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Abstract 

 

      In this study, a vendor-managed inventory model is developed for a single-vendor 

multiple-retailer single-warehouse (SV-MR-SV) supply chain problem based on the economic 

order quantity in which demands are stochastic and follow a uniform probability distribution. In 

order to reduce holding costs and to help balanced on-hand inventory cost between the vendor and 

the retailers, it is assumed that all inventory is held at a central warehouse with the lowest cost 

among the parties. The capacity of the central warehouse is limited. The objective is to find the 

warehouse replenishment frequency, the vendor's replenishment frequency, the order points, and 

the order quantities of the retailers such that the total inventory cost of the integrated supply chain 

is minimized. The proposed model is a mixed integer nonlinear programming problem (MINLP); 

hence, a genetic algorithm (GA) is utilized to solve this NP-hard problem. The parameters of the 

GA are calibrated using the Taguchi method to find better solutions. Some numerical illustrations 

are solved at the end to demonstrate the applicability of the proposed methodology and to evaluate 

the performance of the solution method. 
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1. Introduction 

 

Vendor managed inventory (VMI) is an industrial policy to integrate all parties of a supply chain 

to collaborate with each other. VMI is a well-known practice, in which the vendor manages 

inventory at the retailers and decides when and how much to replenish. Under a VMI policy, the 

vendor determines the time interval and the quantity of replenishments by accessing retailer’s 

inventory and demand data (Darwish & Odah 2010). A VMI system that is designed well can 

reduce inventory levels and raise supply chain integration through reducing system costs (Achabal 

et al. 2000; Angulo et al. 2004; Cetinkaya & Lee 2000).  

In the recent years, there has been an increasing interest in research on VMI to sustain its 

eminence performance practically as firms, suppliers, and vendors increasingly found out the 

interests of more adjacent collaboration and integration. In 1980s, Walmart and Procter and 

Gamble started their partnership under the VMI contractual agreements. Many retailers such as 

K-mart, Home Depot, and JC Penny then imitated it (Yao et al. 2007). 

In a traditional supply chain, each member attempts to minimize its inventory cost. However, 

when they employ the VMI policy, they aim to show that partnership is a way to reach 

coordination that helps members to align their decisions and reach to the minimum total cost of 

the supply chain (Cachon & Fisher 2000). Another flow of research focuses on operational profits 

as unifying shipments (Cheung & Lee 2002) and adjusting recent delivery rate (Chaouch 2001). 

The concentration of the research performed in this paper is the second aspect, however under 

probabilistic demands. 

Fry et al. (2001) showed how the VMI policy could be beneficial in coordination between 

production and delivery of a supply chain. Yao et al. (2007) investigated the advantages of using 

VMI in reducing a supply chain cost. Zhang et al. (2007) presented a single-vendor multi-retailer 

supply chain model under the VMI contract, in which the demand rate was assumed constant and 

the buyer`s ordering cycles were different. Liao et al. (2011) developed a multi-objective model 

for a location–inventory problem (MOLIP) under the VMI policy in a single-vendor multi-retailer 

supply chain and investigated the possibility of using a multi-objective version of the 

non-dominated sorting genetic algorithm (NSGA-II) to solve it. Coelho et al. (2012) examined the 

benefits of VMI in consistency requirements of a vehicle routing problem. They analyzed the 

effect of different inventory policies, routing decisions, and delivery sizes. Disney & Towill (2002) 

studied a supply chain under VMI, where vendor satisfies the retailer`s orders and controls 

retailer`s inventory by defining the order quantity and order time of the retailer. Yao & Dresner 

(2008) examined the benefits realized for manufacturers and retailers under VMI and compared 

the distribution of benefits between manufacturers and retailers. They showed that the distribution 

of benefits would depend on the replenishment frequency and the inventory holding cost 

parameters. 

Yao et al. (2007) proposed an analytical model for a single vendor-single retailer supply chain 

based on EOQ and showed VMI would reduce the total cost. Dong & Xu (2002) modeled a 

retailer`s inventory system with deterministic demands using EOQ. Darwish & Odah (2010) 

presented a one vendor-multiple retailer supply chain model under VMI. In this model, a penalty 

cost on exceeded inventory the vendor sends to the retailer was assumed, where the retailers 

determined the upper bound. They solved the problem using a heuristic algorithm to reduce 
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computational efforts. Pasandideh at el. (2011) extended Yao et al.'s (2007) model for several 

products, while the number of orders and the warehouse space were constrained. They solved the 

problem using a GA. Sadeghi et al. (2013) investigated a multi-vendor multi-retailer 

single-warehouse supply chain operating based on the VMI policy with considering certain 

demand at the retailers. In addition, to suite real-world inventory problems, Sadeghi et al. (2014) 

hybridized an inventory problem with a redundancy-allocation optimization problem. 

Bichescu & Fry (2009) examined decentralized supply chains that follow the (Q, R) inventory 

policies under VMI agreements. Within the VMI scenario, they examined the effect of divisions of 

channel power on supply chain and individual operator performance by examining different game 

theoretic models. Song & Dinwoodi (2008) modeled a supply chain problem with uncertain 

replenishment lead times and demands. They used dynamic stochastic programming and heuristic 

methods in their study. Zhao & Cheng (2009) studied a two-level VMI system containing a 

distributer center and a retailer, both of which follow the order-up-to-level replenishment policy to 

maximize their overall system profit. They showed the benefits of VMI`s implementation at both 

strategic and operational levels. 

In this paper, a single-vendor multiple-retailer single-warehouse model is developed wherein the 

vendor manages the inventory level of all the retailers. In this VMI, the demands at the retailers' 

level are uncertain, where the uncertainty is modeled by a uniform probability distribution. 

Moreover, in order to reduce holding costs and to help balanced on-hand inventory cost between 

the vendor and the retailers, it is assumed that all inventory is held at a central warehouse with the 

lowest cost among the parties. The capacity of the central warehouse is limited. We show that the 

proposed model is a mixed integer nonlinear programming problem (MINLP); an NP-hard 

problem for which exact methods is unable to solve. Hence, a genetic algorithm (GA) is employed 

to solve it. In addition, to find a better solution, the parameters of genetic algorithm are tuned 

using the Taguchi method. 

The rest of the paper is organized as follows: In Section 2, the notations and the assumptions are 

stated. In Section 3, the mathematical formulation of the problem is described. The GA solution 

approach is given in Section 4. A numerical example is presented in Section 5 to demonstrate the 

applicability of the proposed methodology. In Section 6, the Taguchi method is applied to tune the 

parameters of the meta-heuristic. Finally, in Section 7, conclusions and some further research are 

presented. 

 

2. The assumptions and notations 

 

The assumptions involved in the modeling are: 

1. A common replenishment cycle is assumed for all retailers. This is a reasonable 

assumption in which under the VMI policy the vendor makes decisions based on the 

inventory level, demand, and other supply chain data.   

2. A single limited-capacity central warehouse is assumed.  

3. All goods received by the retailers are sold to the customers. Hence, the annual demand of 

the retailers is equal to the one of the vendor (
1

n

i

i

D d


   ). 
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4. The vendor is responsible for the ordering cost of the retailers and determines their 

economic order quantities. 

5. The demands are probabilistic and follow a uniform distribution. 

6. The shortage is possible as backlogged. 

 

The indices, parameters, and the decision variables are: 

 i : Index for retailers ( 1,2,...,i n )  

n : Number of retailers 

i
x :  ith retailer`s demand during lead time; ( ( , )i i ix U a b  ) 

( ) :if x  The probability density function of the demand during lead time 

iz : A binary parameter to model shortages at retailers 

ip : ith retailer`s shortage cost per unit inventory 

D : Vendor`s expected demand rate  

id : ith retailer`s expected demand rate 

ik : Ordering cost of retailer i 

K : Ordering cost for the vendor 

Y : Vendor’s total order quantity 

:T  Retailers` planning period    

iy : ith retailer`s order quantity; i iy Td  (a decision variable) 

:WY Warehouse`s order quantity   

           m : Number of replenishments of a retailer by the vendor per unit time (a decision variable) 

           :N Replenishment frequency of vendor supplied by the warehouse per unit time (a        

decision variable) 

VI : Vendor's average inventory per unit time 

iR : Order point of retailer i (a decision variable) 

H : The unit holding cost of the vendor per unit time 

ih : The unit holding cost of ith retailer per unit time 

ih : The unit holding cost of ith retailer per unit time 

:f  Space required storing one unit of the demand 
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:F  The warehouse space 

:WH The unit holding cost of inventory in the warehouse per unit time 

Wk :  Ordering cost of the warehouse 

RTHC : The expected total holding cost of retailers 

RTSC : The expected total shortage cost of retailers 

RTIC : The expected total inventory cost of the retailers 

VTIC : The expected total inventory cost of the vendor 

VTOC : The expected total ordering cost of the vendor 

:WTHC The expected total holding cost of the warehouse 

:WTIC The expected total inventory cost of the warehouse 

VMITIC : The expected total inventory cost under the VMI policy 

As stated above, a vendor is assumed to supply several retailers in order to meet their customer`s 

demand. Also it is assumed that 
1

n

i

i

D d


 . In other words, as the vendor is responsible to 

determine the number of replenishments for the retailers under the VMI contract, he defines a 

unique T for all retailers, i.e. 1

1

yyi

d di

 . Moreover, in the three-echelon supply chain under 

investigation, a single central warehouse with limited capacity is assumed with a cost modeled in 

the next section. 

 

3. The mathematical model 

 

According to the VMI policy, the mathematical model should consist of three parts, one for the 

retailers, the other two for the vendor and the warehouse. Based on the common replenishment 

cycle, we have: 

1 1 1i i iy d y d T T      (1)                                                                                        

Assuming an equal annual demand for the vendor and all the retailers, the vendor`s order quantity 

is equal to the number of retailers' replenishments multiplied by their order quantities as 
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1 1

1

n

i

i

Y m y d d


            (2) 

 

In other words,  

1

n

i i

i

DT m d T


         (3) 

The overall cost of the VMI system consists of the vendor, the warehouse, and retailers' inventory 

costs as 

VMI R V WTIC TIC TIC TIC  
 (4) 

In what follows, RTIC
, VTIC

, and WTIC are derived. 

 

3.1.  Retailers' inventory cost  

 

In an integrated inventory system, the retailers' total inventory cost includes holding and shortage 

costs. The total holding costs of the retailers is: 

 
1 2

n
i

R i i i

i

d T
THC h R E x



 
   

 
            (5) 

Where, based on the uniform distribution, the expected number of items a retailer holds in its 

storage is 

 
2

i i
i

a b
E x


             (6) 

This cost is merged into the vendor's holding cost and it will be a part of vendor`s cost. Moreover, 

the total shortage cost of the retailers is: 

1

( ) ( )
i

i

bn
i i

R i i i i

i R

z p
TSC x R f x dx

T

 
  

 
 

         (7) 

Where iz  is a binary variable used to ensure Eq. (7) is ignored if the maximum demand during 

lead time for ith retailer is smaller than his reorder point. Hence, using Eq.s 5-7, the total annual 

inventory cost of the retailers is obtained using the following equation. 

 Retailers

1 1

( ) ( )
2

i

i

bn n
i i i

i i i i i i i

i i R

Td z p
TIC h R E x x R f x dx

T 

    
                

    (8) 

3.2.  Vendor’s inventory cost 

 

As the vendor`s ordering cost includes the retailers ordering cost and that the annual number of 

replenishments is D Y , the vendor's ordering cost is obtained by 
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   
1

n

V i

i

TOC K m k D Y


 
  
 

   (9) 

Moreover, according to Darwish et al. (2010) the average annual inventory of the vendor in this 

case is: 

  1 2VI m DT   (10) 

In which, 
1

n

ii
DT d T


 . Therefore, the annual holding cost of the vendor is: 

  1 2VHI H m DT   (11) 

Hence, the total annual inventory cost of the vendor is formulated as follows. 

1 1

1 1

2

n n

V i i

i i

m
TIC K mk H T d

mT 

   
     

  
    (12) 

3.3.  Warehouse’s inventory cost 

 

The order quantity of the warehouse ( WY ) is equal to summation of the shipped quantities to the 

vendor; 

W WY NY Y NDT    (13)                                                

Moreover, the warehouse`s ordering cost is obtained using Eq. (14). 

W
W

k
TOC

NmT
   (14) 

 To model the holding cost, the average inventory of the warehouse is equal 

to   1 2WI N Y  (similar to the vendor`s average inventory.) As a result, the holding cost of 

the warehouse is formulated as shown in Eq. (15).  

 

1

1

2

n
W

W i

i

H N
THC m Td




   (15) 

Consequently, the mathematical formulation of the problem at hand becomes: 

1 1

1 1

2

n n

VMI i i

i i

m
Min TIC K mk H T d

mT 

   
     

  
   

 
1 1

( ) ( )
2

i

i

bn n
i i i

i i i i i i i

i i R

Td z p
h R E x x R f x dx

T 

    
                

    (16) 

 

1

1

2

n
ww

i

i

H Nk
m Td

NmT 


    
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Subject to: 

 
 

 
 

2

1 1

1

1 1

2

1

1
2 2 2

n n
i i i i W

i

i i i i

n

W in n

i i i
i

i i

p z b RK k
k

m b a NM
T

H m N d
H h d

m d

 



 

 
     





  

 


 

  (17) 

 
1

; 1,2,...,
n

i

i

fNm Td F i n


     (18) 

i iy Td   (19)                                 

i i iR b z M    (20) 

 1i i iR b z M     (21) 

0&Integer  ; {1,2,3,..., }m i n     (22) 

; {1,2,3,..., }i iR y i n     (23) 

The mixed integer non-linear programming model presented above is derived for a single 

vendor-multiple retailer single-warehouse inventory system under the VMI policy in which there 

is a limited-capacity central warehouse. As a MINLP model is hard (if not impossible) to solve 

using an exact method, a GA is utilized in the next section for a near optimum solution. 

 

4. A solution algorithm 

 

Exact methods due to their time consuming computational processes are unable to solve MINLP 

problems of large sizes. This makes one to have no choice, except using an evolutionary algorithm 

(EA). For instance, Nachiappan & Jawahar (2007) employed a GA to find a near-optimum 

solution of a single-vendor multiple buyers supply chain problem under the VMI policy. Sue-Ann 

et al. (2012) compared the performance of a particle swarm optimization (PSO) algorithm to the 

one of a hybrid GA and artificial immune system (GA–AIS). Sadeghi et al. (2013) proposed a 

hybrid PSO as well as a GA to solve a multi-retailer multi-vendor single warehouse VMI 

inventory problem. 

As the good performance of GA has been proved in the literature to solve MINLPs, it is used in 

this study to find the solution of the problem at hand. To reach better solution, the parameters of 

the algorithm are calibrated using the Taguchi method.  

 

   4.1. Genetic algorithm 

 

GA is a type of evolutionary computation that mimics the principles of natural genetics. Holland 

(1962) was the first who introduced GA. This evolutionary search algorithm is based on the 
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principles of evolution and heredity. In what follows, the steps involved in the GA developed in 

this research are described. 

  

   4.1.1. Initial conditions 

 

In this step, the GA parameters, i.e. the population size Npop, the crossover probability Pc, the 

mutation probability Pm, the stopping criterion, the selection policy, the crossover operation, the 

mutation operation, and the number of iteration are set. Some of these parameters are tuned using 

the Taguchi method described in Section 5. 

 

   4.1.2. Chromosomes 

 

In GA, a chromosome is a series of genes that are possible appropriate or inappropriate solution of 

the problem. In this paper, a chromosome is a vector consisting of (n+4) positive integer elements 

(genes). The first gene represents the order quantity of the first retailer, y1, the second gene 

expresses the rate of replenishment, m, the third is the warehouse shipment rate to the vendor, N, 

and the other genes indicate the order points of all retailers. For a problem with four retailers, the 

chromosome structure is shown in Fig. 1. 

 

1 1 1 2 3 4

1 22 43 12 11 7 8 12

z y m N R R R R 
        
 
  

 

Figure 1. A typical chromosome 

 

   4.1.3. Initial population and evaluation 

 

In optimization problems, the fitness value used to evaluate a chromosome is the value of the 

objective function. Chromosomes are generated randomly to create the initial population 

consisting of Npop chromosomes. However, some of them may be not feasible, i.e. may not satisfy 

the constraints. In order to generate feasible chromosomes, the death penalty approach is taken in 

this paper. In this method, a big value is added to the objective function value of any infeasible 

chromosome. In this case, the constrained optimization problem becomes a non-constraint 

problem. 

 

   4.1.4. Crossover 

 

In a crossover operation, a pair of chromosomes mates to form offspring. The pair is selected 

randomly from the generation with probability Pc. While there are many different types of 

crossover operators, a two-point crossover operator is used in this paper. An example of this 

operation is shown in Fig. 2 for a 4-retailers problem. Note that two steps are shown in this figure; 

(1) selecting two random points for the cut, and (2) displacing the string between the cut-off 

points of the two parents; leading to the creation of two offspring. 
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[0 3 22 44 55 12 13 16] [0 3 22 23 67 12 13 16]

[1 23 1 44 55 14 13 16][1 23 1 23 67 14 13 16]

Parents Offspring

 


 

 

Figure 2. An example of the crossover operation 

 

    4.1.5. Mutation 

 

Mutation is the second operation in a GA to prospect new solutions. It operates on each of the 

chromosomes resulted from the crossover operation. In mutation, a gene is replaced with another 

gene randomly with probability Pm. Fig. 3 shows a representation of the mutation operator for a 

4-retailer problem. 

 

 

[0 3 22 44 55 12 13 16] [0 3 22 78 55 12 13 16]

[1 23 1 23 67 14 13 16] [1 23 1 23 67 37 13 16]

Parents Offspring


 

Figure 3. An example of the mutation operation 

 

    4.1.6. Chromosome selection 

 

In this step of the GA methodology, chromosomes are selected for the next generation. The 

selection performs with respect to the fitness value of the chromosomes. The roulette wheel 

selection method is used in this paper to select Npop chromosomes with the best fitness values 

among the parents and offspring. 

 

    4.1.7. Stopping criterion 

 

In the last step of GA, we test whether the method has found a solution that meets the user’s 

expectations. In this paper, we stop when a convergence is observed in 150 iterations. This is an 

arbitrary condition defined in this research. Note that this parameters of GA is calibrated using the 

Taguchi method (Taguchi et al. 2005.) 
 

5. Parameter tuning 

 

The quality of the solution obtained by employing a meta-heuristic algorithm is significantly 

impressed by its parameters. Hence, their calibration will improve the quality of the solution 

obtained. The parameters to be calibrated act as controllable factors in design of experiments 

(DOE) (Montgomery 2005). As the required number of experiments in the Taguchi method is less 
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than the one in response surface methodology (RSM), the first is utilized in this paper. This is an 

usual approach taken by many authors such as Naderi et al. (2009) and Rahmati et al. (2013) to 

tune the parameters of their meta-heuristic algorithms. 

 

   5.1. The Taguchi method 

 

Taguchi (1993) introduced a family of fractional factorial matrices to reduce the number of 

experiments required to determine the optimal levels of the factors that significantly affect a 

response. He categorized the factors into two main classes: 1) controllable factors, and 2) noise 

factors. While omitting the noise factors is impossible, Taguchi attempted to minimize the effects 

of the noise factors and to determine the optimal levels of the significant controllable factors. 

Taguchi changes the repetitive data to the values which measure the variation of the results, 

defined as the ratio of the signal (or controllable factors) to noise (S/N). According to the type of 

the problem, there are three standard values for this ratio, (S/N), including: 

 

1. Nominal is the best with the aim of reducing the amount of variability around a specific 

objective value. In this case the S/N is defined as 

2

1

1
10log ( )

n

T i

i

SN y y
n 

 
   

 
  (24) 

2. Smaller is the better; it is used for experiments whose objective function is the 

minimization type. In this case the S/N is defined as 

2

1

1
10log

n

S i

i

SN y
n 

 
   

 
  (25) 

3. Larger is the better; it is used for experiments whose objective function is the 

maximization type. The S/N is defined here as 

2
1

1 1
10log

n

L

i i

SN
n y

 
   

 
  (26) 

In Eq.s (24)-(26), n denotes the number of iterations, iy  represents the obtained response in ith 

iteration, and y  is the average response in all iterations. Note that as the objective function of the 

problem at hand is of a minimization type, the smaller is the better-type in Eq. (25) is used in this 

research. 

 

 

   5.2. Taguchi method implementation 

 

The Taguchi implementation is taken place in 5 steps. First, the parameters that affect the response 

significantly are defined. Second, the levels of the parameters are determined via a trial and error 

process. Third, in this step, the smallest orthogonal array is chosen to minimize the 
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experimentation time. Fourth, the obtained design is used to find a solution. Finally, the results are 

analyzed based on the (S/N) measure.  

The GA parameters that affect the solution significantly are the population size (Npop), the 

maximum number of iterations (It), the mutation probability (Pm), and the crossover probability 

(Pc). In Table 1, the three levels of these parameters that are obtained using a trial and error 

procedure are shown. 

Table 1. GA parameters and their levels 

Variable  Level 

 It  1000 1250 1500 

Npop  150 175 200 

Pc  0.8 0.9 0.9 

Pm  0.25 0.28 0.3 

 

With reference to the Taguchi standard arrays table, the 
9
L  orthogonal arrays, as the most suitable 

design, is used to tune the GA parameters. Table 2 contains the input data for a 5-retailers problem 

as an example. For this example, the experimental results of five replications along with their (S/N) 

ratio are shown in Tables 3 for GA. In this table, the values 1, 2, and 3 correspond to the three 

levels of each parameter. The graph of the convergence path using the fitness values is presented 

in Fig. 4. 

Table 2. Input data 

 

 

 

 

 

 

 

 

Table 3. Experimental results to tune the GA parameters 

 

K ai bi ki di hi H Pi f F KW HW n  

639 35 77 198 827 15 4 57 3 64000 4 5 5  

 36 74 172 864 14  53       

 50 79 179 983 9  30       

 28 69 213 825 14  40       

 22 76 118 995 9  57       

It Npop Pc Pm y1 y2 y3 y4 y5 Mean S/N 

1 1 1 1 266.5811 263.575 268.7814 271.9583 307.0514 275.5894 -888198 

1 2 2 2 261.7221 262.0681 263.5078 262.421 272.4388 264.4316 -884473 

1 3 3 3 261.1465 261.983 262.3587 301.9879 261.9876 269.8927 -886392 

2 1 2 3 261.8148 272.0891 286.13 301.0232 273.3002 278.8715 -889182 

2 2 3 1 267.8594 265.2474 301.5537 272.0477 264.793 274.3002 -887756 

2 3 1 2 271.8853 262.1761 261.5101 261.3584 286.9312 268.7722 -885936 

3 1 3 2 286.5286 273.949 286.2794 265.1224 288.676 280.1111 -889512 

3 2 1 3 262.0594 315.1842 261.8402 261.7201 263.3491 272.8306 -88744 

3 3 2 1 272.2148 261.4263 288.5894 262.4702 273.7274 271.6856 -88687 
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                     Figure 4. The graph of the convergence path 

 

Figure 5 depicts the average (S/N) ratios obtained in Tables 3. As lesser values of (S/N) ratio is 

desired, then based on Fig. 5 the optimal values of GA parameters are obtained as: It=1500; 

Npop=200; Pc=0.9; Pm=0.3. 

 

 

                   Figure 5. The average S/N ratio for GA vs. different values of its parameters 
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Consequently, the GA solution based on its tuned parameters is shown in Table 4. 

Table 4. The solution obtained using parameter-tuned GA 

 

 

The total annual 

inventory costs obtained 

by GA in 10 independent 

replications are presented      in Table 5.  

 

Table 5. GA Result 

 

 Table 5. Continued 

 
 

Y1 zi R1        R2        R3         R4       R5 N m  

186 1 37        41        36        42      38 1 6  

116 0 47        52        58        43         60 4 6  

112 0 43       45        34        44         45 6 6  

155 0 42        48        34        47         41 2 6  

178 0 38        43       33        44         35 1 6  
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Note that in this research all programs are coded in MATLAB 2012 and that a PC with 4 HZ, Core 

i3 CPU is used to run the programs in Windows 7. 

  

      6. Conclusion and future research 

 

In this paper, an integrated stochastic inventory model in a one-vendor multi-retailer 

single-warehouse three-echelon supply chain was developed with respect to the vendor managed 

inventory policy. In this model, retailers faced stochastic demands and there was a 

limited-capacity central warehouse. The aim was to determine the time, the number of the 

retailers' inventory replenishments, the replenishment quantities, the reorder points, and the 

replenishment frequency of the warehouse such that the total cost of the chain would be 

minimized. As this model shown to be of a non-linear mixed-integer programming; hard to be 

solved using exact methods, a genetic algorithm was utilized for a near-optimum solution. While 

the parameters of the algorithm were tuned using the Taguchi method, we showed that GA was an 

efficient algorithm to solve the problem. 

For future research in this area, we recommend the following: 

 

a. Calibrating the parameters of the algorithm using another statistical method such as 

RSM 

b. Extending the model for multi-vendo, multi-retailer, multi-warehouse, three echelon 

supply chains  

c. Using other algorithms such as imperialist competitive algorithm, to solve the problem 

d. Investigating the effects of using discount or inflation 
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