analysis of the existing literature reveals several critical gaps that warrant further investigation: (I) Limited 

integration across decision-making levels. (II) Inadequate modeling of passenger choice behavior. (III) 

Underutilization of data-driven optimization. (IV) Insufficient emphasis on computational efficiency. To fill these 

gaps, this study contributes to the literature on tactical flight planning through the following innovations: 

1. Integrated Optimization Framework: The paper develops a comprehensive model that simultaneously 

optimizes flight frequency, scheduling, and fleet assignment, while coordinating these tactical decisions with 

operational ticket pricing policies. The framework accommodates strategic and operational constraints, 

including route structure, fleet availability, slot and gate limitations, and passenger behavioral responses. 

2. Data-Driven Machine Learning Integration: A novel DRO approach is proposed, enriched with machine 

learning techniques to extract statistical insights from historical data. This hybrid approach enables the 

construction of a data-driven ambiguity set that enhances decision robustness against demand uncertainty. 

3. Enhanced Passenger Choice Modelling: Passenger decision-making is incorporated using an advanced MNL 

formulation, which considers booking decisions. The model supports tractability through appropriate 

linearization techniques, allowing for realistic yet computationally feasible analysis of passenger behaviour. 

4. Computational Tractability: a decomposition-based CCG method is adopted to efficiently solve the final data-

driven DRO model.  
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Problem Description  

This section formally describes the concern optimization problem, referred to as the Interaction of Flight Scheduling 

and Ticket Pricing (IFSTP). In the airline operations context, tactical flight planning serves as a bridge between 

strategic decisions, such as network design and fleet acquisition, and operational planning tasks, including aircraft and 

crew assignment. The primary objective at this stage is to maximize profitability by optimizing tactical decisions, 

namely flight frequency, timetable development, and fleet assignment, while adhering to various operational 

constraints such as fleet capacity, seating availability, and slot and gate limitations. 

In IFSTP problem, these tactical decisions are coordinated with operational ticket pricing strategies to enhance the 

attractiveness of the flight schedule, accounting for both demand uncertainty and the flexibility to adjust prices. The 

goal is to increase demand and improve market share through better alignment of schedule planning and price 

optimization. Consequently, IFSTP problem involves four interrelated decision variables: (i) determining flight 

frequency for each O-D air travel market across different periods; (ii) developing the flight timetable; (iii) assigning 

the appropriate fleet type to the selected flight; and (iv) setting operational ticket prices. Beyond satisfying strategic 

and operational constraints, the model must also ensure consistency in the space–time network, meaning that the 

arrival and departure of each fleet type at every airport and time period must be properly synchronized. 

One of the fundamental challenges considered in the IFSTP problem is the inherent uncertainty in travel demand. To 

address this, the model must provide a robust solution derived from historical data that not only aims to maximize 

expected performance but also mitigates risk under adverse demand scenarios. Importantly, tactical flight scheduling 

decisions are made before the realization of actual demand, whereas operational ticket pricing decisions can be 

adjusted adaptively once demand information becomes available. 

Another critical feature of the model is the explicit incorporation of passenger choice behavior, which significantly 

influences realized demand. Each flight itinerary is characterized by attributes such as ticket price, departure time, 

service level, and airport access time or cost. These attributes affect the perceived utility of each option, and their 

respective weights are used to estimate the probability that passengers will select a particular flight. This behavior is 

integrated into IFSTP problem to more accurately reflect market dynamics. In cases of mismatched supply and 

demand, or due to specific passenger preferences, some demand may be lost. However, such demand can potentially 

be recaptured through adjustments to the flight schedule or pricing strategies. 

In addition to demand uncertainty and passenger utility weights, other influential parameters include fleet capacities, 

airport constraints, flight durations, fixed and variable costs, and others, as summarized in Table 1. IFSTP model 

captures these factors to ensure practical feasibility and solution robustness. 

In IFSTP problem, the concept of interaction between flight scheduling and ticket pricing is represented as a 

hierarchical, Bi-level framework. At the outer level (the leader), tactical planning decisions, such as flight frequency, 

timetable, and fleet assignment, are optimized without complete knowledge of final demand or prices. At the inner 

level (the follower), pricing decisions are made in response to the upper-level decisions and the observed demand, to 

maximize revenue. The results of this lower-level optimization, including demand and revenue, are fed back into the 

upper level, which updates the flight schedule accordingly. This iterative process continues until convergence is 

achieved; i.e., when there is no longer an incentive to modify the flight schedule, yielding an integrated plan that is 

coherent with both market conditions and operational constraints. Next section provides the proposed solution 

framework to solve IFSTP problem. 

Proposed Data-Driven and Interactive Solution Framework  

To solve IFSTP problem, this study proposes a modern, data-driven decision-making framework that integrates 

advanced techniques from robust optimization, hierarchical modelling, and behavioral analysis. Specifically, the 

framework incorporates a data-driven DRO approach to capture uncertainty in O-D market demand, a BLP structure 

to model the interaction between scheduling and pricing decisions, an MNL model to represent passenger choice 

behavior, and a CCG algorithm to enhance computational efficiency through decomposition. Figure 2 illustrates the 

overall architecture of the proposed framework, and the key components are described below. 

 



Papi, Pishvaee and Sahebi 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.12, NO.4  

530 
 

 

Figure 2. Proposed methodological framework for solving IFSTP problem 

Data-Driven DRO for Decision-Making under Uncertainty  

In general, an optimization under uncertainty problem is expressed as follows: 

𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + ℛ(𝓍; 𝜃) (1) 

where 𝓍 ∈ 𝕏  represents the decision variables, and 𝜃 denotes the uncertain parameters. Additionally, 𝐹(𝓍) and 

ℛ(𝑥; 𝜃) represent the uncertainty-independent and uncertainty-dependent parts of the objective function, respectively. 
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If, in addition to 𝓍, wait-and-see variables are also included in Model (1), ℛ(𝑥; 𝜃) is determined by solving an inner 

optimization problem, known as the recourse problem, that depends on the first-stage variables 𝓍 and the observed 

uncertainty 𝜃.  

If a support set Θ for the uncertain parameters 𝜃, along with a specified probability distribution 𝑓Θ is available, SP 

approach is used, optimizing the expected performance under the distribution  𝑓Θ. If only the support set Θ is 

considered, and no probability distribution is available, RO approach optimizes the performance under the worst-case 

scenario within the support set Θ. Finally, in DRO, instead of a single probability distribution, a distributional 

ambiguity set (DAS) 𝒫 is constructed for 𝜃, especially based on historical data, and the expected performance of the 

system under the worst distribution belonging to 𝒫 is optimized. Therefore, the formulation of an uncertain 

optimization problem using SP, RO, and DRO approaches can be summarized as follows: 

𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + ℛ(𝓍; 𝜃)  Reformulation under Uncertain 𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⏟                       

{
 
 

 
 

SP ≔  𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + 𝔼𝑓Θ[ℛ(𝓍; 𝜃)]

RO ≔  𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + sup
𝜃∈Θ

{ℛ(𝓍; 𝜃)}

DRO ≔ 𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + sup
𝑓Θ∈𝒫

{𝔼𝑓Θ[ℛ(𝓍; 𝜃)]}

 (2) 

To construct the proposed data-driven DAS, we first consider 𝔇 = {𝜃𝑜 = (𝜃1
𝑜, 𝜃2

𝑜, … 𝜃𝑚
𝑜 ) | 𝑜 = 1,2, … , 𝑁} as the 

dataset available for the uncertain parameter 𝜃. Then, the Kernel Density Estimation (KDE) method is employed to 

define an empirical/nominal probability distribution. As a non-parametric technique, KDE does not require prior 

assumptions and estimates the probability distribution as follows (Parzen, 1962; Węglarczyk, 2018): 

𝑓Θ̃(𝜃) =
1

𝑁(∏ 𝒽𝑚
𝑀
𝑚=1 )

∑(∏𝒦(
𝜃𝑚 − 𝜃𝑚

𝑜

𝒽𝑚
)

𝑀

𝑚=1

)

𝑁

𝑜=1

 ;  𝜃 = (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑀) (3) 

where 𝒦(𝑢) =
1

√2𝜋
𝑒−𝑢

2/2 is a Gaussian kernel satisfying the conditions 𝒦(𝑢) ≥ 0 and ∫ 𝒦(𝑢)𝑑𝑢 = 1
𝑢∈ℝ

. 

Furthermore, 𝒽 > 0 denotes the smoothing parameter. Empirically, the smoothing parameter is set as 𝒽𝑚 = 𝜎𝑚̂ (
4

3𝑁
)

1

5
 

where 𝜎𝑚̂ represents the estimated standard deviation of the component 𝑚 in the dataset 𝔇 (Silverman, 2018). 

After constructing a nominal distribution from the available dataset, the ℓ1-norm is employed to measure the distance 

between probability distributions: 

dℓ1(𝑓Θ, 𝑔Θ) ≔ ‖𝑓Θ(. ) − 𝑔Θ(. )‖1 = ∫|𝑓Θ(𝜃) − 𝑔Θ(𝜃)|

𝜃∈Θ

𝑑𝜃  (4) 

Based on this, the following DAS is formulated to generate distributions close to the nominal distribution 𝑓Θ̃(𝜃): 

𝒫ℓ1 ≔ {𝑓Θ ∈ 𝔙(Θ)| ‖𝑓Θ(. ) − 𝑓Θ̃(. )‖1 ≤ 𝛿  , ∫ 𝑓Θ(𝜃)𝜃∈Θ
𝑑𝜃 = 1 } 

 
(5) 

where 𝑓Θ ∈ 𝔙(Θ) denotes a real-valued Borel-measurable function, whose distance from the empirical distribution 𝑓Θ̃ 

does not exceed 𝛿. 

To determine the parameter 𝛿 in a data-driven manner, Hoeffding’s inequality can be utilized, establishing that 

Prob (‖𝑓Θ̃ − 𝑓Θ‖1 ≤ 𝛿) ≥ 1 −  2 exp (−
2𝑁𝛿2∏ 𝒽𝑚

2𝑀
𝑚=1

𝐾2𝑀
). Thus, it can be concluded that, at a confidence level of 1 −

𝜖, the maximum distance between the true distribution of the uncertain parameters 𝜃 and the nominal distribution  𝑓Θ̃   

can be computed as (Hoeffding, 1994):  

𝛿 =
𝐾𝑀

∏ 𝒽𝑚
𝑀
𝑚=1

√
1

2𝑁
ln (

2

𝜖
) (6) 
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in which  𝐾 = sup
u∈ℝ

𝒦(u) . 

To account for disjunctions and multiple scenarios in the dataset 𝔇, and to enable second‐stage decision variables to 

adapt to each scenario, the dataset 𝔇 is classified into 𝜅 clusters using the Fuzzy C‐Means (FCM) algorithm (Bezdek, 

Ehrlich, & Full, 1984), thereby discretizing DAS defined in Equation (5). The optimal number of clusters 𝜅 is 

determined via a Golden‐Section Search that maximizes between‐cluster variance (BCV) while minimizing within‐

cluster variance (WCV). We then define the scenario set Ξ = {1,2, … , 𝜅} and construct the finite support set Θ as 

follows: 

Θ ≔ {𝜃𝜉 =
∑ 𝜇𝑜𝜉

∗ 𝜃𝑜𝑁
𝑜=1

∑ 𝜇𝑜𝜉
∗𝑁

𝑜=1

|𝜉 ∈ Ξ} (7) 

where 𝜇𝑜𝜉
∗  is the output of the FCM algorithm and represents the degree of membership of each observation to each 

cluster. For each scenario 𝜉 ∈ Ξ, the empirical probability 𝜋𝜉
0 =

1

∑ (∑ 𝜇
𝑜𝜉′
∗𝑁

𝑜=1 𝑓Θ̃(𝜃
𝑜))𝜅

𝜉′=1

∑ 𝜇𝑜𝜉
∗𝑁

𝑜=1 𝑓Θ̃(𝜃
𝑜) can be 

estimated using the derived KDE and the membership degrees of data points within the respective cluster. By 

aggregating these probabilities, the nominal discrete distribution 𝝅0 = [𝜋1
0, 𝜋2

0, … , 𝜋𝜅
0]⊤is considered as a substitute 

for Equation (3). Finally, the proposed DAS based on the norm ℓ1 is constructed as follows: 

𝒫ℓ1 = {𝝅 = [𝜋𝜉]𝜉∈Ξ
 ∈ ℝ+

𝜅 | ‖𝝅 − 𝝅0‖1 ≤ 𝛿 , 𝓮
⊤𝝅 = 1 } (8) 

where ℯ = [1,1, … ,1]⊤ is the unit vector, and 𝛿 represents the data-driven distance derived from Equation (6). 

Consequently, the proposed DRO model is formulated as follows: 

DRO ≔ 𝐦𝐢𝐧
𝓍∈𝕏

 𝐹(𝓍) + max
𝝅=[𝜋𝜉]𝜉∈Ξ

∈𝒫ℓ1

{∑𝜋𝜉ℛ(𝓍; 𝜃𝜉)

𝜉∈Ξ

}  𝑠. 𝑡.  𝒫ℓ1

=

{
 
 
 

 
 
 

𝝅 = [𝜋𝜉]𝜉∈Ξ

|

|

|

  
∑ 𝜐𝜉𝜉∈Ξ ≤ 𝛿

𝜋𝜉 − 𝜋𝜉
0 ≤ 𝜐𝜉  ∀ 〈𝜉 ∈ Ξ〉

𝜋𝜉
0 − 𝜋𝜉 ≤ 𝜐𝜉  ∀ 〈𝜉 ∈ Ξ〉

∑ 𝜋𝜉𝜉∈Ξ = 1

𝜋𝜉 ≥ 0 ∀ 〈𝜉 ∈ Ξ〉

𝜐𝜉 ≥ 0 ∀ 〈𝜉 ∈ Ξ〉 }
 
 
 

 
 
 

  

(9) 

Multinomial Logit Model for Incorporating Discrete Choices  

Passenger decisions are influenced by various factors, such as ticket price, departure time, trip duration, airport access 

time/cost, service quality, and flight punctuality. Each factor contributes to the overall utility of a flight option, with 

associated weights reflecting the relative importance perceived by passengers. Given the set of factor values 𝑽 and 

their corresponding weights 𝛽, the utility of each flight option is computed through a compensatory–non-

compensatory relationship as follows: 

𝑈 = 𝐹(𝑉, 𝛽) →  𝑈̂ =
1

2
(∑𝛽𝑖𝑉𝑖
𝑖∈ℐ

+min
𝑖∈ℐ

𝛽𝑖𝑉𝑖  ) (10) 

where ℐ is the set of factors, and 𝛽𝑖 and 𝑉𝑖 represents the weight and the normalized value of each factor, respectively. 

After estimating the utility of each available flight option, discrete choice models (DCMs) can be applied to determine 

the probability of passengers selecting a given alternative. A prominent DCM in air transportation research is the 

Multinomial Logit Model (MNL), which serves as the foundation for this analysis  (Cao, Kleywegt, & Wang, 2022; 

Wei et al., 2020). This study employs an augmented version of the MNL model, named AMNL, in which the 

sensitivity to utility is explicitly incorporated. This sensitivity parameter reflects passengers’ tendency to favor a high-

utility option over alternatives with lower utilities.  
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Given a set ℒ of flight options offered by an airline, where 𝑈𝑙̂ denotes the utility of each flight 𝑙 ∈ ℒ and 𝑈0̂ represents 

the utility of competing alternatives, the probability of selecting each option under the proposed AMNL model is 

calculated as follows: 

𝓅𝑙 =
𝑒
(
𝜗
1−𝜗

)𝑈𝑙̂

∑ 𝑒
(
𝜗
1−𝜗

)𝑈𝑙′̂
𝑙′∈ℒ  + 𝑒

(
𝜗
1−𝜗

)𝑈0̂

 (11) 

where 0 < 𝜗 < 1 is the augmenting parameter to reflect passengers’ sensitivity to utility differences. As 𝜗 increases, 

passengers are more likely to choose the option with the highest utility; as it decreases, their selections become more 

random based on uniform distribution. Using the selection probability of each flight option, the maximum attainable 

market share for each option can be considered equal to its probability, while the total market share captured by all 

options sums to one. This property allows AMNL function to be reformulated using linear relationships, which will 

be used in the proposed optimization model.  

Bi-level Programming for Decisions Interaction 

In decision-making processes involving interactions between primary/tactical decisions (e.g., flight schedule 

development) and secondary/operational decisions (e.g., ticket pricing), a nested optimization framework can 

effectively capture their mutual dependencies. For this purpose, BLP models have been proposed (Kalashnikov, 

Dempe, Pérez-Valdés, Kalashnykova, & Camacho-Vallejo, 2015). Specifically, BLP models possess a leader-follower 

structure in which the outer/leader-level decisions must be optimized while considering the optimality of the 

inner/follower-level decisions, and the inner-level optimization itself is conditioned on the leader’s decisions. This 

action-reaction structure, also known as a Stackelberg game, enables the interaction between flight scheduling and 

ticket pricing in a way that, first, flight schedule development takes into account ticket pricing optimization and the 

pursuit of greater market share, and second, ticket pricing decisions are made with the consideration of the designed 

flight schedule. 

In general, BLP models are presented as follows: 

{

max
𝑥1∈𝒮1(𝑥2

∗)
𝐹1(𝑥1; 𝑥2

∗) 

𝑠. 𝑡.
𝑥2
∗ = argmax

𝑥2∈𝒮2(𝑥1)
𝐹2(𝑥2; 𝑥1)

 (12) 

In BLP Model (12), the optimal value of the upper-level objective function, 𝐹1(𝑥1; 𝑥2
∗), and its corresponding solution 

space, 𝒮1(𝑥2
∗), depend on the optimal response of the lower-level decision variables (𝑥2

∗), whereas the feasible region 

𝒮2(𝑥1
∗) and the optimality status of the lower level are also influenced by the leader’s decision (𝑥1). 

One classical approach to solving the aforementioned BLP model involves replacing the optimality constraints of the 

inner optimization problem, with equivalent Karush-Kuhn-Tucker (KKT) conditions. This reformulation converts the 

BLP into a Mathematical Programming with Equilibrium Constraints (MPEC). Other solution approaches for BLP 

models include heuristic search techniques and evolutionary heuristic algorithms (Calvete, Gale, & Mateo, 2008). 

Moreover, in situations where the lower-level decisions directly affect either the feasible space or the objective value 

of the upper-level problem, an interactive and iterative solution approach can be employed. 

In the proposed interactive solution method, an initial solution for the upper-level problem is fed into the lower-level 

problem. Given this fixed upper-level solution, the lower-level problem is solved to obtain the corresponding 𝑥2
∗. The 

obtained value of 𝑥2
∗ is then used to update the upper-level decision if necessary. This iterative process continues until 

the upper-level decision no longer tends to change, at which point an equilibrium solution is reached. 

Proposed Optimization Model and Solution Method  

This section presents the mathematical formulation of the IFSTP problem, based on the proposed DRO and BLP 

frameworks. It also describes the interactive, decomposition-based solution approach used to efficiently solve the 

resulting model. All mathematical symbols and notation used in the formulation are summarized in Table 1. 
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Table 1. Symbols used to problem formulation 

Sets 

𝒜 Set of airports. 

ℳ Set of air-travel O-D markets that can be served by the airline (ℳ ⊆𝒜 ×𝒜). 

𝒫 Set of dayparts (Early Morning (4 AM - 8 AM); Morning (8 AM - 11 AM); Midday (11 AM - 2 PM); 

Afternoon (2 PM - 6 PM); Evening (6 PM - 9 PM); Night (9 PM – 12 AM (Midnight)). 

𝒯 Set of all 30-minute time segments in a day (𝒯 = {1,2,3,… , |𝒯|}). 

𝒯𝑝 Subset of time segments belongs to daypart 𝑝 ∈ 𝒫 during which a flight leg can depart the origin airport. 

ℱ Set of aircraft fleet types. 

ℒ𝑚 Set of time-based replications of a flight leg can be executed to serve air-travel market 𝑚 ∈ ℳ. 

ℒ Set of all potential flight to be executed to serve O-D market (ℒ = ⋃ ℒ𝑚𝑚∈ℳ ).   

ℬ Subset of airport for initial location of airline aircrafts.* 

Ξ Uncertainty set. 

𝒫ℓ1 Ambiguity Set. 

Parameters  

𝒹𝑚𝑝𝜉  Demand for air-travel market 𝑚 ∈ℳ during daypart 𝑝 ∈ 𝒫 (Uncertain). 

𝜋 Probability distribution over uncertainty set Ξ 

𝑀𝐹𝑚𝑝 Maximum flight frequency can be operated to serve the market 𝑚 ∈ℳ during daypart 𝑝 ∈ 𝒫. 

𝜌𝑙
0 Fare of flight leg 𝑙 ∈ ℒ to serve one demand of the corresponding market. 

𝑂𝐶𝑙𝑓 Operating cost for flight leg 𝑙 ∈ ℒ operated by fleet type 𝑓 ∈ ℱ. 

𝑆𝐶𝑚 Setup cost of serving air-travel market 𝑚 ∈ ℳ once. 

(𝑂𝑙 − 𝐷𝑙) Origin and Destination airports of flight leg  𝑙 ∈ ℒ serving an O-D market.  

𝛿𝑙 Departure time of flight leg  𝑙 ∈ ℒ. 

∆𝑙 Duration of flight leg  𝑙 ∈ ℒ.  

𝑉𝑓 Seating capacity, i.e., the number of seats, of each aircraft in fleet type 𝑓 ∈ ℱ.  

𝑁𝐴𝑓 Number of available aircraft of fleet type 𝑓 ∈ ℱ. 

𝑆𝐴𝑎𝑝 Slot availability at airport 𝑎 ∈ 𝒜 during daypart 𝑝 ∈ 𝒫.   

𝐺𝐴𝑎𝑝 Gate availability at airport 𝑎 ∈ 𝒜 during daypart 𝑝 ∈ 𝒫.   

𝑈̂𝑙𝑚𝑝 Utility estimated for flight leg 𝑙 ∈ ℒ in serving demand 𝒹̃𝑚𝑝.  

𝜗𝑚 Adjusting coefficient that represents the intensity of utility sensitivity in market 𝑚 ∈ℳ.  

Tactical Decisions – Flight Scheduling and Fleet Assignment ( Upper-Level of BLP ) 

𝓍𝑓𝑙  Binary variable: if flight leg  𝑙 ∈ ℒ is assigned to fleet type 𝑓 ∈ ℱ, 1; otherwise, 0.   

𝓃𝑚𝑝 Frequency of flights to serve market 𝑚 ∈ ℳ during daypart 𝑝 ∈ 𝒫. (dependent on 𝔁) 

ℊ𝑓𝑎
𝑡  Number of ground aircraft belonging to the fleet 𝑓 ∈ ℱ in space-time node (𝑎, 𝑡) ∈ 𝒩. 

ℊ𝑓𝑎
0  Number of ground aircraft belonging to the fleet 𝑓 ∈ ℱ initially located at airport 𝑎 ∈ 𝒜. 

Operational Decision – Ticket Pricing and Market Share (Lower-Level of BLP) 

𝜌𝑙𝜉  Price of flight leg  𝑙 ∈ ℒ under scenario 𝜉 ∈ Ξ. 

𝓈𝑙𝑚𝑝 Share of market can be achieved by flight leg  𝑙 ∈ ℒ from demand 𝒹𝑚𝑝𝜉 . 

𝜁𝑙𝜉
+  Auxiliary variable to determine capacity shortage of flight leg  𝑙 ∈ ℒ under scenario 𝜉 ∈ Ξ. 

ℛ Operational revenue obtained by selling tickets.   
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Proposed DRO-BLP Model for IFSTP Problem 

In this section, the proposed BLP model, incorporating the DRO approach to handle uncertainty, is presented. 

Constraints (13)-(23) represent the upper-level of BLP model, where the tactical decision-making for the flight 

schedule is optimized. Constraints (24)-(29) formulate the lower-level problem of BLP structure, focusing on the 

optimization of pricing decisions. It should be noted that the tactical flight scheduling decisions are treated as fixed 

parameters in the lower-level model, while the market share outcomes derived from pricing decisions in the lower-

level model are considered fixed parameters in the upper-level model. 

𝐌𝐀𝐗  ℛ − (∑ ∑𝑆𝐶𝑚𝓃𝑚𝑝
𝑝∈𝒫𝑚∈ℳ

+∑∑𝑂𝐶𝑓𝑙𝓍𝑓𝑙
𝑙∈ℒ𝑓∈ℱ

) (13) 

∑𝓍𝑓𝑙
 𝑓∈ℱ

≤ 1   ∀ 〈𝑙 ∈ ℒ〉    (14) 

∑ℊ𝑓𝑎
0

𝑎∈ℬ

= 𝑁𝐴𝑓   ∀ 〈𝑓 ∈ ℱ〉 (15) 

∑ ∑ ℊ𝑓𝑎
0

𝑎∈𝒜\ℬ𝑓∈ℱ

= 0 (16) 

ℊ𝑓𝑎
𝑡 = ℊ𝑓𝑎

𝑡−1 + ∑ 𝓍𝑓𝑙
𝑙∈ℒ∶ (𝛿𝑙=𝑡−∆𝑙  ⋀ 𝐷𝑙=𝑎)

− ∑ 𝓍𝑓,𝑙
𝑙∈ℒ∶ (𝛿𝑙=𝑡 ⋀𝑂𝑙=𝑎) 

   ∀ 〈𝑓 ∈ ℱ , 𝑎 ∈ 𝒜, 𝑡 ∈ 𝒯〉 (17) 

∑ ∑ 𝓍𝑓𝑙
 𝑙∈ℒ∶ (𝛿𝑙∈𝒯

𝑝  ⋀ 𝑂𝑙=𝑎)  𝑓∈ℱ

+ ∑ ∑ 𝓍𝑓𝑙
 𝑙∈ℒ∶ (𝛿𝑙+∆𝑙∈𝒯

𝑝  ⋀𝐷𝑙=𝑎)  𝑓∈ℱ

 ≤ 𝑆𝐴𝑎𝑝   ∀〈 𝑎 ∈ 𝒜 , 𝑝 ∈ 𝒫〉 (18) 

∑ ∑ 𝓍𝑓𝑙
 𝑙∈ℒ∶ (𝛿𝑙∈𝒯

𝑝  ⋀ 𝐷𝑙=𝑎)  𝑓∈ℱ

 ≤ 𝐺𝐴𝑎𝑝    ∀〈 𝑎 ∈ 𝒜 , 𝑝 ∈ 𝒫〉 (19) 

𝓃𝑚𝑝 = ∑ ∑ 𝓍𝑓𝑙
 𝑙∈ℒ𝑚:𝛿𝑙∈𝒯

𝑝 𝑓∈ℱ

  ∀〈𝑚 ∈ ℳ,𝑝 ∈ 𝒫〉 (20) 

𝓃𝑚𝑝 ≤ 𝑀𝐹𝑚𝑝 ∀ 〈𝑚 ∈ ℳ, 𝑝 ∈ 𝒫〉 (21) 

∑𝑉𝑓𝓍𝑓𝑙
 𝑓∈ℱ

≥ ∑ ∑𝒹𝑚𝑝𝜉𝓈𝑙𝑚𝑝𝜉
𝑝∈𝒫𝑚∈ℳ

 ∀ 〈𝑙 ∈ ℒ, 𝜉 ∈ Ξ〉 (22) 

{
𝓍𝑓𝑙 ∈ {0,1}

𝓃𝑚𝑝 ∈ ℤ+, ℊ𝑓𝑎
𝑡 ∈ ℤ+, ℊ𝑓𝑎

0 ∈ ℤ+
 (23) 

𝐌𝐀𝐗  ℛ −∑𝜋𝜉
0

𝜉∈Ξ

∑𝜌𝑙𝜉𝜁𝑙𝜉
+

𝑙∈ℒ

 (24) 

ℛ = min
𝝅 ∈𝒫ℓ1

∑𝜋𝜉
𝜉∈Ξ

∑𝜌𝑙𝜉 ∑ ∑𝒹𝑚𝑝𝜉𝓈𝑙𝑚𝑝𝜉
𝑝∈𝒫𝑚∈ℳ𝑙∈ℒ

 (25) 
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𝓈𝑙𝑚𝑝𝜉 ≤
𝑒
(
𝜗𝑚
1−𝜗

)𝑈𝑙̂

∑ 𝑒
(
𝜗𝑚
1−𝜗𝑚

)𝑈𝑙′̂
𝑙′∈ℒ  + 𝑒

(
𝜗𝑚
1−𝜗𝑚

)𝑈0̂

(1 +
𝜌𝑙𝜉 − 𝜌0𝑙𝜉

𝜌0𝑙𝜉
)    ∀ 〈𝑙 ∈ ℒ,𝑚 ∈ ℳ, 𝑝 ∈ 𝒫, 𝜉 ∈ Ξ〉 (26) 

∑ 𝓈𝑙𝑚𝑝𝜉
 𝑙∈ℒ𝑚

≤ 1   ∀ 〈𝑚 ∈ ℳ, 𝑝 ∈ 𝒫, 𝜉 ∈ Ξ〉 (27) 

∑ ∑𝒹𝑚𝑝𝜉𝓈𝑙𝑚𝑝𝜉
𝑝∈𝒫𝑚∈ℳ

≤ ∑ 𝑉𝑓𝓍𝑓𝑙
 𝑓∈ℱ

+ 𝜁𝑙𝜉
+  ∀ 〈𝑙 ∈ ℒ, 𝜉 ∈ Ξ〉 (28) 

{𝜌𝑙𝜉 ∈ ℝ+ , 𝓈𝑙𝑚𝑝𝜉 ∈ ℝ+, 𝜁𝑙𝜉
+ ∈ ℝ+  (29) 

Objective (13) aims to maximize profit, where ℛ  denotes the total ticket revenue obtained from the lower-level 

optimization. Eq. (14) ensures that no more than one fleet type is assigned to any given flight. Constraints (15) and 

(16) regulate the initial positioning of aircraft at their designated home bases. Constraint (17) enforces network flow 

balance by managing the inflow and outflow of aircraft at each airport over time. Constraints (18) and (19) impose 

airport slot and gate availability limits across different time intervals. Constraints (20) and (21) control the number of 

flights operated in each O-D market and enforce upper bounds on flight frequency. Constraint (22) links the tactical 

and operational layers by requiring that fleet assignment decisions accommodate the estimated passenger demand 

derived from the pricing model. Finally, Constraint (23) defines the feasible domains of the tactical decision variables. 

At the lower-level of BLP model, Constraint (24) formulates the operational objective function associated with the 

average revenue generated from ticket sales, wherein the opportunity cost due to capacity shortages has also been 

deducted. Constraint (25), based on DRO approach, calculate the expected profit under worst-case probability 

distribution of uncertain demand.  Passenger choice behavior is incorporated in Constraint (26) using the proposed 

AMNL model, which estimates maximum market shares based on perceived utility and adjusts them according to 

price differences relative to competitors (
𝜌𝑙𝜉−𝜌0𝑙𝜉

𝜌0𝑙𝜉
). Constraint (27) ensures that the cumulative market share of all 

flights within each O-D market does not exceed one. Constraint (28) accounts for flight capacity limitations and 

introduces an auxiliary variable 𝜁𝑙𝜉
+  to capture shortages. Finally, the feasible domains for the lower-level decision 

variables (prices, market shares, and capacity shortages) are defined in Constraint (29). In the next section, an 

interactive and decomposition-based solution method is presented to efficiently solve the proposed model. 

Decomposition-based Column-and-Constraint Generation Method  

To improve computational efficiency, particularly in large-scale planning problems, a decomposition-based solution 

approach is adopted using CCG method. This technique has proven effective in solving robust optimization problems, 

especially two-stage DRO models (Zeng & Zhao, 2013). Recent studies demonstrated that CCG algorithm often 

outperforms traditional methods, such as Benders decomposition, in terms of convergence properties and efficiency 

(Zujian Wang & Qi, 2020). 

In CCG method for solving DRO models, the main problem is decomposed into a Relaxed Master Problem (RMP) 

and one or more Sub problems (SubP). In RMP, the first-stage variables are optimized, and by solving the SubP, new 

constraints (rows) corresponding to pessimistic uncertainty scenarios, along with optimal values for the second-stage 

variables (columns), are generated and added to the RMP. It should be noted that in DRO models, the pessimistic 

probability distributions are also generated iteratively and incorporated as new constraints in the evaluation of the 

expected performance under the worst-case distribution. 

The proposed DRO-BLP model can be compactly formulated as follows: 
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{
 
 
 

 
 
 

𝐦𝐚𝐱
𝓍∈𝒮𝓈

1
 ℛ̅ − 𝑐⊤𝓍

𝑠. 𝑡.  
𝐦𝐚𝐱
𝜌,𝓈,𝜁∈𝒮𝓍

2
 ℛ̅ − 𝑃(𝜁; 𝜃𝜉)

ℛ̅ = min
𝝅∈𝒫ℓ1

[∑𝜋𝜉ℛ(𝜌, 𝓈; 𝜃𝜉)

𝜉∈Ξ

]

  (30) 

where 𝒮𝓈
1 denotes the set of constraints (14)-(23) at the upper-level, which also depends on the decisions 𝓈 obtained 

from the lower-level, and 𝒮𝓍
2 represents the feasible region resulting from constraints (25)-(29) at the lower-level, 

which in turn depends on the flight schedule design decisions 𝓍 from the upper level. Furthermore, the expressions 

ℛ̅ − 𝑐⊤𝓍 and ℛ̅ − 𝑃(𝜁; 𝜃𝜉) are the objective function values at the upper and lower levels, respectively, where 

𝑃(𝜁; 𝜃𝜉) captures the opportunity cost arising from insufficient flight capacity. Algorithm 1 shows the proposed 

decomposition-based solution method based on CCG, coordinating the interactions between the upper-level and 

lower-level decisions. 

Algorithm 1. Proposed Column-and-Constraint Generation (CCG) Method  
Input: DRO-BLP Model (30) 
 𝒞 = {0}, 𝝅𝟎 , = 1, 𝜑 = −∞, 𝓈 = 0, ℛ̅ = 0, OPT=NO.  
Output: Optimal decision  (𝓍∗, 𝜌∗, 𝓈∗) , Optimal profit 𝜑∗. 

 Define RMP: 

RMP ≔ 𝐦𝐚𝐱
𝓍∈𝒮𝓈

1
 ℛ̅ − 𝑐⊤𝓍 

 Define SubP (Column/Variable 𝓈 Generator) 

SubP ≔ 𝐦𝐚𝐱
𝜌,𝓈,𝜁∈𝒮𝓍

2
 ℛ̅ − 𝑃(𝜁; 𝜃𝜉)  𝑠. 𝑡.  ℛ̅ ≤ ∑ 𝜋̅𝜉

𝑐ℛ(𝜌, 𝓈; 𝜃𝜉)𝜉∈Ξ  ∀ 〈𝑐 ∈ 𝒞〉  

 Define Row/Constraint Generator  

𝐦𝐢𝐧
𝝅 ∈ℝ+

𝜅 ,𝝊 ∈ℝ+
𝜅
∑𝜋𝜉 [∑𝜌

𝑙𝜉
∑ ∑𝒹𝑚𝑝𝜉𝓈𝑙𝑚𝑝𝜉

𝑝∈𝒫𝑚∈ℳ𝑙∈ℒ

]

𝜉∈Ξ

𝑠. 𝑡.

∑𝜐𝜉
𝜉∈Ξ

≤ 𝛿 ∀

𝜋𝜉 − 𝜋𝜉
0 ≤ 𝜐𝜉  ∀ 〈𝜉 ∈ Ξ〉

𝜋𝜉
0 − 𝜋𝜉 ≤ 𝜐𝜉  ∀ 〈𝜉 ∈ Ξ〉

∑𝜋𝜉
𝜉∈Ξ

= 1

 

While OPT = NO  Do 

 Solve RMP; 

𝓍̅ ↩ argmaxRMP ; 
 
Solve SubP under fixed 𝓍̅; 

(𝜌,̅ 𝓈,̅ 𝜁)̅ ↩ argmax SubP ; 
 
Solve Constraint Generator under fixed 𝜌,̅ 𝓈̅; 

𝝅̅𝑘 ↩ 𝐚𝐫𝐠𝐦𝐢𝐧
𝝅 ∈ℝ+

𝜅 ,𝝊 ∈ℝ+
𝜅
∑ 𝜋𝜉 [∑ 𝜌

𝑙𝜉
∑ ∑ 𝒹𝑚𝑝𝜉𝓈𝑙𝑚𝑝𝜉𝑝∈𝒫𝑚∈ℳ𝑙∈ℒ ]𝜉∈Ξ ; 

 If ℛ̅ − 𝑐⊤𝓍̅  > 𝜑 Then 

 

𝜑 ↩ ℛ̅ − 𝑐⊤𝓍̅; 

𝒞 ↩ 𝒞 ∪ {𝑘}; 
𝑘 ↩ 𝑘 + 1; 

Else OPT = YES; 

End 

End 
𝓍∗ ↩ 𝓍̅; (𝜌∗, 𝓈∗) ↩ (𝜌,̅ 𝓈̅); 𝜑∗ ↩  𝜑; 
Return  (𝓍∗, 𝜌∗, 𝓈∗, 𝜑∗). 
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Computational Result and Analysis  

In this section, to investigate the applicability of the proposed DRO-BLP model for the IFSTP problem and to evaluate 

the performance of the interactive and decomposition-based solution approach using CCG, we implement the model 

on a case study of Iranian airlines as well as several randomly generated experimental instances. 

Experimental Setup  

Air tour airline (iranairtour.ir) is one of the Iranian carriers whose flight network is illustrated in Figure 3. The airline's 

fleet consists of 4 Airbus A300-600 aircraft with a seating capacity of 224–273 passengers, 4 Airbus A310 aircraft 

with a capacity of 245 passengers, 2 Airbus A320 aircraft with a capacity of 174–180 passengers, and 6 McDonnell 

Douglas MD-82 aircraft with a capacity of 158–163 passengers. In addition to this real case, 10 random test instances 

is generated, whose scales are specified in Table 2. For all experimental instances, the earliest and latest departure 

times are set to 4:00 AM and 12:00 AM (Midnight), respectively. Given that the day is divided into 30-minute time 

slots, the total number of periods is |𝒯| = 40. For each of the six dayparts, early morning (4 AM – 8 AM), morning 

(8 AM – 11 AM), noon (11 AM – 2 PM), afternoon (2 PM – 6 PM), evening (6 PM – 9 PM), and night (9 PM – 12 

AM), the maximum flight frequency (𝑀𝐹𝑚𝑝) per O-D market is set between 2 and 4 flights. The slot access constraints 

( 𝑆𝐴𝑎𝑝) and gate access constraints (𝐺𝐴𝑎𝑝) are set within the range of 5 to 10.  

Considering that all flights are domestic, the maximum flight duration (∆𝑙) is assumed to be 2 hours, equivalent to 

four time intervals of 30 minutes. The operational cost (𝑂𝐶𝑙𝑓) and setup cost (𝑆𝐶𝑚) for each flight are randomly 

assigned within the ranges of 20–30 USD and 4–6 USD, respectively. The ticket price for each flight (𝜌𝑙) is also 

randomly assigned within the range of 30–50 USD. Finally, the sensitivity-to-utility parameter (𝜗𝑚) is set to 0.5 for 

the case study, while for the experimental instances it is randomly generated within the range [0, 1]. 

Table 2. The scale of test instances 

Instances 
                           Scales                  

|𝒜| |ℳ| |ℒ| |ℱ|) (∑ 𝑁𝐴𝑓𝑓∈ℱ ) 

1 10 30 1200 3 20 

2 12 35 1400 3 25 

3 15 40 1600 4 30 

4 17 40 1600 4 35 

5 20 50 2000 4 40 

6 25 60 2400 5 45 

7 30 70 2800 5 50 

8 35 80 3200 6 60 

9 40 90 3600 7 70 

10 50 100 4000 8 80 

 

 
Figure 3. Domestic route network of Air tour airline (iranairtour.ir) 
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To construct DAS required by the DRO model, a dataset of 365 observations is randomly generated for each 

experimental instance. In the first phase of the proposed data-driven DRO approach, ML algorithm previously 

described is applied to process these data and produce the initial nominal distribution via KDE and uncertainty 

clustering using FCM. Figure 4 illustrates a simple 2-D example of this process with κ = 10. Finally, the maximum 

risk level is set to 𝜀 =  0.05 when constructing DAS, ensuring greater confidence that the true probability distribution 

is covered. 

To execute the experimental instances, a personal computer equipped with a Windows operating system, an Intel(R) 

Core (TM) i7 CPU @ 2.50 GHz, and 16 GB of RAM is utilized. The optimization approach is implemented using the 

academic version of the Gurobi solver in Python (GurobiPy). 

 
(a). Dataset 

 
(b). KDE to Estimate Nominal Distribution 

 
(c). Reference Distribution by KDE-FCM 

Figure 4. Constructing a reference distribution using the proposed KDE-FCM method for DRO model 

Evaluating the Robustness of Proposed DRO model 

To evaluate the performance of the proposed data-driven DRO approach in the presence of uncertainty, we compare 

it with two alternative methods: (i) the classical SP approach that relies solely on the nominal/empirical probability 

distribution of uncertain parameters (SP-N), and (ii) the Expected Value Replacement (EVR) approach, which replaces 

the uncertain parameters with their average expected values. 

To this end, we simulate the realization of uncertain parameters in 15 independent scenarios; 10 of which are in-

sample and the remaining 5 are out-of-sample. In each realization, the profit is computed using each of DRO, SP-N, 

and EVR approaches. The value of uncertainty modeling is assessed based on the following evaluation metrics: 

{
 
 
 
 
 

 
 
 
 
 VSP =

1

15
∑VSP𝑖

15

𝑖=1

                 ;  VSP𝑖 =
𝒵𝑖
SP−N − 𝒵𝑖

EVR

𝒵𝑖
EVR

[
 
 
 
VDRavg =

1

15
∑VDR𝑖

avg

15

𝑖=1

VDRmax = max
𝑖=1:15

VDR𝑖

     ;  VDR𝑖 =
𝒵𝑖
DRO − 𝒵𝑖

SP−N

𝒵𝑖
SP−N

 

VPI =
1

15
∑VPI𝑖

15

𝑖=1

             ;  VPI𝑖 =
𝒵𝑖
∗ −𝒵𝑖

DRO

𝒵𝑖
DRO

 (31) 

where 𝒵𝑖
EVR, 𝒵𝑖

SP−N and 𝒵𝑖
DRO denote the profits obtained from the EVR, SP-N, and DRO approaches, respectively, 

in each simulation of uncertain parameters, and 𝒵𝑖
∗ represents the maximum profit achievable under perfect 

information. 

The Value of Stochastic Programming (VSP) quantifies the average relative improvement in profit obtained by 

adopting the SP-N approach over the EVR method. Next, the Distributional Robustness Values (VDRavg and VDRmax) 

capture the relative performance gain achieved by introducing distributional robustness through the proposed DRO 

approach as compared to the classical SP-N method. These indicators compute, respectively, the average and the 

maximum achievable relative profit improvements due to DRO. Finally, the Value of Perfect Information (VPI) 

compares the average profit obtained from the DRO solution with the profit under perfect information. This metric 

indicates to what extent acquiring more information/data about the uncertain parameters or their tendency toward 

being deterministic can be beneficial. 



Papi, Pishvaee and Sahebi 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.12, NO.4  

540 
 

 
Figure 5. Comparing the profit after 15 realization of uncertain parameters  

As illustrated in Figure 5, SP-N approach generally outperforms EVR, and although DRO does not consistently 

improve on SP-N, it typically yields higher profits with lower risk. In Table 3, the positive values of the VSS and 

VDR metrics demonstrate the value of accounting for uncertainty and modeling it through the proposed DRO 

approach. It is also observed that the DRO approach generally performs better under pessimistic conditions compared 

to the classical SP approach, while their average performances are relatively close. Furthermore, the positive value of 

VPI indicates that, despite the use of the data-driven DRO approach, increasing the amount of available data and 

reducing the parameters’ uncertainty can enhance the average profit by 12.36%. The superior performance of DRO 

approach is also validated across 10 additional test instances, as shown in Figure 6, where its higher robustness is 

confirmed in terms of higher average profit and lower profit variance.  

 
Figure 6. Robustness performance of uncertainty programming paradigms  

Table 3. Evaluation criteria to determine the value of robustness in uncertainty    

Criteria 

VSP VDRavg VDRmax VPI 

10.20 2.86 15.22 12.36 

Finally, a sensitivity analysis of the risk level parameter 𝜖 on the average profit of the proposed DRO approach has 

been conducted. As seen in Figure 7, by varying the risk level within the range of 14% to 16%, more than a 25% 

increase in the average profit can be achieved under the DRO approach, which can be considered an optimal calibration 

of the risk level in constructing the ambiguity set for the DRO model. 
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Figure 7. Optimal risk level in constructing ambiguity set for DRO model  

The Benefits from Interaction Between Flight Scheduling and Pricing Decisions   

This subsection examines the benefits reached by explicitly modeling the interaction between tactical flight scheduling 

and operational ticket pricing decisions, particularly as influenced by passengers' sensitivity to utility (𝜗𝑚). To this 

end, the proposed model, which integrates AMNL and BLP components, is compared with non-interactive models 

that ignore passengers' choice behavior. 

Table 4 summarizes the results across all test instances and different levels of 𝜗𝑚. As demonstrated, the proposed 

interactive model consistently generates higher profits than non-interactive models, particularly when passengers 

show greater sensitivity to flight utility. This improvement is achieved through the interaction of pricing and 

scheduling decisions and the incorporation of passenger choice behavior. These results confirm the value of the 

proposed approach in facilitating decision interaction and embedding choice behavior within the model. 

Table 4. Comparison of the profit obtained by proposed interactive model relative to non-interactive model  

Instance 
 

 

Profit obtained by iterative and non-initiative models  

(𝜗𝑚 < 0.35)  (0.35 ≤ 𝜗𝑚 ≤ 0.7)  (𝜗𝑚 > 0.7) 

Non-

interactive 

profit 

Interactive profit 
(proposed mode) 

Improve 

)%( 

Non-

interactive 

profit 

Interactive profit 
(proposed mode) 

Improve 

)%( 

Non-

interactive 

profit 

Interactive profit 
(proposed mode) 

Improve 

)%( 

1 713.17 744.62 4.41 681.52 751.24 10.23 662.70 720.94 8.79 

2 895.88 923.42 3.07 895.18 976.49 9.08 882.94 920.41 4.24 

3 1284.20 1394.87 8.62 1205.44 1428.87 18.54 1154.65 1262.48 9.34 

4 1731.88 1844.87 6.52 1560.96 2006.36 28.53 1498.77 1761.28 17.52 

5 1804.55 2059.10 14.11 1702.84 2252.10 32.26 1619.53 1986.52 22.66 

6 1864.98 2217.91 18.92 1819.25 2373.37 30.46 1808.84 2160.96 19.47 

7 2003.16 2193.43 9.50 1836.64 2322.14 26.43 1768.60 2104.17 18.97 

8 2155.75 2384.51 10.61 2120.92 2523.97 19.00 2035.18 2361.60 16.04 

9 2782.24 3135.04 12.68 2579.37 3306.75 28.20 2558.51 3111.96 21.63 

10 3734.13 4383.29 17.38 3466.62 4580.57 32.13 3316.54 4221.34 27.28 

Computational Efficiency of Proposed CCG Method 

As previously mentioned, the proposed DRO-BLP model can be solved by two methods. In the classical method, a 

single-level model can be obtained through MPEC approach, which can be solved using linear programming solvers 

such as Gurobi. In this section, the computational efficiency of the proposed interactive and decomposition-based 

approach using CCG is evaluated and compared with the traditional MPEC method.  

Both methods are applied to the test instances, with a time limit of 300 minutes for each run. Table 5 shows the 
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resulting objective values and computational times. For small-sized instances, both approaches yield similar results, 

although CCG method exhibits lower runtime. As problem size increases, the classical MPEC method not only 

requires significantly more time, but also the quality of its objective value considerably deteriorates in comparison 

with the proposed CCG-based method. 

Table 5. Comparing the performance of proposed CCG relative to the classical MPEC for solving DRO-BLP model  

Instance  

MPEC-GurobiPy   Proposed CCG   
Profit improvement  

 )%( Profit 
 )310(  

Run-time 
 (min )  

 

 

Profit 
 )310(  

Run-time 
  (min) 

 

1  744.62 19.41  744.62 5.12  0.00 

2  974.41 47.39  953.42 8.31  -2.15 

3  1402.44 73.51  1394.87 19.41  -0.54 

4  1844.87 149.41  1844.87 38.94  0.00 

5  2141.19 235.41  2059.10 53.48  -3.83 

6  2017.94 300  2217.91 79.57  9.91 

7  1941.34 300  2193.43 92.64  12.99 

8  2089.04 300  2384.51 107.28  14.14 

9  2351.41 300  3135.04 114.74  33.33 

10  3052.81 300  4383.29 134.86  43.58 

Conclusion 

Flight scheduling and fleet assignment represent critical tactical decisions in airline planning. When integrated with 

operational decisions such as ticket pricing, they play a pivotal role in determining overall airline revenue and market 

performance. This study investigates the interaction of flight scheduling and ticket pricing (IFSTP) problem, with the 

objective of maximizing airline profitability under uncertain demand and passenger choice behavior. 

To model passenger choice behavior, we developed an augmented multinomial logit (AMNL) model and applied a 

bi-level programming (BLP) framework to coordinate scheduling and pricing decisions. To address demand 

uncertainty, we proposed a data-driven distributionally robust optimization (DRO) approach, where the distributional 

ambiguity set (DAS) was constructed using an ℓ₁-norm-based structure. This set was derived from historical demand 

data using a machine learning algorithm that integrates kernel density estimation (KDE) and fuzzy C-Means clustering 

(FCM). 

The numerical results demonstrate the critical role of demand uncertainty in the IFSTP model. Ignoring uncertainty 

not only increases profit volatility but also reduces average profitability significantly. A comparison between the 

proposed data-driven DRO model and classical approaches shows that the proposed model outperforms traditional 

stochastic programming methods in terms of profit robustness, particularly in out-of-sample scenarios. Furthermore, 

assessing the interaction between scheduling and pricing decisions reveals that the proposed model, which accounts 

for passenger choice behavior, consistently yields higher profit than non-integrated models, especially in markets with 

greater sensitivity to flight utility. The evaluation of the proposed CCG solution method confirms its computational 

efficiency, particularly for solving large-scale problem instances. 

From a theoretical perspective, this research contributes a novel data-driven DRO framework and an interactive 

decomposition-based solution methodology for solving bi-level programming problems, with potential applications 

in other competitive decision-making contexts within transportation systems. In addition, the proposed AMNL model 

captures passenger choice behavior and sensitivity to flight attributes. From a practical perspective, the proposed 

DRO-BLP model serves as a robust and modern decision-support tool for airlines, enabling the integration of tactical 

flight scheduling and operational pricing decisions while directly incorporating parameter uncertainty to derive robust 

solutions. The CCG algorithm further ensures the computational tractability of large-scale instances. 

For future research, one promising direction is to incorporate strategic-level fleet planning decisions and examine their 

impact on schedule design. This would allow airlines to increase market share through optimal fleet investments and 

flight schedule adjustments. Additionally, considering weather-induced disruptions in the flight schedule and 

developing real-time rescheduling strategies could further enhance the practical applicability and attractiveness of the 

proposed model for airline companies. 
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