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Abstract 

Green logistics is developed due to the rise of the negative effect of logistics on the environment; and notably the 

transportation sector. To find advantageous solutions to both business and the environment, some governments require 

incorporating new environmental limits and objectives studying the vehicle routing problems. In this context, a 

particular NP-hard problem in this paper is studied called the Capacitated Hybrid Vehicle Routing Problem. We 

proposed an integer linear program for the capacitated case and we developed a Random General Variable 

Neighbourhood Search algorithm, which can handle the problem with a significant number of customers. We solved 

small instances with mutually the standard solver CPLEX and with our proposed algorithm. Outcomes show that our 

approach provided the same results for 55 % of the cases and superior solutions for 40 % of the instances compared 

to the results provided by CPLEX. In parallel, we modify a large set of benchmark instances proposed in previous 

works by introducing the product demand of each customer and we solve it by the Random General Variable 

Neighbourhood Search algorithm. Results of numerical testing show that our method delivers the best-known 

solutions in computation times of just 3 seconds on average.  

Keywords: Green Vehicle Routing Problem; Capacitated Vehicle Routing Problem; Variable Neighborhood Search; 

General Variable Neighborhood Search. 

1. Introduction  

For many years, diminishing the total cost of transportation was a significant task for companies that led to enhanced 

performance and increased profit. Hence, the vehicle routing problem (VRP) has become an attractive topic and one 

of the most considered combinatorial optimization problems. A significant modification in human life using 

technologies, especially in the transportation sector, provides many advantages regarding time, safety, and comfort. 

Although, this causes enormous damage to the environment. Some researchers have tried to demonstrate the 

importance of adopting Green Logistics practices including transportation, packaging, and inventory management, as 

shown by Akubia et al. (2025). Consequently, some governments require logistics companies to incorporate new 

environmental constraints and objectives into vehicle routing problems in order to achieve both business and 

environmentally friendly solutions, which has led to the emergence of the Green VRP concept (G-VRP) as a 

progression from the classical VRP by Erdogan and Miller-Hooks (2012). Various works have been studied on the G-

VRP among others, including those by Jamshidian et al. (2021), Alinaghian et al. (2021), Luo et al. (2023), Shan et 

al. (2025) and Wu et al. (2025). Further details about the G-VRP can be found in the work of Garside et al. (2024). 

http://www.ijsom.com/
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Mancini (2017) introduced a new continuation of the classical G-VRP, named the Hybrid VRP (H-VRP) respects the 

same objectives as the G-VRP however; it uses Hybrid Vehicles (HV) a type of vehicle that can overcome the 

constrained number of charging stations since it uses hybrid sources of energy. In his study, Mancini considered 

vehicles without capacity limits, which is unrealistic. Hence the idea of integrating this capacity constraint into the 

mathematical formulation. 

Therefore, in this paper, we studied the Capacitated Hybrid Vehicle Routing Problem (CH-VRP). It is a development 

of one of the core combinatorial optimization problems, the Capacitated Vehicle Routing Problem (C-VRP). As per 

,Sajid et al. (2023), the C-VRP is a significant variant of the classical VRP since capacity constraint plays a crucial 

role in the routing networks and it can be optimally solved only for small cases. For example, Simić et al. (2024) 

modelled a real case problem for the Serbian company CARNEX as a C-VRP with a homogeneous fleet, and used a 

hybrid nearest neighbours - Tabu search model to find solutions. Tirkolaee and Aydın (2021) approached the issue of 

transportation planning and outsourcing of medical waste management problems during pandemics as a C-VRP. They 

considered the capacity limitation of vehicles as the primary restriction. They solved the problem with a CPLEX 

solver. For large-scale instances researcher used heuristics and metaheuristics to solve the C-VRP. According to Suza 

et al. (2023), current literature on C-VRP covers many metaheuristics approaches known for their high efficiency. 

Ongoing with the literature, they proposed a robust algorithm based on the differential evolution to solve the C-VRP. 

Many extensions and variants of the C-VRP have been found in the literature such as the two-echelon C-VRP (2E-

CVRP). Li et al (2022) solved the 2E-CVRP with grouping constraints and simultaneous pickup and delivery. 

Compared with the classical VRP, the interaction and interdependence between the two levels add complexity and 

challenge to the problem. In turn, the authors developed an exact heuristic to solve the problem. Küçük and Yildiz 

(2022) solved another variant of the C-VRP that is the three-dimensional loading capacitated vehicle routing problem 

(3L-C-VRP) by developing an integrated and decomposed constraint programming-based method for the vehicle 

routing part and an evolutionary algorithm for the loading part. As alternatives to previous works, Chi and He (2023) 

introduced the pickup-capacitated VRP (3L-PC-VRP) with three-dimensional loading constraints as another variant 

of the C-VRP. They developed an improved tree search algorithm, an improved greedy heuristic algorithm, and an 

improved branch-and-price-based algorithm as a solution for the problem. Shan et al. (2025) presented a case study 

on rural transportation in Guizhou Province, where they addressed a C-VRP with soft capacity constraints. After 

formulating the model, they solved it using a Genetic Algorithm with a self-adaptive mechanism and a novel initial 

solution generation method. Their metaheuristic achieved good results compared to other studies, from both economic 

and environmental perspectives. 

In our work, we study the CH-VRP, which involves two well-known complex problems that are H-VRP and C-VRP. 

Since it is an NP-hard problem a Random General Variable Neighbourhood Search (R-GVNS) based metaheuristic is 

proposed to solve the CH-VRP. The Variable Neighbourhood Search (VNS) is a widely recognized local search 

algorithm known for its adaptation of neighbourhood search structures. Mladenović and Hansen (1997) proposed it 

for the first time and then it has been used as a solution of various optimization problems and also machine learning 

tasks. Recently, Kalatzantonakis et al. (2023) solved the C-VRP by reinforcement learning based on the VNS 

metaheuristic. We chose the VNS because it has great results in the literature and can extend to various optimization 

problems. 

In our strategy, three neighbourhood structures are used for the proposed random variable neighbourhood descent 

(RVND) and the shaking step which are swap, insertion, and 2-opt* structures. To showcase the performance of our 

proposed approach, first, we extend the problem formulation proposed in Mancini (2017) as an integer linear program 

to the capacitated case, we modify a large set of benchmark instances proposed in the literature by introducing the 

product demand of each customer and we solve the small instances with the standard solver CPLEX and with the 

proposed algorithm. The outcomes show that our approach provided the same results for 55 % of the cases and superior 

solutions for 40 % of the instances compared to the results provided by CPLEX. In parallel, we modify a large set of 

benchmark instances proposed in the literature by introducing the product demand of each customer and we solved it 

by our proposed R-GVNS algorithm. Extensive experiments of the proposed metaheuristic on small and large-sized 

instances demonstrate that the suggested approach finds optimal solutions in small cases and good-quality solutions 

in larger ones in reasonable computational time. To summarize, this paper contributes to the literature as follows: 
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 We introduced a novel G-VRP variant, the CH-VRP, which is an H-VRP with capacity constraint. 

 We proposed a mathematical model for small instances to tackle the problem and resolved it using the 

CPLEX solver.  

 We developed an efficient R-GVNS metaheuristic that produced superior solutions for small and large 

instances. 

The paper is organized as follows: Section 2 extends a summary of the most relevant work related to the HVRP 

problem; Section 3 presents the problem formulation; Section 4 explains the proposed algorithm. Section 5 reports the 

results and discussion. Finally, section 6 gives a conclusion. 

2. Related work  

This section illustrates a brief literature review of the related work to our problem. The G-VRP is a classical VRP that 

incorporates environmental aspects and objectives. Erdogan and Hooks (2012) conducted the first work related to this 

problem, then, many researchers concentrated on the G-VRP using various types of vehicles. We mention three types 

of vehicles used. 

The first ones are the Internal Combustion Engines Vehicles (ICEVs): types of vehicles that use traditional petroleum 

fuels. The common objective between almost all the studies of G-VRPs, that used homogenous ICEV in the literature, 

is minimizing fuel consumption which also means minimizing CO2 emission [ (Jabir et al. (2017) and Dukkanci et al. 

(2019)]. 

The second one is the Electric Vehicles (EVs): type of vehicles that use pure electric engines in which minimizing the 

total, travel time/cost is the main objective of the EVRPs since they use an eco-friendly vehicle that has zero emission 

[(Bruglieri et al. (2015), Ding et al. (2015) and (Jie et al. (2019).  In some papers, authors considered heterogeneous 

fleets (EV and ICEV) where minimizing the travel-cost time is a common objective. [(Goeke et al. (2014), (Hermann 

et al. (2019) and (Kopfer et al. (2019), Li et al. (2020), Lu et al. (2020), Baso et al. (2021), Fan et al. (2023), Comert 

and Yazgan (2023), Zheng et al. (2024), Souza et al. (2024) , Lera-Romero et al. (2024)].  

Abdallah (2013) mentioned that the mixed type of vehicles that use electricity and fuel had not been investigated in 

the literature. He conducted the first work that studied homogenous HVs. Limited research has explored the 

optimization of the H-VRP. In his work, Abdullah tried to answer a simple but important question «Which alternative 

among the ones that exist in the world is the best for both economic and environmental aspects? ». He focused their 

discussion on the ICEVs, which are a source of high greenhouse gas emissions, EVs, which help improve the urban 

air quality since they use renewable energy but require a long charging time, and HVs, which overcome the 

disadvantages of both ICE and EV. HVs are a type of vehicles that use both pure electric engines and traditional 

petroleum fuels. The H-VRP takes into consideration both the economic objectives of classical VRP and the 

environmental objectives of G-VRP such as minimizing CO2 emission and fuel consumption. Therefore, Abdallah 

tried to study this problem with homogenous vehicles and proposed a model for the H-VRP with time windows that 

minimize the HV’s emission while minimizing the time and meeting the demand during a time window. He presumed 

that there is a linear relationship between electricity and gasoline consumption. The problem is solved using a 

Lagrangian relaxation model and a Tabu search algorithm.  

Juan (2014) conducted the second work that considered the H-VRP. Instead of homogenous fleets, they concentrated 

on heterogeneous fleets. Authors supposed that they need to consider multiple driving ranges (long and short ranges) 

since the range is an important limitation for vehicles. They inspired their work from the classical C-VRP where each 

vehicle has its distance to cover. They solved this problem using an integer programming formulation and a multi-

round heuristic algorithm. These works are followed by the one conducted by Arslan et al. (2015) who noticed that 

the long distance of HV was not well studied in the previous related works. Therefore, they decided to concentrate 

their study on long-distance HV trips that require numerous refuelling and researching stops. They approach this 

challenge using the dynamic programming model-based heuristic and the shortest path heuristic. Doppstadt et al. 

(2016) endeavored to address this novel challenge by proposing a new optimization problem investigating the 

distribution of goods using HV. They extended from the well–known traveling salesman problem to the HV-traveling 

salesman problem and solved it by mathematical problem formulation and a heuristic based on the Tabu search 

algorithm. Doppstadt et al. (2019) resolved their problem by adding the time window constraint.  
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Following the previous works, Nejad et al. (2017) study the optimal routing of HV s by introducing the Energy 

Efficient Routing problem (EERP). It was the first study to acknowledge the energy efficiency variance among 

different operating modes of HVs during route planning. The authors considered the EERP as a subset of shortest-

path problems (SPP). They tried to solve it by designing exact and approximation algorithms. They first presented the 

EERP integer programming model, they proved the hardness of this problem after that they proposed a routing 

algorithm in which arcs of the road network are assumed to be pre-divided into distance segments with consistent 

energy efficiency conditions for the various operating modes. Vincent et al. (2017) believe that plug-in hybrid vehicles 

(Plug-In HV), which are HVs that can recharge themselves from external and internal sources, are the coming 

generation of vehicles. They tried to minimize the total travel cost using this type of vehicle by presenting a 

mathematical model and implementing a simulated annealing heuristic with a restart strategy with the Boltzmann 

function (SARSBF) and the Cauchy function (SARSCF) as acceptance criteria for a worse solution.  

The H-VRP was introduced by Mancini (2017) as an expansion of the G-VRP. Our model in this paper is derived 

from her work in which we add the capacity constraint, a significant constraint in reality. (More details are presented 

in the next sections). To solve the problem Mancini proposed a large-scale neighbourhood search-based mathematical 

algorithm (MH).  

Subsequently, Karak and Abdelghany (2019) studied the routing for pick-up and delivery services using a hybrid 

vehicle drone. They noted that the investigation of drone technologies during the last years has attracted many sectors 

such as logistics. Therefore, they tried to find a solution to the hybrid vehicle-drone routing problem (HVDRP) for 

pick-up and delivery. They considered this problem as an extension of three known problems. The HVDRP is similar 

to the C-VRP given the drone's constrained flight range and load capacity. It is also, similar to the two-echelon location 

and routing problem in which two-level routing interdependent decisions are involved. Moreover, it is similar to the 

truck and trailer routing problem because it requires routing the vehicle and the drone. The authors sought to solve 

this challenge by formulating a mixed-integer program and suggesting an innovative solution approach that builds 

upon the classic Clarke and Wright algorithms. 

Zhen al. (2019) remarked that in the previous studies, researchers neglected the mode selection related to recharging 

and refuelling, which contributes to achieving optimal energy consumption. Consequently, they focused on solving 

the H-VRP mode selection by formulating the problem as a mixed integer linear programming model and developing 

an improved particle Swarm Optimization algorithm. Correspondingly, Bahramia et al. (2020) aimed to find the ideal 

use of power from the two energy sources along the vehicle’s route. They solved the problem using both the exact 

pseudo-polynomial algorithm and the fully polynomial time algorithm. Hiermann et al. (2019) Studied how a VRP's 

vehicles are made up, considering ICEVs, EVs, and P-HVs. They presumed that PHEVs alternate between the two 

energy sources at any point and that the quantity of charging determines how long it takes to recharge them. The 

problem is solved with the use of a hybrid genetic algorithm. The numerical examples demonstrate that an optimal 

mixed fleet has lower operational costs than a homogeneous fleet. Inspired by the previous research, Li et al. (2020) 

proposed a new hybrid metaheuristic to solve the H-VRP that combines the memetic algorithm with the sequential 

variable neighbourhood descent. Alsumairat and Alrefaei (2021) utilized the constant temperature simulated annealing 

SA-CT algorithm to solve the H-VRP and compared the findings of the suggested approach with those of the simulated 

annealing with decreasing temperature technique utilizing SA-DT.  

All previous research and studies considered a deterministic environment; Yin and Zhao (2022) examined a nonlinear 

and ambiguous H-VRP. They divided the cost of transportation into two types of driving and linearized the nonlinear 

variable, where the fuel consumption, the cost of driving on electricity, and the cost of driving on traditional fuel are 

all taken to be arbitrary fuzzy variables with ambiguous probability distributions. Their study has put forth a 

distributional robust equilibrium optimization strategy for H-VRP, along with an ambiguous equilibrium risk value 

objective function and an ambiguous equilibrium chance constraint.  

Zhu et al. (2024) investigated a real-world case based on the downtown Austin network, formulating the problem as 

a traveling salesman problem (TSP) that integrates plug-in hybrid electric vehicles (PHEVs) with drones. This study 

is among the few that address electric vehicle and drone routing simultaneously, providing a comprehensive 

framework to optimize hybrid delivery systems. The authors proposed a mixed-integer linear programming (MILP) 

model for this problem and developed an adaptive large neighbourhood search (ALNS) algorithm to solve it. The 

results demonstrate that this method outperforms other approaches, achieving promising performance in terms of 

solution quality.  
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More details about the H-VRP can be found in the work of Ammar et al. (2022). 

A summary of the H-VRP-related studies is presented in Table 1. 

Table 1. Related work to the H-VRP   

 
Vehicles type Objective Function References 

 
 Reduce the total travel duration. Abdallah (2013) 

 
 Reduce the total distance. Arslan et al. (2015) 

 

Plug-in-Hybrid Vehicles Reduce the total travel cost. 
Nejad et al. (2017), Vincent et 

al. (2017), Li et al. (2020) 

 

 
Reduce the total cost of energy 

consumption 
Zhen et al. (2019) 

 
 

Reduce the total cost of gasoline 

consumption 
Bahramia et al. (2020) 

Homogeneous 

Vehicles 

 

Hybrid Electric 

Vehicles  
Reduce the total travel cost 

Doppostadat et al. (2016), 

Doppostadat et al. (2019) 

 
 Reduce the total travel distance. Mancini (2017) 

 
Hybrid Vehicles  Reduce the total travel cost Alsumairat and Alrefaei (2021) 

 

 
Reduce the ambiguous equilibrium 

risk value. 
Yin and Zhao (2022) 

 
 Reduce the total travel distance. Our work  

 

Hybrid-Drone V Reduce the total travel cost 
Karak and Abdelghany 

(2019) 

 
ICEV 

 

Plug-in-Hybrid Vehicles 

Reduce the total distance Juan et al. (2014) 

Heterogeneous 

Vehicles 

 
ICEV 

 

Plug-in-Hybrid Vehicles 

 

Electric vehicles 

Reduce the total travel cost. Hiermann et al. (2019) 

 
Plug-in-Hybrid Vehicles 

 

Drone 

Reduce the operational time Zhu et al.(2024) 
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3. Problem description and formulation  

3.1. The problem description  

The CH-VRP is a network model. The problem description is as given: Let G = (V, A) be a complete undirected graph 

where V denotes the list of vertices that include a depot, the customers list I, and the recharge stations set F. Each edge 

(i, j) ∈ A is characterized by a distance dij and a travel time tij. The CH-VRP problem consists of visiting customers 

set, with M identical vehicles with max load capacity C. Any vehicle must start and end its trip at the depot and can 

program visits t recharging points if it is needed. Recharge stops are unrestricted, and at each stop, the battery will 

fully charge. No multiple trips are permitted, so at most M routes can be programmed. Each node has a specified 

service time pj. The routes have a time limit  Tmax . Speeds are consistent across a link. It would be better to travel 

using only the electric mode, but, if necessary, the vehicle can travel part of the route using conventional fuel 

propulsion. This distance that joins the customer j is defined as Wj. When we use fuel propulsion a unitary distance 

penalty ρ is added to the cost to encourage the use of the electric mode. 

For more clarity on the CH-VRP problem, we report in Fig.1 a small example with two customers and a depot. In this 

figure, the travel distances are above each edge. In a classical VRP with a single traditional vehicle, we choose the 

trip (0-1-2-0) with a total travel distance of 120 km. Using now the electric vehicle and assuming that the battery 

capacity is 100 KWh with a discharging rate is 1KWh/1km. Departing from the depot with a fully charged battery, 

we proceed to customer 1 and then to customer 2. The remaining battery level does not allow reaching the depot but 

allowing us to go to the charging station. Thus, the next destination will be the recharge station before heading back 

to the depot. The total covered distance is 40+30+40+70=180 Km.  

If we utilize the Hybrid Vehicle, there are three scenarios: the path will be the same as that of a traditional vehicle 

using the traditional mode, the same as that of an electric vehicle using the electric mode, or the path will follow the 

sequence (0-1-2-0) with switching between modes as shown in Fig.1. Any distance that is not covered by the electric 

mode will incur a penalty ρ=3 to boost the use of the electric mode. Therefore, the total distance when using the 

traditional fuel only is 40+30+50+ ((40+30+50) *3) =120+ (120*3) = 480 km. The total distance when using the 

electric mode is 40+30+40+70= 180 km without an additional penalty value. The total distance when switching 

between modes (when using the hybrid mode is 40+30+50+ (𝑈𝑗*3) = 40+30+50+ (50 ∗3) = 270 Km with 𝑈𝑗= 50 km 

is the distance covered by conventional mode to reach the depot.  

Hence, the electric mode is encouraged to be used to serve the costumers (180 Km < 270 Km < 480 Km). 

The HV will use the traditional mode if and only if the total travel distance using the electric mode, including visits 

to recharging stations, is greater than the distance using traditional fuel with the penalty considered. 

 

  

 

Figure 1. H-VRP: Problem description  
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To resume, we consider a problem having the following features: 

 M identical Hybrid Vehicles with identical capacities. Each one of them has a load capacity Lj that varies 

conditional on the product to be transported.  

 I is the set of customers where each one of them has a demand denoted by qi  and a service time denoted 

by  pj. 

 A penalty ρ  (unitary distance) is counted when traveling with traditional fuel. 

3.2. Problem Formulation  

we summarize the definitions of parameters and the variables in Tables 2 and 3 to help the reader. 

Table 2. The set of parameters  

𝐼 List of customers 

𝐼0 List of both customers and depot 

𝐹 List of refuelling and recharging stations 

𝑉 List of nodes without including depot 𝐼0 

𝑉0 List of all nodes 

𝑟 Battery charge consumption rate of the electric mode (for km) 

C Vehicles capacity 

𝑄 Battery capacity 

𝑀 Maximum number of Hybrid Vehicles 

𝜇𝑗  Smallest distance from node  j to the nearest refuelling stations or to the depot 

𝑑𝑖𝑗  Distance between node i and node j 

𝜌 Distance unitary penalty when using traditional fuel 

𝑡𝑖𝑗 travel time between node i and node j 

𝑝𝑗 Service time of node j 

𝑇𝑚𝑎𝑥 The maximum duration of the route 

𝑞𝑖 The demand of customer i 

 

Table 3. The definitions of the variables 

𝑋𝑖𝑗 Binary variable equal to 1 if a vehicle travels from node i to node j and 0 otherwise 

𝑊𝑗  Distance completed with conventional fuel to arrive at customer j 

𝑈𝑗  Distance completed with conventional fuel to get to the depot from customer j 

𝑇𝑗 Arrival time at node j 

𝑌𝑗  Battery level upon arrival at node j 

𝐿𝑗  Load of the vehicle upon arrival at node j 

The mathematical description of the CH-VRP is detailed below:  

  
Min ∑ ∑ 𝑑𝑖𝑗  𝑋𝑖𝑗 + ∑ 𝜌𝑗∈𝑉0

(𝑊𝑗 + 𝑈𝑗)𝑗∈𝑣0𝑖∈𝑣0
  (1) 

∑ 𝑋𝑖𝑗𝑗∈𝑉 
𝑖≠𝑗

= 1  ∀ 𝑖 ∈ 𝑉                                        (2) 

∑ 𝑋𝑖𝑗𝑗∈𝑉0 
𝑖≠𝑗

≤ 1  ∀ 𝑖 ∈ 𝐹      (3) 
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∑ 𝑋𝑗𝑘𝑗∈𝑉0 
𝐾≠𝑗

= ∑ 𝑋𝑖𝑗𝑗∈𝑉0 
𝑖≠𝑗

   ∀𝑘 ∈  𝑉0 , 𝑗 ∈  𝑉0                                    (4) 

∑ 𝑋0𝑗𝑗∈𝑉0 
𝑖≠𝑗

≤ 𝑀   (5) 

∑ 𝑋𝑗0𝑗∈𝑉0 
𝑖≠𝑗

≤ 𝑀      (6) 

𝑇𝑗 ≥ 𝑇𝑖 + (𝑡𝑖𝑗 + 𝑝𝑗)𝑋𝑖𝑗 − 𝑇𝑚𝑎𝑥(1 − 𝑋𝑖𝑗) ∀𝑖 ∈ 𝑉0 𝑗 ∈ 𝑉 𝑎𝑛𝑑 𝑖 ≠ 𝑗 (7) 

0 ≤ 𝑇0 ≤ 𝑇𝑚𝑎𝑥  (8) 

𝑡0𝑗  ≤ 𝑇𝑗  ≤ 𝑇𝑚𝑎𝑥 − (𝑡𝑗0 + 𝑝𝑖𝑗) ∀𝑗 ∈ 𝑉                                           (9) 

𝑌𝑗  ≤ 𝑌𝑖 − 𝑟(𝑑𝑖𝑗 − 𝑊𝑗) + 𝑄(1 − 𝑋𝑖𝑗) ∀𝑗 ∈ 𝑙 𝑖 ∈ 𝑉0 𝑖 ≠ 𝑗                           (10) 

𝑌𝑗 = 𝑄 ∀𝑗 ∈ 𝐹 ∪ 𝑉0                                   (11) 

𝑌𝑗 ≥ 𝑟(𝑑𝑗0𝑋𝑗0 − 𝑉𝑗) ∀ 𝑗 ∈ 𝐼 (12) 

0 ≤  𝐿𝑗  ≤   𝐿𝑖 − 𝑞𝑖𝑋𝑖𝑗 + 𝐶(1 − 𝑋𝑖𝑗) ∀ 𝑖 ∈ 𝑉 𝑗 ∈ 𝑉 0 𝑖 ≠ 𝑗 (13) 

0 ≤ 𝐿0 ≤ 𝐶  (14) 

𝑋𝑖𝑗  ∈ 0,1 ∀ 𝑖 ∈ 𝑉0  ∀𝑗 ∈ 𝑉0 (15) 

𝑌𝑗 ≥ 0,  𝐿𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (16) 

 

The aim (1) is to reduce the overall distance driven with hybrid vehicles. Constraint (2) ensures that each customer 

receives only one visit; (3) allows multiple visits per station. Constraint (4) ensures arrivals at each node match 

departures for all vehicles. A maximum of M vehicles can depart from and return to the depot on any given day thanks 

to constraints (5) and (6). Constraint (7) studies the arrival time at each node. Each vehicle must reach the depot by 

the time limit Tmax, according to constraints (8) and (9). Constraint (10) tracks the battery charging level as it arrives 

at each node. Constraint (11) ensures that the battery level is reset to Q when a vehicle leaves the depot or charging 

station. According to constraint (12), traditional fuel propulsion is used to reach the depot or a charging station with a 

higher cost if there is insufficient battery level to get there. No capacity restriction applies to fuel tanks because they 

provide a much greater range than electric batteries and because fuel stations are more widely distributed throughout 

the road network. Constraint (13) tracks the vehicle load upon arrival at each customer. Constraint (14) ensures that 

the vehicle's load at the depot stays within the vehicle's capacity limit. Constraints (15) and (16) specify the domain 

of the variables.     

4. The proposed algorithm 

The CH-VRP, a variant of the classical VRP, is classified as an NP-hard problem. This categorization is supported by 

the exponential increase in potential paths and combinations as the number of customers and vehicles grows, as well 

as by the inclusion of capacity constraints. These factors contribute significantly to the complexity of finding an 

optimal solution within polynomial time, reinforcing its NP-hard status. To solve this problem, we propose the R-

GVNS algorithm, a well-known metaheuristic method that is a variant of the classical VNS. Hansen et al. (2008) 

presented the VNS as a systematic neighbourhood change made during the descent phase to identify a local minimum 

and the perturbation phase to escape from local optima. Since its initial proposal in 1997, VNS has significantly 

progressed in terms of techniques and applications. 

According to Jarboui et al. (2014), VNS is a metaheuristic that exploits the idea of systematic neighbourhood changes 

during a search to navigate away from valleys containing local optimal solutions. Following this, many researchers 

have used VNS to solve routing problems. For example, Cheikh et al. (2015) used VNS to explain the VRP with 

multiple trips. Cendani et al. (2024) developed a VNS-genetic algorithm hybrid to crack the VRP with simultaneous 

delivery and pickup of materials. Alrashidi and Al Ghamdi (2024) presented a hybrid approach combining VNS with 
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the reinforcement learning paradigm to effectively resolve the G-VRP. These studies demonstrate that VNS is an 

effective algorithm for solving VRP problems. 

The proposed method calls for two distinct neighbourhood structure sets. The shaking (perturbation) phase is done 

with the first set, while the second set performs the random variable neighbourhood descent (RVND) procedure. There 

are four input parameters for the method. 𝑙𝑚𝑎𝑥  denotes the maximum number of successive shaking steps to apply to 

the current solution, and 𝑆𝑚𝑎𝑥  is the number of neighbourhood  structures used in the RVND procedure. 𝐶𝑝𝑢𝑚𝑎𝑥 

represents the maximum amount of time allowed for the search, while 𝑥 is the initial solution.  

4.1. Solution representation 

The CH-VRP network involves three node sets, depot, customers set, and recharge stations set. To encode the solution, 

we propose to use two arrays with variable lengths associated with each vehicle. The first table represents the 

sequences of visited customers while the second adds to the first a recharge station when needed to ensure the whole 

tour. Fig.2 illustrates the solution representation.  

  

Figure 2. Solution Representation 

4.2. Neighbourhood structures 

In this method, we adopt three neighbourhood structures described as follows: 

The Insert move; is used to delete a selected customer 𝑖 from its current position and insert it at a randomly chosen 

position following a randomly selected customer 𝑗 in the same or different route. The example in figure (Figure 3) 

illustrates relocating the customer (7). This one is deleted from route (2) and inserted in route (3) between the visits 

to the customer (9) and customer (4). 

The Swap move; consists of a random selection of two customers 𝑖 and 𝑗 belonging to the same or different routes and 

swapping their positions. The example in figure (Figure 4) illustrates the swap position of customers (1) and (5) in the 

same route (1). 

The 2-opt* move; this local search is an exchange heuristic. It consists of cutting two different routes (1) and (2) into 

two parts and recomposing them. The first route builds with the first part of (1) merged with the second part of (2). 

The second route is constructed by the first part of (2) assembled with the second part of (1). The example of (Figure 

5) shows crossing the two routes in customer (2) in route (2) and customer (9) in route (3).  

We notice that, after each applied neighbourhood, we evaluate the resulting route and insert a recharging station if 

necessary, using a heuristic that determines the best position for inserting the best station. 

4.3. R-GVNS algorithm   

The R-GVNS Algorithm proceeds through three steps. In the first step, the algorithm generates the initial solution 

randomly, therefore, there are no conditions for the first solution. More precisely, we assign a random sequence of 

customers and recharging stations (if necessary) to each available HV. In the second step (the shaking step), one of 

the three known neighbourhood structures (the Insert move, the Swap move, and the 2-Opt move), chosen randomly, 
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creates a new solution 𝑥′ from the initial solution 𝑥. In the third step (the improvement step), the RVND method, 

considering a random order of the neighbourhood  structures, tries to improve a current solution 𝑥′. Algorithms 1 and 

2 describe respectively the steps of the R-GVNS and the RVND mentioned above. 

  

Figure 3. Insert Moves 

 

Figure 4. Swap Moves 

 

Figure 5. 2-Opt* Moves   
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Table 4. The steps of the R-GVNS 

Algorithm1: R-GVNS Procedure 

1 : 𝑰𝒏𝒑𝒖𝒕: 𝑥; 𝑆max; 𝑙max; 𝐶𝑝𝑢_𝑚𝑎𝑥 

2: while (𝑡𝑖𝑚𝑒 < 𝐶𝑝𝑢_𝑚𝑎𝑥) do 

3: 𝑙 = 1; 

4: 𝒘𝒉𝒊𝒍𝒆 (𝑙 ≤ 𝑙max) do 

5: 𝑥′ = 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑥;  𝑙); 

6: 𝑥′′ = 𝑹𝑽𝑵𝑫(𝑥′;𝑆max);  

7: 𝒊𝒇 ((𝑓(𝑥′′)  <  𝑓(𝑥)) 𝒕𝒉𝒆𝒏 

8: 𝑥 = 𝑥′′;  𝑙 =  1; 

9: 𝒆𝒍𝒔𝒆; 

10: 𝑙 =  𝑙 +  1; 

11: 𝒆𝒏𝒅 𝒊𝒇 ; 

12: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 ; 

13: 𝑡𝑖𝑚𝑒 = 𝐶𝑝𝑢𝑇𝑖𝑚𝑒( ); 

14:𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆;  𝒓𝒆𝒕𝒖𝒓𝒏 𝑥; 

 

Table 5. The steps of the RVND 

Algorithm 2: Random variable neighbourhood descent 

1: 𝑰𝒏𝒑𝒖𝒕: 𝑥; 𝑆𝑚𝑎𝑥;  𝐿 

2: 𝑠𝑒𝑡 𝐿’ = 𝐿; 

3: 𝑠 =  𝑟𝑎𝑛𝑑(𝐿′) // select a random neighbourhood  in list 𝐿′; 

4: 𝒘𝒉𝒊𝒍𝒆 (|𝐿′|  >  0) 𝒅𝒐 

5: 𝒊𝒇 (𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑁𝑠) 𝒕𝒉𝒆𝒏 

6: 𝐿𝑒𝑡 𝑥′ 𝑏𝑒 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑁𝑠(𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥′)  <  𝑓(𝑥); 

7: 𝑥 =  𝑥′, 𝐿′  =  𝐿, 𝑠 =  𝑟𝑎𝑛𝑑(𝐿′); 

8: 𝒆𝒍𝒔𝒆; 

9: 𝐿′ = 𝐿′/{𝑠]  , 𝑠 = 𝑟𝑎𝑛𝑑 (𝐿′)  

10: 𝒆𝒏𝒅 𝒊𝒇;  

11:𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆;  

12:𝒓𝒆𝒕𝒖𝒓𝒏 𝒙; 

 

5. Computational results   

To validate the effectiveness and the efficiency of our proposed algorithm, we modify a large set of Erdogan 

benchmark instances by introducing the product demand of each customer, Erdogan and Miller-Hooks (2012).  

First, we solve the small instances by implementing code with the standard solver CPLEX.  Then we test the R-GVNS 

proposed algorithm on small instances. Finally, we use the algorithm to solve large instances. Computational tests 

have been carried out on Intel(R) Core (TM) i7-5500U, 2.40GHz, 8Gb of RAM. 

5.1. Small size instances  

Small-size instances introduced by Erdogan and Miller-Hooks (2012), are categorized into four groups: (S1); 10 

instances randomly generated in which 20 customer locations by Uniform distribution with three fixed Recharging 

stations. (S2); 10 instances of 20 clustered customers with 3 recharging station locations. (S3); 10 instances, combined 

with five from the (S1) group and the rest from (S2), each one has six recharging stations randomly generated. S4; 10 

instances, five from (S1) instances and five from (S2) instances, with several recharging stations gradually from 2 to 

10 in increments of 2. We add to these instances the customer’s demand generated using the uniform distribution 

between 1 and 20.  

In small and large sets of experiments, unless otherwise stated, the battery capacity 𝑄 is constant at 60, with a mileage 

consumption rate of 0.2, a 60-gallon fuel tank with a fuel consumption rate of 0.2. It is assumed that the vehicle travels 



Belhadj Ammar, Cheikh and Loukil 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.XX, NO.X  

 

 

at an average speed of 40 miles per hour (mph), and the maximum allowable tour time is 11 hours. The presumed 

service durations are 30 minutes at customer locations and 15 minutes at recharge points. The cost/miles for distances 

driven with conventional fuel are 3 times greater than the cost/km for distance reached with electric engine (𝜌 = 3). 

In small-size instances, the max load capacity is set to 50, whereas in the large ones is fixed to 80. 

 Tables 6-9 illustrate details of the obtained results for small-size instances. The tables are organized as follows. The 

first column reports the name of the instance, while column 2 reports the best-known objective function obtained from 

the literature for the G-VRP problem proposed by Erdogan and Miller-Hooks (2012). Columns 3 and 4 report the 

number of customers and the number of used vehicles, respectively. Columns 5 and 7 give the objective function of 

CPLEX and R-GVNS, respectively. While Columns 6 and 8 show the trues covered distance results for CPLEX and 

R-GVNS, respectively. The computational time of the best-found solutions (expressed in seconds) for R-GVNS, is 

reported in column 9. 

Note: The compilation by CPLEX is stopped after 3 hours. The optimality is not guaranteed and all the results are the 

best solutions that can be found by CPLEX in three hours. 

Table 6. Results on set S1 

 

Instance G-VRP    CH-VRP      

    With CPLEX   With R-

GVNS  

  

  n m Fitness Distance Fitness Distance T (s) 

20c3sU1new 
1818.35 

20 6 1688,63 1545,77 1688,63 1545,77 1,35 

20c3sU2new 
1614.15 

20 6 1628,86 1539,57 1621,45 1621,45 0,91 

20c3sU3new 
1969.64 

20 5 1560,11 1395,32 1560,11 1395,32 0 

20c3sU4new 
1508.41 

20 5 1468,29 1458,96 1468,29 1458,96 0,565 

20c3sU5new 
1752.73 

20 6 1644,94 1640,26 1644,94 1640,26 0 

20c3sU6new 
1668.16 

20 6 1633,03 1633,03 1633,03 1633,03 1,05 

20c3sU7new 
1730.45 

20 6 1667,77 1629,85 1667,77 1629,85 0,98 

20c3sU8new 1718.67 20 6 1725,69 1725,69 1709,41 1709,41 0 

20c3sU9new 
1714.43 

20 5 1595,56 1498,51 1595,56 1498,51 0 

20c3sU10new 
1309.52 

20 5 1318,78 1318,78 1318,78 1318,78 0,438 

 

Table 7. Results on set S2 
 

Instance G-VRP    CH-VRP      

    With CPLEX   With R-GVNS    

  n m Fitness Distance Fitness Distance T(s) 

20c3sC1new 1300.62 20 5 1265,5 1265,5 1265,5 1265,5 0,05 

20c3sC2new 1553.53 19 5 1367,95 1273,14 1367,95 1273,14 0 

20c3sC3new 1083.12 12 3 878,51 876,39 878,51 876,39 0 

20c3sC4new 1135.9 18 5 1109,73 1109,73 1109,73 1109,73 1,44 

20c3sC5new 2190.68 19 5 1878,74 1577,98 1878,74 1577,98 1,29 

20c3sC6new 2883.71 17 6 2356,03 1840,34 2356,03 1840,34 0,126 

20c3sC7new 1701.4 6 3 1407,37 1170,51 1204,65 1030,28 0,07 

20c3sC8new 3319.74 18 7 2862,97 2267,41 2573,90 2430,61 0,19 

20c3sC9new 1811.05 19 6 1482 1301,75 1482,00 1301,75 0,275 

20c3sC10new 2648.84 15 4 1711,66 1336,2 1711,66 1336,2 0 
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Table 8. results on set S3 
 

Instance G-VRP    CH-VRP      

    With CPLEX   With R-

GVNS  

  

  n m Fitness Distance Fitness Distance T(s) 

S1_2i6s 1614.15 20 6 1578,12 1578,12 1579,19 1489,9 6,32 

S1_4i6s 1561.3 20 5 1405,06 1405,06 1405,06 1405,06 0,267 

S1_6i6s 1616.2 20 6 1600,78 1600,78 1585,88 1585,88 0,389 

S1_8i6s 1902.51 20 6 1735,55 1730,95 1719,31 1719,31 0,122 

S1_10i6s 1309.52 20 5 1354,55 1354,55 1331,49 1331,49 0,615 

S2_2i6s 1645.8 20 6 1748,96 1623,06 1696,62 1696,62 0 

S2_4i6s 1505.06 19 6 1619,76 1462,24 1505,07 1505,07 0,174 

S2_6i6s 3115.1 20 7 2875,78 2341,52 2380,34 2339,75 0,684 

S2_8i6s 2722.55 16 6 2085,66 1934,56 1990,96 1933,95 0,853 

S2_10i6s 1995.62 16 5 1616,77 1616,77 1585,46 1585,46 0,294 

 

Table 9. results on set S4 

 

Instance G-VRP    CH-VRP      

    With CPLEX   With R-GVNS    

  n m Fitness Distance Fitness Distance T(s) 

S1_4i2s 1582.2 20 6 1443,68 1401,88 1443,68 1401,88 0,202 

S1_4i4s 1580.52 20 5 1443,68 1401,88 1443,68 1401,88 0,765 

S1_4i6s 1561.29 20 5 1405,06 1405,06 1405,06 1405,06 0 

S1_4i8s 1561.29 20 6 1401,47 1401,47 1405,06 1405,06 0,292 

S1_4i10s 1536.04 20 5 1405,06 1405,06 1405,06 1405 0,881 

S2_4i2s 1135.89 18 5 1109,81 1103,68 1109,81 1103,68 0,116 

S2_4i4s 1522.72 19 6 1611,36 1388,69 1496,64 1490,5 0,087 

S2_4i6s 1786.21 20 6 1712,22 1486,66 1484,7 1478,56 0,287 

S2_4i8s 1786.21 20 6 1707,6 1441,37 1448,03 1441,37 2,51 

S2_4i10s 1783.63 20 5 1730,71 1505,46 1444,74 1438,08 0,526 

 

As shown in the results reported in Table 6-9, RGVNS gives the best-known solutions in 38 out of 40 instances with 

computational times of about at most 3 seconds. Compared with solutions obtained by CPLEX, our algorithm finds 

the same results in 22 instances and gives better solutions for 16 ones. We note that the compilation with CPLEX 

stops after 3 hours, which means that optimality is not guaranteed, and all the results are the best solutions found.  

Solving the small size instance with CPLEX solver takes almost 3 hours to find a solution while using R-GVNS takes 

only a few seconds. Therefore, the algorithm is not time-consuming.  

Upon examining the results of each instance, noticing that some instances have the same fitness value and distance 

value, while others show a difference that can be either low or high. This difference reflects the additional cost 

associated with using traditional fuel (penalty). Furthermore, the large difference between the fitness value and the 

distance value indicates that routes are heavily penalized due to the use of traditional fuel.   

In conclusion, R-GVNS outperformed CPLEX in terms of distance and fitness and the obtained results are slightly 

better (a percentage ranging from 0.5% up to 35% in some instances), indicating its effectiveness in finding optimal 

or near-optimal solutions quickly.  
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5.2. Large size instances  

After proving the effectiveness of the R-GVNS we solve the modified large-size Erdogan benchmark instances. The 

large-size instances account for 12 instances with several customers ranging from 100 to 500. The capacity of each 

vehicle is assumed 80. Details of the results obtained are presented in Table 10. The results show that the R-GVNS is 

not long time-consuming (Maximum 5 minutes). 

Table 10 illustrates details of the obtained results for large-size instances. It is arranged as follows; the first column 

reports the instance’s names. Column 2 reports the number of trips. Column 3 illustrates the number of visited recharge 

stations. The number of trips made when the vehicle is running on conventional fuel (traditional fuel) is shown in 

Column 4. The best-penalized objective function discovered is shown in columns 5 and 6, along with the average 

outcomes of three runs, respectively. The R-GVNS covered distances of the best-found solution and the average 

outcomes from three runs are shown in columns 7 and 8, respectively. Whereas Columns 9 and 10 display, 

respectively, the average outcomes from three runs and the computing time of the best-found solutions (given in 

seconds).  

Table 10. Results for large-size instances 

    Fitness Distance Time(s) 

Instances #  Trips # Visited RS  # Trad Fuel Best  Avg. Best Avg. Best Avg. 

111c21s 19 5 1 5012,06 5046,05 5008,55 5039,6 3,22 2,34 

111c22s 18 5 1 4968,67 4983,66 4952,95 4972,95 4,31 3,73 

111c24s 18 5 1 4944 4963,29 4940,95 4946,95 3,82 3,49 

111c26s 18 4 3 4941,56 4967,41 4827,07 4933,21 3,87 3,93 

111c28s 18 6 1 4881,98 4994,09 4874,57 4984,11 4,49 4,56 

200c21s 32 11 3 8843,19 8901,55 8817,66 8647,97 17,34 17,08 

250c21s 39 13 5 10559,16 10614,95 10288,79 10321,26 31,05 30,83 

300c21s 48 14 5 12900,32 13008,88 12579,37 12656,83 39,41 48,1 

350c21s 55 17 6 14832,11 14917,99 14411,16 14518,77 103,89 95,21 

400c21s 64 19 7 17307,32 17373,5 16849,71 16944,94 108,2 156,67 

450c21s 70 21 7 18929,12 19063,18 18461,36 18528,99 255,49 218,8 

500c21s 79 26 10 21136,78 21256,47 20638,92 20763,89 196,2 293,49 

 

According to the results of 111c instances, the overall travelled distance decreased by 130 miles (or about 3%), 

depending on the increase in the number of recharging stations from 21 to 28 (approximately a 33% increase). Fleet 

operational expenses can be decreased by increasing the recharging station’s availability, although cost savings largely 

rely on where the additional stations are placed. 

Based on the best-found results for small instances and the averages of the results for large instances, we can see that 

our algorithm achieves good results according to the different iterations and those in a very acceptable execution time 

according to the increase of instance sizes. 

6. Conclusion  

This paper presents a capacitated hybrid vehicle routing problem. It is an extension of the Hybrid-VRP, recently 

advanced in the literature. In this problem, vehicles have the option to use either electric propulsion or a traditional 

fuel engine, paying a higher unitary cost for distances travelled in the latter mode serving as a penalty to mitigate air 

pollution and increase operational expenses. To address this problem, we suggested the R-GVNS method. This method 

effectively explores the various search space regions by employing three neighbourhood structures in a random order 

utilizing a random variable neighbourhood search RVND. To address the capacity constraint, we extended the problem 
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formulation from Mancini (2017) and solved the small cases using the CPLEX standard solver. The outcomes are 

contrasted with a set of Erdogan and Miller-Hooks (2012) adjusted examples that take the needs of the customer into 

account. The outcomes of numerical testing show that our method delivers the best-known solutions in 38 of the 40 

scenarios with computation times of just 3 seconds on average.  

Our approach finds the same results in 22 instances and provides superior solutions in 16 cases compared to the results 

provided by CPLEX. In particular, and in large-sized instances, our method gives a good solution quality in acceptable 

computational time. Such performance indicates that adapting R-GVNS for solving other variants of the routing 

problem constitutes a promising research avenue. While this work is theoretical, it has significant implications for 

decision-makers. The use of capacitated hybrid vehicles and the application of the R-GVNS metaheuristic can lead to 

substantial savings in travel distances, particularly over long distances. These reductions in distance not only enhance 

operational efficiency but also contribute positively to environmental sustainability by reducing CO2 emissions. 

Therefore, decision-makers should consider adopting these strategies to achieve both economic and ecological 

benefits.  

Regarding recommendations for future investigations, we propose incorporating time window constraints into our 

model as a primary step. Furthermore, applying our approach to a real-world case problem would provide valuable 

insights. Another significant question to address is whether hybrid vehicles serve as a viable alternative to electric 

vehicles in developing countries, including Tunisia. This could potentially open up a promising research area for 

discussion. 
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