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Abstract 

Nowadays, in production environments where the production system is parallel machines, the reliability of the machines is 
important and the uncertainty of scheduling parameters is common. The focus of this paper is on the unrelated parallel 
machine scheduling problem using a fuzzy approach with machines maintenance activities and process constraints is of 
concern. An important application of this problem is in the production of products that the due dates are defined as a time 
window and the best due date is close to the middle of the time window and the jobs processing times depend on other 
factors such as operator and their value is not specified and are announced as interval under uncertainty. To begin the study, 
a fuzzy mathematical model is introduced in which changing between a fuzzy approach and a deterministic model is 
described. Then, Due to the NP-hard nature of the problem, a fuzzy-based genetic algorithm has been developed to address 
large instances. In this algorithm, a greedy decoding approach according to fuzzy parameters is developed. Numerical 
experiments are used assess the efficacy of the developed algorithm. It is concluded that the proposed algorithm shows 
great performance in large instances and is superior to the proposed mathematical model in small instances too. 
 
Keywords: Unrelated Parallel-Machine Scheduling, Fuzzy Process Times, Fuzzy Due Dates, Availability Constraint, 

Genetic Algorithm. 

  

1. Introduction 

Scheduling is a crucial decision-making process that is widely used in both service and production industries. Its primary 

objective is to allocate resources to jobs within specific time intervals, with the aim of optimizing one or more criteria. In 

general, smart scheduling methods are required to assign jobs to machines in case of resource and time constraints. In 

classical scheduling problems, the planning horizon assumes continuous availability of the machines. In some cases, this 

assumption may be justifiable, however, it’s not an acceptable assumption in many real-world cases. A process on a machine 

can be interrupted in some time intervals due to preventive maintenance or inspection. Thus, using scheduling approaches 

according to machine unavailability in specific intervals is essential. On the other hand, process times are known in advance, 

while this assumption is not appropriate in real-world applications. Problem parameters like process times and due dates 

are not constant values in cases that human factors affect the problem. Hence, parameters are fuzzy in the proposed problem. 
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2. Literature review 

Numerous researchers have extensively studied the parallel-machine scheduling problem which contain availability 

constraint in a planning horizon, recently. Sun and Li [1] considered two parallel machines in their scheduling problems 

where each machine was unavailable in time intervals due to maintenance activities. Additionally, it is important to note 

that each machine has a maximum consecutive working time, which must not surpass a predetermined upper limit. They 

proposed two different models: in the first model, maintenance activities were performed periodically and the objective 

function was minimizing the makespan. In the second model, process times were known in advance and the objective 

function was minimizing the total completion time of jobs. A polynomial algorithm was introduced for the first model and 

Shortest Process Time (SPT) method was applied for the second one. Zhao et al studied a parallel-machine scheduling 

problem to minimize total weighted completion time. It was assumed that there is only one unavailable machine at a specific 

time. The researchers also demonstrated that the proposed problem is NP-hard. To address this challenge, they developed 

a fully polynomial-time approximation scheme for solving the problem, which they extended to cases involving more than 

two machines. Tan et al. [3] focused on the minimization of the total completion time for two parallel, identical machines. 

The problem also incorporated pre-specified periods of unavailability for each machine. They demonstrated that when each 

machine has a single pre-specified period of unavailability and the unavailability periods of the two machines do not overlap, 

the shortest process time (SPT) method has a tight worst-case ratio. Xu and Yang [4] considered two machines scheduling 

problem to minimize makespan where one machine is unavailable periodically. Wang and Cheng [5] studied two parallel 

machine scheduling problems to maximize the number of on-time jobs considering that one machine is unavailable in a 

specific time interval. They also proposed a heuristic for the problem. Lee and Kim [6] developed a branch and bound 

algorithm for a two-machine scheduling problem to minimize total tardiness subject to availability constraints due to 

maintenance tasks for each machine. He et al. [7] conducted a study on a scheduling problem that involves two machines 

with availability dependent on the machine. They employed a heuristic algorithm with the aim of reducing the makespan. 

Shen et al. [8] considered a non-simultaneous machine availability constraint in a parallel-machine scheduling problem 

where machines may not be available at time zero. The proposed problem features two objective functions. The first 

objective function is focused on minimizing the total completion time and the total absolute differences in completion times, 

while the second objective function aims to minimize the total waiting time and the total absolute differences in waiting 

times. They indicated a polynomial-time algorithm to find optimal solutions. Huo and Zhao [9] presented a total completion 

time minimization subject to a constraint that makespan mustn’t extend a constant value. They also developed a polynomial 

algorithm assuming that at least 2 machines must be available in each time interval where preemption was allowed. Lee 

et.al [10] developed a branch and bound and a hybrid genetic algorithm to minimize total tardiness subject to maintenance 

activity. Recently, Yin et al. [11] studied a parallel-machine scheduling problem to minimize the expected total completion 

time of jobs given that disruption of some of the machines may occur. They represented an approximation scheme for the 

proposed problem. Suresh and Ghaudhuri [12] considered makespan minimization under the condition that machines are 

unavailable in a time interval and presented a genetic algorithm to solve the problem. Jiang and Tan [13] studied scheduling 

with job rejection in which some machines are not available at time zero. They provided a heuristic algorithm to minimize 

makespan and the total cost of rejecting and processing jobs. The worst-case ratio bound for the proposed problem was 2. 

Ahmadizar et al. [14] proposed an Imperialist Competitive Algorithm for an unrelated parallel-machine scheduling problem 

with setup times where machines are unavailable in a specific time interval. The goal is to minimize total tardiness and 

earliness. Each machine can process a specific set of jobs. Rosales et al. [15] investigated a novel scheduling problem on 

unrelated parallel machines that incorporates preventive maintenance activities and setup times that depend on the sequence 

and machine. The authors introduce a mathematical formulation for this problem and derive valid inequalities to enhance 

its performance, enabling the model to obtain optimal solutions for small-medium instances. Additionally, they develop an 

efficient metaheuristic algorithm based on a multi-start strategy to solve larger instances. Lu et al. investigated an unrelated 

parallel machine scheduling problem with deteriorating maintenance activities, parallel-batching processing, and 

deteriorating jobs in [16]. The authors aim to minimize the makespan while considering maintenance activities that increase 

with their starting time. To tackle this problem, they present a mixed-integer programming model. Since the problem is 

known to be NP-hard, they propose a hybrid ABC-TS algorithm that combines artificial bee colony (ABC) and tabu search 

(TS) to obtain a reasonable solution in a reasonable time. 

In recent years, unrelated parallel-machine scheduling problem in uncertain conditions has been studied by many 

researchers in which some parameters were fuzzy. Balin [17] considered a parallel machine scheduling problem with fuzzy 

process times to minimize makespan. A robust genetic algorithm was applied to solve the proposed problem. Chyu and 

Chang [18] considered bi-objective unrelated parallel-machine scheduling problem to minimize total completion time and 

total tardiness.  Process times were triangular fuzzy numbers and due dates were trapezoidal fuzzy numbers. A simulated 
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annealing and a greedy randomized adaptive search procedure were applied to solve the problem. Senthilkumar et al. [19] 

combinatorial fuzzy unrelated parallel-machine scheduling problem minimizing total earliness and tardiness. In order Toe 

problem, they presented particle swarm optimization and ant colony optimization. Alcan and BaşLıGil [20] considered 

triangular fuzzy process times for parallel-machine scheduling problem. They proposed a genetic algorithm to minimize 

makespan. Torabi et al. [21] studied a particle swarm optimization algorithm to solve fuzzy multi-objective unrelated 

parallel machine scheduling problem. The goal was to minimize total machine load variation. In their paper, process times 

and due dates were triangular fuzzy numbers. Behnamian [22] considered Bell-shaped fuzzy numbers for process times and 

proposed a PSO algorithm to minimize makespan in parallel machines scheduling problem. Yeh et al. [23] also considered 

triangular fuzzy numbers as process times to minimize makespan. They studied parallel-machine scheduling problem with 

learning effects and developed SA and GA. Naderi et al. [24] studied bi-objective unrelated parallel-machine scheduling 

problem to minimize workload imbalance and total lateness. In their study, process times, setup times, release dates, and 

due dates were trapezoidal numbers. Fuzzy non dominated particle swarm optimization and fuzzy non dominated sorting 

genetic algorithm II (FNSGA II) was proposed for the mentioned problem. Rostami et al. [25] considered the learning effect 

and deterioration effect for a bi-objective parallel-machine scheduling problem with triangular fuzzy process times and due 

dates. The objective functions were total tardiness/earliness and makespan. In this paper, a non-linear fuzzy-based 

mathematical model is presented. Since the proposed model is not appropriate for large-sized instances of the problem, a 

branch and bound algorithm is presented. Nailwal et al. [26] studied a bi-criteria scheduling problem in a fuzzy environment 

in which the first criterion was the minimization of total weighted completion times and the second criterion was the 

minimization of maximum tardiness. Moreover, process times were triangular fuzzy numbers, and a heuristic algorithm 

was implemented for the proposed problem. Liao and Su [27] studied unrelated parallel machine scheduling problem with 

fuzzy process times, setup times, and release dates, minimizing the makespan. Also, ant colony optimization was applied 

to solve the proposed problem. The problem of scheduling n single-operation jobs on m uniform parallel machines is 

investigated by Li et al. in [28]. The authors consider a scenario in which each machine consumes a certain amount of 

resources per unit time when processing the jobs. The objective is to minimize the makespan while ensuring that the total 

resource consumption does not exceed a given limit. To tackle this problem, the authors propose a fuzzy simplified swarm 

optimization (SSO) algorithm. The problem of scheduling on parallel batch processing machines with different capacities, 

in a fuzzy environment with non-identical job sizes and fuzzy processing times, is analyzed by Jia et al. in [29]. The authors 

aim to minimize the makespan for this problem. To address this challenge, they propose a mathematical model and a fuzzy 

ant colony optimization (FACO) algorithm. Rezaeian et al. [30] investigated the unrelated parallel machines scheduling 

problem with sequence-dependent setup times in [30], where the objective is to minimize the total weighted fuzzy earliness 

and tardiness penalties. The authors consider a fully fuzzy environment, where the jobs have fuzzy processing times, fuzzy 

setup times, and fuzzy due dates. To address this problem, the authors propose a mathematical model and a genetic 

algorithm. Liu et al. [31] considered a stochastic parallel machine scheduling problem, where the job release times and 

processing times are uncertain. The authors aim to minimize the total cost, which includes the setup cost on machines and 

the expected penalty cost of jobs' earliness and tardiness. To tackle this problem, the authors propose a two-stage stochastic 

program and an SAA (sample average approximation) method. Li et al. [32] studied a parallel machine scheduling problem 

with position-dependent deteriorating jobs and DeJong's learning effects in an uncertain manufacturing system. The authors 

aim to minimize the fuzzy makespan for this problem. To address this challenge, they propose a fuzzy simplified swarm 

optimization algorithm with local search. The authors evaluate the proposed algorithm by comparing it with other state-of-

the-art meta-heuristics. Ahmet Arik et al. analyzed an unrelated parallel machine scheduling problem with a restrictive 

common due date in [33]. The authors aim to minimize the total sum of earliness/tardiness costs for this problem. To tackle 

this problem, they propose four different construction algorithms that ensure a balanced number of jobs or workload per 

machine. Khalifa [34] examined the problem of single machine scheduling with distinct due dates in a fuzzy environment, 

with the goal of minimizing both total earliness and tardiness. To accomplish this, the author introduced a method for 

sequencing jobs on a single machine in such an environment. 

The multiple objective fractional fixed-charge transportation problem (MFFTP) was investigated in a rough decision-

making framework by Midya et al. [35]. The problem involves fuzzy parameters in the model design, which are handled 

through the use of different types of fuzzy scales. The authors applied the fuzzy chance-constrained rough approximation 

(FCRA) technique to extract the optimal solution with the greatest preference from the MFFTP they proposed. Midya et al. 

[36] investigated the multi-stage multi-objective fixed-charge solid transportation problem (MMFSTP) within the context 

of a green supply chain network system, under an intuitionistic fuzzy environment. To handle the fuzzy parameters, 

trapezoidal intuitionistic fuzzy numbers were assumed and the expected value operator was used to convert the intuitionistic 

fuzzy MMFSTP into a deterministic MMFSTP. The authors developed methodologies to solve the deterministic MMFSTP 



Yaghtin and Javid 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.10, NO.3  

322 
 

through weighted Tchebycheff metrics programming and min-max goal programming, yielding Pareto-optimal solutions. 

Roy et al. [37] the multi-objective fixed-charge solid transportation problem with product blending in an intuitionistic fuzzy 

environment. A novel ranking method was employed to convert the intuitionistic fuzzy multi-objective fixed-charge solid 

transportation problem with product blending into a deterministic form. The authors then proposed a fuzzy technique for 

order preference by similarity to the ideal solution, which was used to derive Pareto-optimal solutions from the proposed 

model. Mondal et al. [38] proposed an integrated model for incorporating sustainability in a multi-objective, multi-item, 

multi-choice, step fixed-charge solid transportation problem in an intuitionistic fuzzy environment, considering economic, 

customer satisfaction, and social aspects. To address the uncertainty of the problem, the authors developed a novel ranking 

concept based on total integral values. Additionally, two equivalent models were presented by utilizing the ranking concept 

and the possibility measure, respectively, and were transformed into fully deterministic models by converting the multi-

choice parameter into a single choice using binary variables. The multi-objective multi-item fixed-charge solid 

transportation problem (MOMIFCSTP) is studied by Roy et al. in [39]. The authors address the challenge of dealing with 

vague data that cannot be fully characterized by fuzziness or roughness, by introducing fuzzy-rough variables as coefficients 

of the objective functions and the constraints. To solve the deterministic MOMIFCSTP, they propose a methodology based 

on the technique for order preference by similarity to ideal solution. Tirkolaee et al. [40] introduced a new bi-objective 

mixed-integer linear programming (MILP) model for flexible manufacturing systems (FMS), which incorporates an 

outsourcing option and just-in-time delivery. The model aims to minimize both the total cost of the production system and 

total energy consumption. To solve this problem, the authors propose a hybrid technique that combines an interactive fuzzy 

solution technique with a self-adaptive artificial fish swarm algorithm. Saffarian et al. [41] developed an integer linear 

programming formulation for a new fuzzy multi-period multi-depot vehicle routing problem. To solve this problem, they 

propose a hybrid algorithm called HGSA, which combines a genetic algorithm with simulated annealing and an auction-

based approach. The authors use a modern simulated annealing cooling schedule function to enhance the performance of 

the algorithm. 

In this paper, an unrelated parallel-machine scheduling problem is considered in which process times and due dates are 

fuzzy numbers. Due to maintenance activities, machines are unavailable periodically and each machine can process a 

specific set of jobs. Moreover, jobs are available at specific times and setup times depend on machines and jobs sequence. 

As far as we know, there isn’t any paper with fuzzy process times and fuzzy due dates that consider periodic maintenance 

activities. In other words, machine availability constraint in time intervals and also fuzzy parameters leads to the high 

complexity of the problem. The contributions are as follows: 

 Considering the due dates of jobs as a time window under fuzzy conditions and considering the processing time of jobs 

in a state of uncertainty and dependent on other factors in unrelated parallel machines scheduling 

 A fuzzy mathematical model based on fuzzy parameters is established for the unrelated parallel-machine scheduling 

problem with machines maintenance activities and process constraints. 

 A fuzzy-based genetic algorithm according to fuzzy parameters is developed.  

 In fuzzy-based GA, a greedy decoding approach according to fuzzy parameters and machine availability which 

increases the efficiency of the solution method is developed. 

The rest of the paper is organized as follows. In section 3, fuzzy numbers and their details are discussed. Section 4 describes 

the problem and a fuzzy model is presented and converted to a deterministic model. In Section 5, a fuzzy-based genetic 

algorithm is proposed to solve large instances of the problem. Computational results are discussed in Section 6. Finally, 

conclusions and future research are provided in Section 7. 

3. Preliminary 

A triangular fuzzy number is illustrated as �̃� = (𝑎1 , 𝑎2 , 𝑎3). If the fuzzy number is normal, its membership function is 

defined as follows: 

   𝜇(𝑥) =

{
 
 

 
 

0                𝑥 ≤ 𝑎1

𝑓𝑎(𝑥) =
𝑥−𝑎1

𝑎2−𝑎1
     𝑎1 ≤ 𝑥 ≤ 𝑎2

1                 𝑥 = 𝑎2

𝑔𝑎(𝑥) =
𝑎3−𝑥

𝑎3−𝑎2
    𝑎2 ≤ 𝑥 ≤ 𝑎3

0                 𝑥 ≥ 𝑎3

                                                                                                                                      (3.1) 
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If Ã and B̃ are triangular fuzzy numbers which are described below: 

�̃� = (𝑎1 , 𝑎2 , 𝑎3) 

�̃� = (𝑏1 , 𝑏2 , 𝑏3)  

 

Then, �̃� + �̃� and �̃� − �̃� are triangular fuzzy numbers. It should be mentioned that �̃� × �̃� and �̃� ÷ �̃� are fuzzy numbers but, 

they aren’t triangular fuzzy numbers. 

(3.2)                 �̃� + �̃� = (𝑎1 + 𝑏1 , 𝑎2 + 𝑏2 , 𝑎3 + 𝑏3) 

          (3.3)    �̃� − �̃� = (𝑎1 − 𝑏3 , 𝑎2 − 𝑏2 , 𝑎3 − 𝑏1)  

          (3.4(    �̃� × �̃� = (𝑎1. 𝑏1 , 𝑎2. 𝑏2 , 𝑎3. 𝑏3)   

  (3.5)    �̃� ÷ �̃� = (
𝑎1

𝑏3
⁄  ,

𝑎2
𝑏2
⁄  ,

𝑎3
𝑏1
⁄ ) 

α-cut in fuzzy sets are subsets of its members whose membership degree is greater than or equal to α. It is denoted as 𝐴𝛼: 

α-cut creates a deterministic distance which is defined as [𝑓𝐴
−1(𝛼) , 𝑔𝐴

−1(𝛼)]. According to Heilpern [42], the expected 

interval of the fuzzy number �̃� is 𝐸𝐼(�̃�) which is defined as follows: 

 

 

Moreover, EV(Ã) denotes the expected fuzzy number of Ã which is shown in the following equation: 

 

 

According to Eqs. (3.7) & (3.8), the expected interval and its expected value are calculated in Eqs. (3.9) & (3.10) if there 

exists a triangular fuzzy number Ã. 

 

4. Problem description and formulation 

The proposed problem is as follows: there are n jobs which are available at different intervals. Each job can be processed 

on one of m unrelated machines in which its completion time should be less than a specific number. The penalty is assigned 

for the jobs whose completion time is greater than a specific value. Also, each machine can process at most one job at a 

specific time. Other assumptions are listed in the following: 

 Setup times depend on the type of machine and job-sequence 

 Machines are unavailable at special times periodically due to maintenance activity. 

 Each machine cannot process all jobs. 

𝛼 − 𝑐𝑢𝑡 →  𝐴𝛼 = [𝑓𝑎
−1(𝛼), 𝑔𝑎

−1(𝛼)]                                   (3.6) 

𝐸𝐼(�̃�) = [𝐸1
𝐴  , 𝐸2

𝐴] = [∫ 𝑓𝑎
−1(𝛼)

1

0
 , ∫ 𝑔𝑎

−1(𝛼)
1

0
]  

    
     (3.7) 

𝐸𝑉(�̃�) =
𝐸1
𝐴+ 𝐸2

𝐴

2
  

               (3.8) 

𝐸𝐼(�̃�) = [
𝑎1+ 𝑎2

2
+

𝑎2+ 𝑎3

2
]              (3.9) 

𝐸𝑉(�̃�) =
𝑎1+ 2 𝑎2+𝑎3

4
   

   
                    (3.10) 
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 Each scheduling period has a planning horizon in which jobs must be completed before the planning horizon. 

 Preemption is not allowed. In other words, if a job is interrupted due to an unavailable period, it must start again (not 

resume). Thus, the start time of jobs must be adjusted so that it is completed before a start of an unavailable period. 

According to the above assumptions, assigning jobs to machines and determining the start time of jobs must be carried out 

so that the total tardiness of jobs is minimized. 

In the following section, a mixed-integer linear programming model (MIP) is presented. Firstly, a fuzzy mathematical model 

is proposed. Then, this model is converted to a deterministic mathematical model, following an approach by Jimenez in 

1996. 

 

4.1. Fuzzy mathematical model 

The notations for the proposed model is as follows: 

Indices 

i: unavailable period (i = 0,1, … , N) 

j, l: job (j, l = 0,1, … , n) 

k: machine (k = 0,1, … ,m) 

Parameters 

P̃jk: Triangular fuzzy process time of job j on machine k ( 𝑝𝑗𝑘 = (𝑝𝑗𝑘
1  , 𝑝𝑗𝑘

2  , 𝑝𝑗𝑘
3 ) ) 

d̃j: Triangular fuzzy due date of job j (𝑑�̃� = (𝑑𝑗
1 , 𝑑𝑗

2 , 𝑑𝑗
3)) 

sjlk: Setup time of job l which is after job j on machine k 

ukj: Equals 1 if machine k can process job j, otherwise 0 

rj: release date of job j 

T: Time interval between two consecutive maintenance activities on a machine (𝑆𝑀𝑖+1 − 𝐹𝑀𝑖 = 𝑇 ; ∀ 𝑖) 

t: Duration of the unavailable period due to maintenance activity (𝐹𝑀𝑖 − 𝑆𝑀𝑖 = 𝑡 ;  ∀ 𝑖) 

SMi: Start time of ith maintenance activity (𝑆𝑀𝑁+1 = 𝐻) 

FMi: Completion time of ith maintenance activity (𝐹𝑀0 = 0) 

H: Planning horizon 

N: Number of periods for each machine  

M: Large number 

Decision variable 

jx : Start time of machine setup to process job j 

jC : Completion time of job j 

jT : Tardiness of job j (  max 0, j j jT C d ) 

Akj: Equals 1 if job j is assigned to machine k, otherwise 0 

zjlk: Equals 1 if job l is processed after job j on machine k, otherwise 0 

z0jk: Equals 1 if job j is processed on machine k as the first job, otherwise 0 
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yij: Equals 1 if job j is processed between maintenance activity i and i+1, otherwise 0 

Fjlk: Binary variable for linearization purpose instead of the nonlinear AkjAkl 

The mathematical model is presented in the following: 

Min 𝑍 = ∑ 𝑇𝑗
𝑛
𝑗=1                        (4.1) 

Subject to:   

∑ 𝑢𝑘𝑗𝐴𝑘𝑗
𝑚
𝑘=1 = 1 ; ∀ 𝑗                        (4.2) 

∑ 𝑧𝑗𝑙𝑘
𝑛
𝑗=1
𝑗≠𝑙

+ 𝑧0𝑙𝑘 = 𝐴𝑘𝑙  ;  ∀ 𝑘, 𝑙                   (4.3) 

∑ 𝑧𝑙𝑗𝑘
𝑛
𝑗=1
𝑗≠𝑙

≤ 𝐴𝑘𝑙  ;  ∀ 𝑘, 𝑙                   (4.4) 

∑ 𝑧0𝑗𝑘
𝑛
𝑗=1 ≤ 1 ; ∀ 𝑘                  (4.5) 

𝑧𝑗𝑙𝑘 ≤ 𝐹𝑗𝑙𝑘  ;  ∀ 𝑗, 𝑙, 𝑘 , 𝑗 ≠ 𝑙                  (4.6) 

𝐹𝑗𝑙𝑘 ≤
𝐴𝑘𝑗+𝐴𝑘𝑙  

2
 ;  ∀ 𝑗, 𝑙, 𝑘 , 𝑗 ≠ 𝑙                  (4.7) 

𝐴𝑘𝑗 + 𝐴𝑘𝑙 − 2𝐹𝑗𝑙𝑘 ≤ 1 ; ∀ 𝑗, 𝑙, 𝑘 , 𝑗 ≠ 𝑙                  (4.8) 

𝑐𝑗 ≥ 𝑥𝑗 + ∑ ∑ 𝑧𝑙𝑗𝑘𝑠𝑙𝑗𝑘 + ∑ 𝑧𝑜𝑗𝑘𝑠0𝑗𝑘 + ∑ 𝐴𝑘𝑗𝑝𝑗𝑘
𝑚
𝑘=1

𝑚
𝑘=1

𝑛
𝑙=1
𝑙≠𝑗

𝑚
𝑘=1  ;  ∀ 𝑗                    (4.9) 

𝑥𝑗 ≥ 𝑟𝑗  ;  ∀ 𝑗                 (4.10) 

𝐹𝑀𝑖 −𝑀(1 − 𝑦𝑖𝑗) < 𝑥𝑗  ;  ∀ 𝑖 , 𝑗                   (4.11) 

𝑆𝑀𝑖+1 +𝑀(1 − 𝑦𝑖𝑗) > 𝑥𝑗  ;  ∀ 𝑖 , 𝑗                   (4.12) 

𝐹𝑀𝑖 −𝑀(1 − 𝑦𝑖𝑗) < 𝑐𝑗  ;  ∀ 𝑖 , 𝑗                   (4.13) 

𝑆𝑀𝑖+1 +𝑀(1 − 𝑦𝑖𝑗) > 𝑐𝑗  ;  ∀ 𝑖 , 𝑗                 (4.14) 

𝑐𝑗 ≤ 𝑥𝑙 +𝑀(1 − ∑ 𝑍𝑗𝑙𝑘
𝑚
𝑘=1 ) ;  ∀ 𝑗, 𝑙 , 𝑗 ≠ 𝑙                  (4.15) 

𝑐𝑗 ≤ 𝐻 ; ∀ 𝑗                    (4.16) 

𝑇𝑗 ≥ 𝑐𝑗 − 𝑑�̃� ;  ∀ 𝑗                  (4.17) 

𝑥𝑗  , 𝑐𝑗  , 𝑇𝑗  ≥ 0 ;  ∀ 𝑗                   (4.18) 

𝐴𝑘𝑗  , 𝑦𝑖𝑗  , 𝑧𝑗𝑙𝑘  , 𝑧0𝑗𝑘 , 𝐹𝑗𝑙𝑘   ≥ 0 ; ∀ 𝑗                 (4.19) 
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The objective function in Eq. (4.1) is minimizing total tardiness. Constraints (4.2) guarantee that each job is processed on 

one available machine. Constraints (4.3 to 4.8) assure that each assigned job appears once in the job sequence of the relative 

machine. According to the linearization approach, constraints (4.6 to 4.8) is applied instead of nonlinear constraint 𝑧𝑗𝑙𝑘 ≤

𝐴𝑘𝑗𝐴𝑘𝑙. Constraints (4.9) state that the completion time of each job must be greater than the summation of the relative 

machine setup time and respective process time. Constraints (4.10) guarantee that the start time of a job must be greater 

than its release date. Constraints (4.11 to 4.14) state that machines can process a job at the available time (not during a 

maintenance activity). Constraints (4.15) specify the job sequence on machines. Constraints (4.16) guarantee that jobs must 

be completed before the planning horizon. Constraints (4.17) calculate the total tardiness and constraints (4.18), (4.19) 

define variables of the model. 

4.2. Converting the fuzzy mathematical model to a deterministic mathematical model 

In this section, an approach is described to convert fuzzy mathematical model to deterministic mathematical model. 

According to the expected interval and expected value of a fuzzy number, Jimenez presented the following approach to 

solve a fuzzy linear programming model by converting a fuzzy problem to a deterministic problem. Thus, each fuzzy 

parameter of the model becomes deterministic parameters according to the α-cut method.  

If the fuzzy mathematical model is as follows: 

𝑀𝑖𝑛 �̃�𝑋  

Subject to: 

𝑎�̃�𝑋 ≥ (≤) 𝑏�̃�  ;    𝑖 = 1 , … ,𝑚                                                                                                                                       (4.20) 

𝑋 ≥ 0  

According to Jimenez approach, the proposed fuzzy model in Eq. (30) is converted to a deterministic model which is shown 

in the following equation.  

𝑀𝑖𝑛 𝐸𝑉(�̃�)𝑋  

Subject to: 

[ (1 − 𝛼). 𝐸2
𝑎𝑖 + 𝛼. 𝐸1

𝑎𝑖]𝑋 ≥ (≤)𝛼. 𝐸2
𝑏𝑖 + (1 − 𝛼). 𝐸1

𝑏𝑖                                                                                                  (4.21) 

   𝑋 ≥ 0  , 𝛼 ∈ [0,1] 

In the presented fuzzy mathematical model, there are only two constraints (4.9 and 4.17) which include fuzzy parameters. 

The rest of the equations become unchanged. Eq. (4.9) is converted to the following equation: 

 

 

And Eq. (4.17) is converted to the following equation: 

 

The fuzzy model is converted to the deterministic model by replacing Eqs. (4.22) & (4.23) with the related fuzzy constraints 

and adding α variable to decision variables. 

5. Genetic Algorithm 

Genetic algorithm (GA) is one of the most applicable metaheuristics in order to solve optimization problems. This algorithm 

can reach an optimal solution in different complex problems despite its simple logic. This algorithm is based on the gradual 

evolution of living in nature. This method was introduced by Holland and later developed by Goldberg.  

𝑐𝑗 ≥ 𝑥𝑗 + ∑ ∑ 𝑧𝑙𝑗𝑘𝑠𝑙𝑗𝑘 + ∑ 𝑧𝑜𝑗𝑘𝑠0𝑗𝑘 + ∑ 𝐴𝑘𝑗 [(1 − 𝛼) (
𝑝𝑗𝑘
2 +𝑝𝑗𝑘

3

2
) + 𝛼 (

𝑝𝑗𝑘
2 +𝑝𝑗𝑘

1

2
)]𝑚

𝑘=1
𝑚
𝑘=1

𝑛
𝑙=1
𝑙≠𝑗

𝑚
𝑘=1  ;  ∀ 𝑗                         (4.22)                                                                            

𝑇𝑗 ≥ 𝑐𝑗 − [𝛼 (
𝑑𝑗
2+𝑑𝑗

3

2
) + (1 − 𝛼) (

𝑑𝑗
2+𝑑𝑗

1

2
)] ;  ∀ 𝑗  

                                      

(4.23)                   
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The genetic algorithm starts with some random initial populations like other evolutionary algorithms. In this algorithm, the 

initial population is the first generation and each population member is a chromosome. A number of the best population 

members (elite) are considered as parents and crossover and mutation operations are carried out with 𝑝𝑐 and 𝑝𝑚 rates to 

generate children. The children are compared with the current population and the best populations are selected for the next 

generation according to the objective function and population size. This process continues till the termination condition is 

reached. If the algorithm is terminated, the solution of the last generation is considered as the algorithm output.   

Given that process times and due dates are fuzzy parameters, computations must be according to fuzzy parameters and 

algorithm output for each instance (objective value of each instance) must be a fuzzy number. In the following, different 

components of the proposed algorithm are investigated. 

5.1. Solution representation 

A genetic algorithm is a population-based algorithm that starts with initial solutions (chromosomes). This initial solution 

can be generated randomly or according to other algorithms. In this paper, initial solutions are generated randomly. Also, a 

special permutation is applied to represent a solution whose gene numbers are equal to the number of jobs that are not 

scheduled. Thus, each encoded solution is an array with n cells in which a job number is in each cell. For example, a solution 

of the problem with 8 jobs and 3 machines is illustrated in Figure 1.  

 

3 1 2 4 

Figure 1. Solution representation (chromosome) for an instance with 8 jobs and 3 machines 

To calculate the objective value of a solution, the solution is decoded. In other words, the array must be encoded by a 

scheduling plan. In this research, to decode each solution and calculate the objective value, the solution process starts with 

the job in the first cell and the job is assigned to a machine (among machines that can process the job) that can process the 

job earlier so that this job has the minimum tardiness. 

According to fuzzy process times and due dates, there are a few points to consider for assigning jobs to machines and 

determining job sequence on each machine: 

1. According to triangular fuzzy process times, completion times are resultantly triangular fuzzy numbers: 

 

𝑃𝑙 = (𝑝𝑙
1 , 𝑝𝑙

2 , 𝑝𝑙
3)  →   𝐶𝑙 = (𝑐𝑙

1 , 𝑐𝑙
2 , 𝑐𝑙

3)                                                                                                                            (5.1) 

 

Suppose job j is processed after job l on machine k. The start time of job j must be greater than 𝑐𝑙
3. In other words, the 

following equation is established between two consecutive jobs (j and l) on each machine: 

𝑐𝑙
3 ≤ 𝑥𝑗                                                                                                                                                                                                     (5.2) 

 

2. If the start time of job j on a machine is within interval(𝐹𝑀𝑖  , 𝑆𝑀𝑖+1), the minimum completion time of the job must be 

greater than 𝐹𝑀𝑖 and the maximum completion time must be less than 𝑆𝑀𝑖+1. The following equation indicates the 

considered relation. 

 

𝑖𝑓 𝐹𝑀𝑖 ≤ 𝑥𝑗 ≤ 𝑆𝑀𝑖+1  →  𝐹𝑀𝑖 < 𝑐𝑗
1   ,    𝑐𝑗

3 < 𝑆𝑀𝑖+1                                                                                                                     (5.3) 

 

3. If tardiness of job j on a machine is indicated with a triangular fuzzy number with negative component, tardiness of the 

considered job is 0. Eq. (5.4) is the mathematical expression for this relation: 

 

𝑖𝑓 𝑇𝑗 = (𝑇𝑗
1 , 𝑇𝑗

2 , 𝑇𝑗
3)  ≤ 0     →      𝑇𝑗 = 0                                                                                                                                         (5.4) 

  

To better illustrate the decoding approach, consider an example with 4 jobs and 2 machines. Suppose there are two machines 

𝑀1 and  𝑀2  and jobs 𝐽1 and 𝐽4  can only be processed on machine 𝑀1  and jobs 𝐽2  and 𝐽3  can only be processed on 

machine 𝑀2. Processing times and due dates of jobs are as follow in fuzzy numbers: 
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𝑝1 = (2 ,3 ,4)             ,       𝑑1 = (1 , 2 , 2.5)  

𝑝2 = (1 ,2 , 3)            ,       𝑑2 = (3.5 , 4 , 4.5)  

𝑝3 = (1 ,2 , 3)            ,       𝑑3 = (2 , 5 , 5.5)  

𝑝4 = (0.5 ,1 , 1.5)     ,       𝑑4 = (3 , 4 , 4.5)  

In machine 𝑀1, parameters T and t are equal to 4 and 1 respectively and in machine 𝑀2, parameters T and t are equal to 5 

and 0.5 respectively. Now consider the encrypted solution in Figure 1. First, job 𝐽4, which is in the first position, is assigned 

to machine 𝑀1. After that, job 𝐽2, which is in the second position, is assigned to machine 𝑀2. Then jobs 𝐽1 and  𝐽3 , which 

are in the third and fourth positions, are assigned to machine 𝑀1 and  𝑀2 respectively. 

 

Figure 2: timetable for all jobs 

According to the timetable in Figure 2, the tardiness of jobs are as follow: 

𝑇1 = 𝑐1 − 𝑑1 = (7 , 8 , 9) − (1 , 2 , 2.5)    
 
⇒   𝑇1 = (4.5 , 6 , 8)  

𝑇2 = 𝑐2 − 𝑑2 = (1 , 2 , 3) − (3.5 , 4 , 4.5)    
 
⇒   𝑇2 = (−3.5 , −2 , −0.5)  

 
⇒   𝑇2 = 0    

𝑇3 = 𝑐3 − 𝑑3 = (6.5 , 7.5 , 8.5) − (2 , 5 , 5.5)    
 
⇒   𝑇3 = (1 , 2.5 , 6.5)   

𝑇4 = 𝑐4 − 𝑑4 = (0.5 , 1 , 1.5) − (3 , 4 , 4.5)    
 
⇒   𝑇4 = (−4 , −3 , −1.5)  

 
⇒   𝑇4 = 0 

Now the objective function value (Z) of this solution can be calculated as follow: 

𝑍 = ∑𝑇𝑖 = (4.5 , 6 , 8) + (1 , 2.5 , 6.5) = (5.5 , 8.5 , 14.5)  

𝐸𝑉(𝑍) =
5.5+(2×8.5)+14.5

4
  
 
⇒   𝐸𝑉(𝑍) = 9.25  

5.2. Ranking population in each generation 

The ranking population of each generation must be carried out to select the population member in each generation with 

better objective function for crossover and mutation operation and also selecting the best populations of each generation 

and transmitting them to the next generation. Given that the objective value of the corresponding population member is 

calculated through triangular fuzzy numbers, an approach for ranking triangular fuzzy numbers should be presented. In this 

paper, a method of ranking triangular fuzzy numbers with three criteria is proposed. These criteria must be applied 

respectively. In other words, if some fuzzy numbers are not ranked according to the first criterion, second and third criteria 

are applied, respectively [43]. These criteria are presented in the following: 

 The first criterion for ranking fuzzy numbers: triangular fuzzy number Ã is less than triangular fuzzy number B̃ if: 

𝑀1 
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 The second criterion for ranking fuzzy numbers (mode): After ranking fuzzy numbers by the first criterion, those that 

remain can be ranked by the mode criterion. According to the second criterion, triangular fuzzy number Ã is less than 

triangular fuzzy number B̃ if: 

 The third criterion for ranking fuzzy numbers (range): After ranking fuzzy numbers by the first and second criteria, 

those that remain can be ranked by this criterion. This criterion applies a range of numbers for ranking them. According 

to this criterion, triangular fuzzy number Ã is less than triangular fuzzy number B̃ if: 

5.3. Crossover operation 

In this paper, the proposed crossover operation is PMX which generates children with crossover rate 𝑝𝑐 . Hence, two 

chromosomes are selected as parent 1 and 2 according to the strategy of parent selection. According to this strategy, two 

random solutions are selected and the solution with better rank is nominated as a parent. If the ranks of the two solutions 

are the same, one of them is nominated randomly. Then, two genes are selected randomly according to PMX operation and 

the genes between the selected genes of chromosome 1 and 2 are replaced; other genes are replaced or transmitted to the 

child without any change. To illustrate this operator, an instance with 10 jobs and 3 machines is considered. First, two cells 

are selected randomly and numbers between these cells from parent 1 are transferred to the child chromosome (Figure 3-

Chromosome 1). The following relationship is established for genes between cell 3 and 9: 3 ↔ 6, 4 ↔ 2, 7 ↔ 7, 10 ↔ 8. 

Jobs {8, 7, 2, 4, 6} are copied to child 1. As a result, jobs {1, 3, 5, 10, 9} remain. By eliminating the jobs that were in the 

corresponding relationship, jobs {1, 5, 9} remain which are copied to the child according to their order in parent 2 (Figure 

3- chromosome 2). Finally, since the remaining jobs {10, 3} are corresponded to jobs {8, 6} respectively, the corresponding 

numbers are copied to child genes according to their corresponding value in parent 2.  

 ↓      ↓    

9 10 8 7 2 4 6 5 3 1 Parent 1 

           

1 9 10 7 4 2 3 5 6 8 Parent 2 

           

  8 7 2 4 6    Chromosom1 

           

1 9 8 7 2 4 6 5   Chromosom2 

           

1 9 8 7 2 4 6 5 3 10 Child 

Figure 3. Crossover operation according to PMX operator 

 

5.4. Mutation operation 

In this paper, swamp mutation is applied with mutation rate 𝑝𝑚 . According to this method, a random chromosome is 

nominated and two cells are selected for the mutation purpose. Finally, the numbers in these two cells are swamped. Figure 

4 shows the process of swamp mutation assuming that cell 4 and cell 7 are selected for mutation.  

 

𝑎1+2𝑎2+𝑎3

4
<

𝑏1+2𝑏2+𝑏3

4
  

              
   (5.5) 

𝑎2 < 𝑏2                       (5.6) 

𝑎3 − 𝑎1 < 𝑏3 − 𝑏1                                        (5.7) 
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   ↓   ↓      

1 9 10 7 4 2 3 5 6 8 Parent  

            

1 9 10 3 4 2 7 5 6 8 Child 

Figure 4. Swamp mutation 

 

The flowchart of the proposed genetic algorithm is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Computational results 

In this section, the performance of the mathematical model and the proposed algorithm are evaluated. Hence, some instances 

of different sizes are generated and are solved by deterministic mathematical model and genetic algorithm. Since GA 

calculates according to fuzzy parameters, the objective values are triangular fuzzy numbers. As a result, the output of the 

algorithm is evaluated and calculated for each instance according to Eq. (3.10). 

In this study, the mathematical model is solved with GAMS software and the CPLEX solver is used. In this software, the 

maximum solution time for each instance is 7200 seconds and if the optimal solution is obtained during this period, it is 

  Start 

Initialization 

Evaluation 

No 

Stopping 

Criteria  
Selection 

Return the best individual found End 

Crossover 

Mutation Evaluation 

Replacement 
Yes 

Figure 5. Genetic algorithm flowchart 
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reported. On the other hand, the Genetic algorithm is coded in C# programming language and performed all the 

computational experiments on a Laptop with an Intel Corei2 with 2.6 GHz CPU and 4GB RAM. To adjust the parameters 

of the GA, different values were considered for each parameter, and then, by solving some numerical problems in the initial 

experiments, the appropriate values were selected which are shown in Table 1 (n indicates the number of jobs). 

Table 1. GA parameters 

Parameter Value  

Population size 10 × n 

Generation. no 80 

Crossover rate 0.8 

Mutation rate 0.2 

 

In the proposed algorithm, if the number of algorithm repetitions reaches a specific number, GA stops and presents the best 

solution. In this paper, the specific number is 80 according to computational experiments. 

In this research, the initial population for the genetic algorithm is generated randomly and due to the random nature of the 

proposed algorithm, each of the generated problems has been solved 5 times by the GA and the minimum, average and 

maximum values of the objective function for obtained solutions have been reported. Also, to facilitate the comparison of 

the results, the following relative percentage deviation has been used to measure the value of the objective function of each 

solution (sol) for a given problem: 

𝑅𝑃𝐷 = (
𝑓(𝑠𝑜𝑙)−𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)

𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)
) × 100                                                                                                                                      (6.1) 

Where 𝑠𝑜𝑙𝑏𝑒𝑠𝑡  is the best solution for that problem among the obtained solutions. The RPD indicator compares each solution 

with the best solution obtained for that problem and declares their difference as a percentage; the lower the value of this 

indicator, the better the quality of the solution. 

A number of instances are generated in different sizes to evaluate the efficiency of the mathematical model and the proposed 

algorithm. Process times are triangular fuzzy numbers (𝑝𝑗𝑘 = (𝑝𝑗𝑘
1  , 𝑝𝑗𝑘

2  , 𝑝𝑗𝑘
3 )) in which 𝑝𝑗𝑘

1 , 𝑝𝑗𝑘
2  and 𝑝𝑗𝑘

3  are selected from 

a discrete uniform distribution within intervals ([15, 24], [25, 44], [45, 64]), respectively. Due dates are also triangular fuzzy 

numbers (𝑑𝑗 = (𝑑𝑗
1 , 𝑑𝑗

2 , 𝑑𝑗
3)) in which 𝑑𝑗

1 , 𝑑𝑗
2 and 𝑑𝑗

3 are selected from a discrete uniform distribution within intervals 

([25, 45], [46, 75], [76, 120]), respectively. 𝑢𝑘𝑗 are within the interval [0, 1] so that each job can be processed on at least 

half of the machines. Moreover, setup times, times between two consecutive maintenance activities (T), and duration of 

maintenance activity (t) are within intervals [1, 10], [50, 65], and [10, 15], respectively. The planning horizon is calculated 

by the following equation: 

Where 𝑝𝑗𝑘
3  is the maximum process time of job j on machine k and 𝑢𝑘𝑗 is the probability of processing job j on machine k. 

It should be mentioned that 3 instances are generated for each problem size. 

As shown in table 2, the results obtained from solving different sizes of the problem are reported, in which the RPD values 

for the problems that the mathematical model was able to find the optimal solution are bolded. Average results are also 

reported for instances of the same size. Table 2 indicates that for those problems that the mathematical model can find 

optimal solutions (11 instances out of 42 instances), GA is also able to find the optimal or near-optimal solution at least one 

time in five-time running. According to computational experiments, GA is superior to the proposed mathematical model. 

For the instances with 40 jobs and 7 machines, GAMS is not able to find any feasible solution within 7200 seconds. The 

remarkable point of GA is the low deviation of its presented solutions for each instance and this confirms the convergence 

of the algorithm. In general, according to the results, it can be claimed that the proposed GA algorithm has a great 

performance and can obtain good solutions in an acceptable time, especially for large instances of the problem. 

𝐻 = 5 ×
∑ (𝑚𝑎𝑥

𝑘
(𝑝𝑗𝑘
3 ×𝑢𝑘𝑗))𝑗

𝑚
                                   (6.2) 
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Table 2. Computational results for different instances 

   Mathematical model  Genetic Algorithm 

NO. 
job 

NO. 
machines Instance  

Output 

RPD 
Run time 

(sec) 

 Output (RPD) 
Run time 
(sec) 

 Min Avg Max 

  1 0 12  0 0 0 22 

5 2 2 0 16  0 0 0 19 

  3 0 18  0 0.07 0.1 26 

Average   0 15.33   0 0.02 0.03  22.33 

  1 0 196  0 0.11 0.22 53 

7 2 2 0 211  0 0.06 0.19 38 

  3 0 268  0 0.09 0.20 48 

Average  0 225  0 0.08 0.20 46.33 

  1 0 1081  0 0.08 0.14 71 

8 2 2 0 2011  0 0.11 0.19 68 

  3 0 1979  0 0.16 0.32 94 

Average  0 1690.3  0  0.11 0.21 77.66  

  1 0 3876  0.05 0.14 0.23 114 

9 2 2 0 4391  0.07 0.21 0.34 122 

  3 0 7200  0.07 0.16 0.26 139 

Average  0 5155.6  0.06 0.17 0.27 125 

  1 0 7200  0.08 0.19 0.30 141 

10 3 2 0 7200  0.06 0.17 0.29 155 

  3 0 7200  0.05 0.18 0.31 137 

Average  0  7200  0.06 0.18 0.30 144.33  

  1 0 7200  0 0.25 0.38 149 

11 3 2 0 7200  0.05 0.28 0.42 178 

  3 0 7200  0 0.24 0.33 165 

Average  0 7200  0.01 0.25 0.37 164 

  1 0.26 7200  0 0.22 0.43  189 

12 3 2 0.22 7200  0 0.21 0.39  175 

  3 0.18 7200  0 0.34 0.52  209 
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Average  0.22 7200  0  0.25 0.44 191 

  1 0.84 7200  0 0.32 0.56  265 

15 3 2 0.79 7200  0 0.37 0.78 272 

  3 0.96 7200  0 0.5 0.93  304 

Average  0.86 7200  0 0.39 0.75 280.33 

  1 1.82 7200  0 0.57 1.06 349 

18 4 2 2.19 7200  0 0.72 1.26 381 

  3 2.67 7200  0 0.78 1.38 396 

Average  2.22 7200  0 0.69 1.23 375.33 

  1 2.86 7200  0 0.78 1.41 428 

20 4 2 2.71 7200  0 0.54 1.29  413 

  3 2.8 7200  0 0.68 1.32  422 

Average  2.79 7200  0 0.66  1.34  421 

  1 3.78 7200  0 0.68 1.39 479 

25 5 2 3.89 7200  0 0.72 1.54  461 

  3 4.15 7200  0 0.96 1.87  507 

Average  3.94 7200  0 0.78 1.60 482.33  

  1 4.28 7200  0 1.61 2.43 566 

30 6 2 4.51 7200  0 1.31 2.24 617 

  3 4.76 7200  0 1.19 1.93  642 

Average  4.51 7200  0 1.37 2.20 608.3 

  1 5.28 7200  0 1.65 2.53 656 

35 6 2 5.76 7200  0 1.75 2.69 672 

  3 5.45 7200  0 1.48 2.33 669 

Average  5.49 7200  0 1.62  2.51 665.6 

  1 - 7200  0 1.82 2.83 811 

40 7 2 - 7200  0 1.88 2.92  763 

  3 - 7200  0 1.71 2.76 783 

Average  - 7200  0  1.8 2.83 785.6  
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7. Conclusions and future research 

This paper addressed an unrelated parallel-machine scheduling problem in which process times and due dates are fuzzy 

numbers. Due to maintenance activities, machines become unavailable periodically and each machine can process a specific 

set of jobs. In addition, jobs become available at specific times, and setup times depend on machine type and job sequence. 

One of the important applications of this issue is in the production of products that the due dates are defined as a time 

window and the best due date value is close to the middle of the time window and the jobs processing times depend on other 

factors such as operator and their value is not specified and are announced as interval under uncertainty. In this study, a 

fuzzy mathematical model was presented and then, the problem was changed to a deterministic programming model. Due 

to the inability of the exact method (GAMS) to solve large instances of the problem, a fuzzy-based genetic algorithm was 

developed. The proposed GA as well as the exact method presented good performance in solving small instances. In 

addition, it was capable to solve large instances and showing good performance according to quality and run time factors. 

For future research, preemption can be applied for the same problem. Also, different objectives can be added to the problem 

and various multi-objective meta-heuristics may be applied to solve these problems. 
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