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Abstract 

The aim of this paper was to develop a binary bi-level optimization model for the emergency warehouse location-

allocation problem in terms of national and regional levels. This type of modeling is suitable for countries where the 

design of the disaster emergency network is decentralized. The upper-level decision-maker makes a decision regarding 

the location and allocation of national warehouses through considering the location of regional warehouses and allocating 

them to the demand cities. Each regional warehouse can provide a service for the demand cities within a specified distance 

threshold, ultimately affecting the efficiency of the solution algorithms. The optimization model parameters were 

calculated in terms of the real data in Iran. To solve the small size problem, an exact method was proposed from the 

explicit complete enumeration. Due to the complexity of the model with the large size, two innovative hybrid genetic 

algorithms, namely HG-ES-1 and HG-ES-2, were suggested. The results obtained from solving the problems showed that 

the HG-ES-1 algorithm outperformed HG-ES-2. The findings further indicated the proper functioning of the solution 

approaches. 

Keywords: Bi pre-positioning; Disaster management; Bi-level programming; Hybrid genetic algorithms; Location-

allocation problem. 

1. Introduction and Literature review 

Over the past two decades, many crises such as natural and man-made disasters have occurred with a huge amount of 

human and financial losses. In 2017, 335 natural disasters took place, killing more than 9697 people worldwide, impacting 

over 95.6 million others, and causing US$ 335 billion of economic damages(CRED, 2018). Disasters ensue a condition 

where a large number of people require immediate relief supplies. It is necessary to pre-position relief supplies in the 

disaster emergency network so as to quickly and efficiently respond to demand. Among the objectives of this network is 

to procure and store relief supplies and distribute them in the time of disaster. Locating and allocating warehouses and 

distribution centers are regarded as key elements for designing disaster emergency networks. Boonmee et al. (2017) 

summarized and categorized facility location optimization models in the relief supply chain field.  

In some country, when a national decision-maker (upper-level) locates and allocates emergency facilities based on single-

level optimization, the regional decision-maker (lower-level) may, by leveraging, allocate facilities to areas under his/her 

management. This leads to unfair allocation of facilities and the reduced effectiveness of planning. Using bi-level 

programming is one approach to preventing the disruption of the upper-level decision-makers (central government) by 

the lower-level decision-makers (regional managers) related to the emergency facility location problem. In this paper, a 
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bi-level programming was used to model the location and allocation of emergency warehouses at national and regional 

levels. The optimization model of this research has been developed based on Saghehei et al. (2021). In the present model, 

the distance threshold constraint is considered in both levels for warehouses. In the following, some studies focused on 

the location and allocation of emergency facilities are categorized and presented in two sections: single-level and bi-level 

programming. 

 

1.1. Single-level emergency warehouses location  

Balcik and Beamon (2008) developed a model that specified the location of distribution centers and the amount of relief 

supplies inventory at each distribution center in the international humanitarian network. In their innovative work, 

Manopiniwes et al. (2014) proposed a mix integer model with capacity constraints and time restrictions. Based on a real 

flood case in Thailand, the optimization model minimized the total cost of relief tasks. Mokhtarinejad et al. (2015) 

developed the P-center optimization model for locating emergency warehouses. Their proposed model included certain 

features such as population distribution, economic condition, and transportation. Moreover, real data were gathered, and 

the number of Chinese national emergency warehouses was specified. Regarding emergency warehouse location problem, 

some studies have considered uncertainty in modeling. Bozorgi-Amiri et al. (2013) introduced a stochastic model 

comprised of two stages: the first one was set to locate relief distribution centers and inventory quantities for each item 

type while the second aimed for the number of items transported from distribution centers to demand points. In another 

study, Bozorgi-Amiri and Khorsi (2016) developed a multi-objective stochastic programming model that considered the 

minimization of the unsatisfied demand, travel time, and costs as objective functions of the model. Paul and Hariharan 

(2012)  addressed three groups of delays to receive and allocate supplies in the SNS network. A new framework was 

further presented to increase the efficiency of the disaster preparedness plan based on the characteristics of disasters. Paul 

and MacDonald (2016b) developed a stochastic optimization model to specify the location and capacities of medical 

supplies; their model was designed for storm conditions using historical hurricane data. Paul and MacDonald (2016a) 

used the framework during the earthquake disaster. The model considered various uncertainties such as facility damage 

and casualty losses according to their severity and remaining survivability time as a function of earthquake magnitude.  

 

1.2.  Bi-level emergency warehouse location 

Camacho-Vallejo et al. (2015) proposed a bi-level programming model to optimize the location of distribution centers in 

humanitarian logistics. The affected country and non-profit international organizations were considered to be the upper-

level and the lower-level, respectively. Upper and lower-level’s objectives were to minimize response time and the 

shipping cost. They considered the 2010 earthquake in Chile as their case study. Gutjahr and Dzubur (2016) developed a 

multi-objective bi-level optimization model for locating the distribution centers in a relief supply chain. The aid-providing 

organization was considered as the leader and the beneficiaries as followers. The leader’s objectives were to minimize 

the total opening cost for the distribution centers and total uncovered demand, and the followers’ objective was to provide 

user equilibrium related to the leader. Xu et al. (2016) proposed a multi-objective bi-level programming for the location-

routing problem in post-earthquake phase. The leader (Rescue Control Center) decided on the location of distribution 

centers, and the follower (Logistics Company) selected an optimal rout to achieving relief supplies from distribution 

center. Road conditions were considered as a source of uncertainty (random fuzzy variables) in this optimization model. 

Safaei et al. (2018) utilized a bi-level programming model to locate distribution centers and select suppliers. The leader’s 

objective function was to minimize operational costs and uncoated demands, and that of the lower-level was to minimize 

the risk of supplier choice. Haeri et al. (2020) developed a bi-level multi-objective programming approach for pre-

positioning relief items. The DEA method was used to determine candidate places for locating relief centers. They utilized 

a fuzzy goal programming algorithm to solve the bi-level model.  

 

1.3. Contribution of the research 

In the suggested model, location and allocation of facilities are done at both levels in which the location and allocation of 

the upper-level depend on the location and allocation of the lower-level and vice versa. Hence, the reciprocal dependency 

of decision variables of the levels makes the model more complex to solve. With this end in view, two innovative hybrid 

evolutionary approaches, namely HG-ES-1 and HG-ES-2 with different initial solution generation and allocation methods 

have been developed. The main contributions of this research can be summarized as follows: 

 Developing a new binary bi-level model based on minimizing the total weight of distances  in order to locate 

and allocate national and regional warehouses in the disaster emergency network 

 Proposing an exact algorithm based on full enumeration method to solve the binary bi-level location-allocation 

models for small size problem 

 Designing the genetic algorithms to solve the binary bi-level location-allocation models with a large number of 

variables 

 Comparing evolutionary algorithms to bi-level programming by innovative evaluation criteria  
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1.4. Manuscript organization 

The rest of the paper is organized in the following order: Section 2 reviews the general structure and the solutions to 

discrete bi-level programming model. In Section 3, the problem is described, and a bi-level optimization model is 

developed for the emergency warehouse location-allocation problem. Section 4 provides the details of the algorithms 

proposed to solve the optimization model. Section 5 describes the computational results obtained from the solution 

approaches. The final section concludes this paper and offers future recommendations. 

2. The Discrete Bi-level Programming 

Bi-level programming is a specific type of multi-level programming for decentralized planning in a hierarchical 

organization with several decision-makers. This  programming is closely associated with Stackelberg games, consisting 

of two levels (upper and lower level): the decision-makers at the upper-level and the lower-level are called leader and 

follower, respectively (J. Bard, 1998). In bi-level programming, the leader primarily attempts to optimize his/her 

objectives by considering the objective of the follower; the follower then decides to optimize his/her objectives while 

being aware of the decision taken by the leader. This process continues until an equilibrium point is reached (Bracken & 

McGill, 1973).  A subset of this group of optimization problems is discrete bi-level programming, which formulation is 

the same as that of bi-level programming along with one or more variables at either of the levels being integer. The 

discrete bi-level model is presented as follows:  

Leader:  

 min ,
x X

F x y
   

.s t   
 , 0G x y 

    
,     ,   Where for every x fixed y solves                                                                                                                    (1) 

Follower:                                                                                                                     

 min ,
y Y

f x y


 

.s t   
 , 0g x y 

  
, intx y   

, where 𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are objective functions and 𝐺(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) denote constraints for the leader and the 

follower. Solution methods of bi-level programming are classified into classical and evolutionary algorithms. Single-level 

reduction, descent methods, penalty function methods, and trust-region methods are among the known classical methods. 

Evolutionary algorithms are categorized into nested, meta-modeling, and single-level reduction problems for solving bi-

level problems (Sinha et al., 2017). The following includes some studies on the classical and evolutionary algorithms for 

discrete bi-level programming.  

 

2.1.  Classical algorithms for discrete bi-level programming  

Some of the early studies on solving discrete bi-level models by classical algorithms are in (Dempe, 1996; Vicente et al., 

1996). Furthermore, J. F. Bard and Moore (1992)  employed an implicit enumeration for pure binary bi-level problem. 

Dempe (2002) analyzed the feasible region of the discrete bi-level programming and presented the Cutting-Plan algorithm 

to solve the discrete bi-level programming. Branch-and-bound and branch-and-cut are two commonly employed 

techniques for solving this type of problem (Sinha et al., 2017). These methods were used to solve the discrete bi-level 

optimization models. Benders decomposition is one of the methods used in solving bi-level models with mixed-integer 

variables (Caramia & Mari, 2016; Fontaine & Minner, 2014; Kheirkhah et al., 2016; Yue et al., 2019).  

 

2.2.  Evolutionary algorithms for discrete bi-level programming 

Moore and Bard (1990) proved that the mixed-integer bi-level programming problems were NP-hard. Despite the attempts 

made to develop classical methods for discrete bi-level programs, the research is still open to new methods and ideas as 

none of the proposed techniques would work well for problems with larger number of variables. Different types of 

evolutionary algorithms have also been used to solve discrete bi-level programming models (Aksen & Aras, 2013; 

Camacho-Vallejo et al., 2014; Hecheng & Yuping, 2008; Kheirkhah et al., 2015; Miandoabchi & Farahani, 2011). Huang 

and Liu (2004) developed an interactive evolutionary framework for the mixed integer bi-level programming in the 

location-allocation problem. They employed genetic algorithm for the lower-level model and enumeration vertex method 

for the upper-level model. Sinha et al. (2014) designed nested evolutionary approach to solve multi-period multi-leader-

follower Stackelberg game. Calvete et al. (2013) utilized a nested genetic algorithm to solve a binary bi-level 

programming model in the ring star problem. Chen et al. (2017) developed an improved differential evolution algorithm 
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(IDE) to solve a binary bi-level model for emergency warehouse location-allocation problem. The computational results 

of IDE were compared with the results of conventional differential evolution algorithms (CoDE, SaDE, JADE, and JDE). 

 

3. Problem description 

In this paper, the disaster emergency network was assumed to comprise three stages (see, Fig. 1). The first stage includes 

a set of national warehouses, the second contains regional warehouses, and the last is comprised of demand cities. The 

regional warehouses receive their relief supplies from national warehouses. Demand cities are serviced only from regional 

warehouses, and the direct shipment of goods from the national warehouses to demand cities is prohibited. Bi-level 

programming is considered as a modeling framework. Upper-level and lower-level problems are associated with the 

national decision-makers and regional decision-makers, respectively. In our proposed model, the upper-level model made 

a decision regarding the location and allocation of national warehouses through considering the location of regional 

warehouses and allocating them to demand cities. As shown in Fig.1, each of the national and regional warehouse 

candidates, at a road distance threshold, is capable of serving a lower level. 

 

 
Figure 1. Bi-level emergency warehouse location-allocation problem (BL-EW-LAP) 

 

3.1.  The BL-EW-LAP optimization model:  

Index and sets: 

I    set of candidate cities for national warehouses  {1, ...., }I m   

J    set of candidate cities for regional warehouses  {1, ...., }J n  

K    set of demand cities {1, ....., }k k  

parameters: 

ijurd         road distance of national warehouse 𝑖 from regional warehouse 𝑗 

jklrd       road distance of regional warehouse 𝑗 from demand city 𝑘 

kldw       demand weight associated to demand city 𝑘 

iucap     capacity of national warehouse 𝑖    

jlcap       capacity of regional warehouse 𝑗   

umax     number of national warehouses to establish  

lmax       number of regional warehouses to establish  

iutr          the maximum distance that national warehouse 𝑖 can serve regional warehouses  
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jltr           the maximum distance that regional warehouse 𝑗 can serve demand cities 

 

Decision variable: 

iZ  = 1     if a national warehouse is established at candidate city i , and 0 otherwise. 

ijX = 1     if regional warehouse j is allocated to national warehouse i , and 0 otherwise. 

jZ  = 1    if a regional warehouse is established at candidate city j , and 0 otherwise. 

jkY = 1    if demand city k  is allocated to regional warehouse j and 0 otherwise. 

𝑢𝑑𝑤𝑗 = ∑ 𝑙𝑑𝑤𝑘 ∗𝑘 𝑌𝑗𝑘   total demand weight associated to regional warehouse j  

 

Upper-level model (ULM):  

Min                    j ij ij

i j

udw urd X                                                                                                                 (2) 

Subject to:         i

i

Z umax                                                                                                                           (3) 

                           1ij

i

X                                       j                                                                                       (4) 

                           j ij i i

j

udw X ucap Z                    i                                                                               (5)      

                           k jk j ij

k i

ldw Y udw X                  j                                                                              (6)  

                                ij ij iurd X utr                                          ,i j                                                                  (7)    

                           , {  0 }  1  ,i ijZ X   ,    ,i j                                                                                                        (8)     

Lower-level model (LLM): 

Min                   k jk jk

j k

ldw lrd Y                                                                                                                    (9) 

Subject to:         j

j

Z lmax                                                                                                                         (10) 

                          1jk

j

Y                                            k                                                                                (11) 

                          jk jk

k

jldw Y lcap Z                       j                                                                              (12)      

                         jk jk j ij

k i

ldw Y udw X Z
 

  
 

             j                                                                            (13)   

                              
jk jk jlrd Y ltr                                            ,j k                                                                  (14)     

                       , {0,1}j jkZ Y  , ,j k                                                                                                                 (15)     

Equations (2-8) and (9-15) are related to ULM and LLM, respectively. The objective functions of the ULM and LLM are 

to minimize the total weighted distances between national and regional warehouses and regional warehouses and demand 

cities, respectively (equations 2 and 9). The maximum number of national warehouses that can be established on the 

candidate sites is equal to 𝑢𝑚𝑎𝑥 (equation 3). From equation 4, it is guaranteed that each located regional warehouse 𝑗 is 

likely to be allocated to national warehouse 𝑖. Equation (5) is to ensure that the regional warehouse allocated to the 

national warehouse will not exceed the capacity. Equation (6) is a balance constraint for each regional warehouse; more 

specifically, the amount of demand weights of cities allocated to a regional warehouse should be equal to the value 

allocated from the national warehouse. Moreover, equation 6 is the coupling constraint of the upper-level model to the 

lower-level. Equation (7) applies to the distance threshold for each national warehouse. If the regional warehouse is not 

within the coverage area of the national warehouse, that warehouse cannot be allocated to the national warehouse. The 
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interpretation of equations (10-14) is similar to that of equations (3-7). Equations (8) and (15) set binary conditions and 

domain of decision variables for the bi-level model.  

 

3.2. The relaxed of BL-EW-LAP (RXBL) 

The relaxed version of a BL-EW-LAP can be defined as an optimization model comprised of the objective function of 

the upper-level and the constraints of both levels. In this model, the objective function of the lower-level model is 

eliminated, and the single-level model is used. Due to the minimization of the objective function of the bi-level model, 

the optimal solution of the relaxed version of the bi-level model is considered as the lower-bound of the original bi-level 

problem (Talbi, 2013). Formulation of the relaxed version of the bi-level model is shown as follows:   

Min                    j ij ij

i j

udw urd X                                                                                                                  (16) 

Subject to:         i

i

Z umax                                                                                                                             (17) 

                           1ij

i

X                                       j                                                                                         (18) 

                           j ij i i

j

udw X ucap Z                    i                                                                                  (19)      

                           k jk j ij

k i

ldw Y udw X                  j                                                                                 (20)  

                           ij ij iurd X utr                                          ,i j                                                                          (21)    

                          j

j

Z lmax                                                                                                                              (22) 

                          1jk

j

Y                                            k                                                                                    (23) 

                          jk jk

k

jldw Y lcap Z                       j                                                                                  (24)      

                         jk jk j ij

k i

ldw Y udw X Z
 

  
 

             j                                                                                (25)   

                          
jk jk jlrd Y ltr                                            ,j k                                                                          (26)     

                       , , , {0,  1}  ji ij jkZ X Z Y  ,                   , ,i j k                                                                             (27)     

 

4. Proposed solution approaches  

As shown in Table 1, three approaches were presented to solve the BL-EW-LAP. An optimal solution method (FE-EA) 

was proposed based on the explicit complete enumeration. In this algorithm, both levels of the problem are solved by an 

exact algorithm. Two hybrid evolutionary approaches were introduced based on the genetic algorithm. In this paper, these 

approaches were designed as a combination of genetic algorithms in the ULM and an exact method in the LLM. The two 

hybrid genetic algorithms in this paper were named HG-ES-1 and HG-ES-2. According to Table 1, the facilities allocation 

approaches at the ULM and LLM model are the exact method for FE-EA and HG-ES-1 algorithm and the heuristic method 

for the HG-ES-2 algorithm, respectively. In three proposed solution approaches, GAMS software was used to implement 

exact algorithms. The CPLEX solver and the branch-bound algorithm were used In GAMS software. The main difference 

between the two genetic algorithms is the initial solution generation and the allocation method. Table 2 presents the 

summary tasks of solution generation regarding the two hybrid genetic algorithms. 
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Table 1. Proposed solution algorithms for BL-EW-LAP 

Facility allocation 

method 
LLM  solution ULM solution Type of approach 

Name of 

Algorithm 

exact 

algorithm 

exact 

algorithm 

exact 

algorithm 

explicit complete 

enumeration 
FE-EA 

exact 

algorithm 

exact 

algorithm 
genetic algorithm nested evolutionary  HG-ES-1 

heuristic algorithm 
exact 

algorithm 
genetic algorithm nested evolutionary  HG-ES-2 

 
Table 2. Solution generation of HG-ES-1 and HG-ES-2 algorithms 

Name of 

approach 
Steps 

Decision 

variable 
Decision type Level Methods 

HG-ES-1 

Step1 
iZ , jZ  Location 

National and 

Regional 

Randomly and  

sub-routine 

Step2 ijX  Allocation National Nearest distance  

Step3 jkY  Allocation Regional 
Exact 

algorithm 

Step4 ijX  Allocation National 
Exact 

algorithm 

HG-ES-2 

Step1 
iZ , jZ  Location 

National and 

Regional 
Randomly 

Step2 jkY  Allocation Regional Heuristic algorithm 

Step3 ijX  Allocation National Heuristic algorithm 

Step4 jkY  Allocation Regional 
Exact 

algorithm 

Step5 ijX  Allocation National Heuristic algorithm 

 

4.1.  Full Enumeration and Exact Algorithm (FE-EA) 

According to Fig. 2, in the first step, the FE-EA algorithm identifies all the allocation modes of national warehouses to 

regional warehouses (𝑋𝑖𝑗). In the second and third steps, (𝑋𝑖𝑗) are sent to the LLM and the optimal solutions of the 

LLM (𝑍̅𝑗
∗
, 𝑌𝑗𝑘

∗) are calculated by the exact algorithm. In steps 4 and 5, (𝑌𝑗𝑘
∗) are sent to the ULM, and the optimal 

solutions of the ULM (𝑍𝑖
∗, 𝑋𝑖𝑗

∗) are calculated for all cases through the exact algorithm. Ultimately, the best solution of 

the ULM is considered to be the optimal solution for the bi-level problem. 

 

1: Construct all allocation modes of the ULM 
ijX   

2: Let 
ijX  be as a parameters into the LLM  

3: Calculate 
* *,j jkZ Y  by an exact algorithm  

4: Let 
*

jkY  be as a parameters into the ULM  

5: Calculate 
* * *, ,i ij ULMZ X OF for each 

*

jkY  by an exact algorithm 

6: Find Min{ *

ULMOF }  
 

Figure 2. Pseudo-code of FE-EA algorithm 
 

4.2.  HG-ES-1 

Generally, this algorithm consists of two phases, namely the initial solution generation and the evaluation phase. The 

pseudo-code of the HG-ES-1 algorithm is presented in Fig. 3.  

 

4.2.1. Solution representation and initialization  

In the initial solution generation, an initial population of chromosomes(𝑃𝑂𝑃0) are produced. As shown in Fig. 4, the 

chromosome structure is composed of two parts, the first one assigned to locating the national warehouse and the second 

dedicated to locating the regional warehouse. The length of the array for both parts is equal to the maximum number of 
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warehouses which can be placed at the national and regional levels (𝑢𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥). A solution is made by unique integers 

between 1 and 𝑚 for part1 and unique integers between 1 and 𝑛 for part2. 

According to Fig. 5, the initial population (𝑃𝑂𝑃0) is generated through the sub-routine procedure. In the first step, 

𝑃𝑂𝑃0(1) is achieved from the optimal solution of the RXBL model, which was obtained from solving the relaxed model 

(RXBL) by GAMS. The remaining solutions of the initial population are randomly generated. In the next step, all 

chromosomes of (𝑃𝑂𝑃0) are examined by the repair procedure. The steps of the repair procedure are as follows; first, the 

demand cities uncovered by any regional warehouses are searched and stored as set (𝑁𝐶). Afterwards, the regional 

warehouses able to serve 𝑁𝐶 are listed and stored as set (𝑅𝐸). In the final step, the 𝑅𝐸 index is inserted in the 

chromosome. These steps are repeated until all the demand cities are covered by at least one regional warehouse candidate. 

Following the generation of chromosomes, the national warehouses are allocated to regional warehouses based on the 

nearest distance, and 𝑋𝑖𝑗 is calculated. Next, (𝑋𝑖𝑗) is sent to the LLM as a parameter. Then (𝑌𝑗𝑘
∗)is calculated by the exact 

algorithm and sent to the ULM, and (𝑋𝑖𝑗
∗) is once again calculated via the exact algorithm.  

4.2.2. Evaluation phase of genetic algorithm   

In the evaluation phase of the algorithm, crossover and mutation operators were applied to the existing solutions. A two-

point crossover operator was designed according to Fig. 6. In the crossover operation, one of the two parts of the 

chromosome is randomly selected with the same chance (probability of selection = 0.5), and the two-point crossover 

operator is applied to that part. If each chromosome part contains a duplicate index, indicating an infeasible solution, it 

will be modified as observed in Fig.6. Similar to the crossover operator, the mutation operation randomly selects one part 

of the chromosome with the same chance. Afterwards, one cell is randomly selected and replaced by an index that does 

not exist in the parent. In this way, the mutation operator produces an offspring from one parent chromosome (Fig.7). 

After performing operators, all offspring are once again checked by the repair steps of the sub-routine procedure. 

4.3. HG-ES-2 

The overall structure of this algorithm is similar to the HG-ES-1 whereas the solution generation and allocation method 

are different. The solution generation steps of the HG-ES-2 algorithm are illustrated in Fig. 8, and other steps of HG-ES-

2 algorithm are the same as HG-ES-1. In the initial solution phase of the HG-ES-2 algorithm, 𝑃𝑂𝑃0 is generated randomly. 

In this algorithm, the allocation of national warehouses to regional warehouses and regional warehouses to demand cities 

are performed through the five heuristic allocation algorithms separately, presented in (Saranwong & Likasiri, 2016). In 

all the heuristic allocation algorithms, the assignment of facilities is based on the nearest distances. The difference between 

heuristic methods is the sorting criteria of nodes and their priority determination in the assignment. The sorting criteria 

of each algorithm are in accordance with Table 3. In HG-ES-2, demand cities are allocated to regional warehouses and 

(𝑌𝑗𝑘) is calculated by one of the heuristic algorithms. In the next step, the weight associated to each regional warehouse 

(𝑢𝑑𝑤𝑗) is calculated via equation (∑ 𝑙𝑑𝑤𝑌𝑗𝑘)𝑘 . Once again, through one of the five allocation algorithms, the regional 

warehouses are allocated to the national warehouse and (𝑋𝑖𝑗) is calculated. After that, (𝑋𝑖𝑗) is sent to the LLM as the 

parameter. In the next step, the LLM is solved by use of the exact algorithm.  Afterwards, the optimal solution of the 

LLM (𝑌𝑗𝑘
∗ ) is sent for the ULM. Regarding(𝑌𝑗𝑘

∗ ), (𝑋𝑖𝑗) is modified and replaced with the previous solution.  
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1: Input  

2: Let 
cp   be the percentage of Crossovers population 

3: Let 
mp  be the percentage of Mutation population 

4: Let npop  be the size of population  

5: Let  spr be the percentage of Selection pressure rate  

6: Let  𝐶𝑂𝑁 be a counter that initially set to 0 

7: Let  𝑀𝑎𝑥𝐶𝑂𝑁 the maximum number of trials that the algorithm is not improved  

8: Selection method of parent             /*Roulette wheel selection*/  

      Initial Solution generation  

9: Call sub-routine for generate an initial population of chromosomes (
0

pop )   /*integer string*/  

10: For all chromosomes 

11: Calculate 
ij

X  based nearest distance between warehouses 

12: Let 
ij

X  be as a parameters into the LLM   

13: Calculate 
*

jkY   by an exact method  

14: Let 
*

jkY   be as a parameters into the ULM   

15: Calculate 
*

ijX   by an exact method 

16: Calculate  
ULMOF of each chromosome 

      Evaluation phase: 

17: While 𝐶𝑂𝑁 <  𝑀𝑎𝑥𝐶𝑂𝑁                               

18: cn  = *
c

npop p    / * number of chromosomes that will be generated by crossover*/ 

19: 1i  ; 

20: While  / 2ci n    

21: Select two chromosomes as parents based on Roulette wheel selection 

22: Generate two offspring chromosomes by crossover  

23: *
mm npop pn  ;     / * number of chromosome that will be mutated*/ 

24: 1j  ; 

25: While mj n   

26: Select a random chromosome  

27: Mutate chromosome  

28: For each new chromosome 

29: Use repair steps of sub-routine and update chromosome  

30: Repeat 11 to 16 steps 

31: Calculate ULMOF of each new chromosome 

32: Merge and sort population  

           Update stop condition    

33: If the best solution not improve  

34: 𝐶𝑂𝑁 = 𝐶𝑂𝑁 + 1 
35: Else  

36: 𝐶𝑂𝑁 = 0 

37: End 

38: Output best solution  

Figure 3. Pseudo-code of HG-ES-1 
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Figure 4. Solution representation 

 

 

1. Generate 𝑝𝑜𝑝0 (1) from the RXM  

2. Generate 𝑝𝑜𝑝0(2:𝑛𝑝𝑜𝑝) randomly 

3. For all chromosome  

4.         Repair: 

5.               Repeat 

6.               Find 𝑁𝐶 =  𝑘, 𝒍𝒓𝒅𝒋𝒌 ≤ 𝒍𝒕𝒓𝒋   

7.               Find 𝑅𝐸 =  𝑗, 𝒍𝒓𝒅𝒋𝒌 ≥ 𝒍𝒕𝒓𝒋     ∀𝑁𝐶    

8.               Replace 𝑅𝐸  into cells of chromosome randomly 

9.               Until NC= ∅ 

10. End for  
 

Figure 5. Pseudo-code of the sub-routine procedure (HG-ES-1) 

 

Table 3. Heuristic algorithms for allocation in HG-ES-2 

Allocation criterion for LLM Allocation criterion for ULM 
Name of heuristic 

algorithm 

Algorithm 

Code 

Random assignment of demand points  Random assignment of regional 

warehouses  
Random Algorithm RA 

Demand points with higher 

weights (𝑤̅𝑘) have higher priorities 

Regional warehouses with higher 

weights (𝑤𝑗) have higher priorities 
Demand Algorithm DE 

The demand point with a higher average 

distance to the regional warehouse has a 

higher priority 

The regional warehouse with  a higher 

average distance to the national 

warehouse has a higher priority 

Average Distance 

Algorithm 
AD 

The demand point with a  larger gap 

between the closest and second closest 

distances to the regional warehouse has 

a higher priority 

The regional warehouse with a larger 

gap between the closest and second 

closest distances to the national 

warehouse has a higher priority 

Distance Gap 

Algorithm 
DG 

The demand point with a higher 

standard deviation (SD) of distances 

between a demand point and each 

regional warehouse has a higher priority 

The regional warehouse with a higher 

standard deviation (SD) of distances 

between a regional warehouse and each 

national warehouse has a higher priority 

Standard Deviation 

Algorithm 
STD 
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Figure 6. Crossover operator 

 
Figure 7. Mutation operator 

 

       Initial solution generation  

8:    Generate an initial population of chromosomes (
0

pop )   /*integer string*/ 

9:    For all chromosomes 

10:      Calculate 
jk

Y by the allocation heuristic algorithm 

11:      Calculate  
j k jk

k

udw ldw Y    

12:      Calculate  ijX  by the allocation heuristic algorithm 

13:      Let 
ij

X  be as a parameters into the LLM     

14:      Calculate, 
*

jkY  by an exact algorithm 

15:      Let 
*

jkY  be as a parameters into the ULM 

16:      Update jw  and calculate ijX  by the allocation heuristic algorithm based on chromosome 
 

Figure 8. Initial solution generation of the HG-ES-2 algorithm 

Note: For the sake of simplicity, we renamed each HG-ES-2 in the abbreviated form of heuristic algorithm names. For 

instance, HG-ES-2 (STD) means that the allocation of the upper and lower levels in HG-ES-2 is performed by the STD 

algorithm.  
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5. Computational results  

5.1.  Parameters setting for the BL-EW-LAP model  

Parameters of the BL-EW-LAP model were generated based on the data in Iran, one of the high-risk countries regarding 

various man-made and natural disasters in the Middle East. Due to the specific geographical location of Iran, earthquake 

is more burdensome than other disasters in the country. Over the past forty years, there have been major earthquakes such 

as Tabas (1978), Manjil-Rudbar (1990), Bam (2003), Azerbaijan Sharghi (2012), and Kermansh (2017). These 

earthquakes killed more than 100000 people and imposed a lot of costs on the country. The steps of parameter setting 

based on earthquake disaster are described in the following. 

 

5.1.1. Weight associated with each demand city (𝒍𝒅𝒘𝒌) 

In this paper, cities of Iran were considered to be warehouse candidates and demand cities. According to equation (28), 

𝑙𝑑𝑤𝑘  was calculated based on earthquake risk (𝐸𝑅) and the population of the city (𝑃𝑃). The population statistic was 

extracted from the Statistical Center of Iran website according to the Population and Housing Census (2016). Iranian code 

of practice for seismic resistant design of building, standard No.2800, was employed to calculate the earthquake risk of 

each city.  

*
k k k

ER PPldw                                                                                                                                                   (28) 

 

5.1.2. Distance between facilities (𝒖𝒓𝒅𝒊𝒋, 𝒍𝒓𝒅𝒋𝒌) 

To calculate the matrix of the distances between nodes (𝑢𝑟𝑑𝑖𝑗 , 𝑙𝑟𝑑𝑗𝑘), we considered road transportation and used Google 

Maps Platform and Distance Matrix API service. A code was written using Python programming language to determine 

the distance matrix of nodes (𝑢𝑟𝑑𝑖𝑗 , 𝑙𝑟𝑑𝑗𝑘). 

 

5.1.3. Distance threshold (𝒖𝒕𝒓𝒊, 𝒍𝒕𝒓𝒋) 

The population in Iran has a heterogeneous distribution. Population density is high in certain regions of the country such 

as the center and north.  On the contrary, in the southeastern regions of Iran, the population density is low. Therefore, the 

threshold distance of each regional warehouse was calculated based on the average distance between that candidate city 

and all demand cities (equation 29). Similarly, the threshold distance of each national warehouse was calculated by the 

average distance between each candidate city and all the cities of the regional warehouse candidates (equation 30). 

1

/
n

i ij

j

utr urd n


                                                                                                                                                  (29) 

1

/
k

j jk

k

ltr lrd k


                                                                                                                                                   (30) 

 

5.1.4. Warehouses capacity (𝒖𝒄𝒂𝒑, 𝒍𝒄𝒂𝒑𝒋) 

The capacity of the warehouses (𝑢𝑐𝑎𝑝, 𝑙𝑐𝑎𝑝𝑗) was determined based on the proportion of the covered demand by 

candidate cities. According to equations 31 and 32, the covered demand (𝑐𝑜𝑣𝑖 , 𝑐𝑜𝑣𝑗) was calculated from the sum of the 

weight associated to each demand city where the distance between the demand cities and the candidate city was less than 

the distance threshold. Finally, the capacities of national and regional warehouse (𝑢𝑐𝑎𝑝𝑖 , 𝑙𝑐𝑎𝑝𝑗) were calculated with 

multiplication 𝛼 in the covered demand (equation 33 and 34). The value of  𝛼 depends on the size of the candidate city 

and its management infrastructure. 

 

𝑐𝑜𝑣𝑖 = ∑ 𝑢𝑑𝑤𝑗𝑗∈𝑠       S =   j, 𝑢𝑟𝑑𝑖𝑗 ≤ 𝑢𝑡𝑟𝑖                                                                                                            (31) 

𝑐𝑜𝑣𝑗 = ∑ 𝑙𝑑𝑤𝑘𝑘∈𝑇      T =    k, 𝑙𝑟𝑑𝑖𝑗 ≤ 𝑙𝑡𝑟𝑗                                                                                                           (32) 

𝑢𝑐𝑎𝑝𝑖 = 𝛼 ∗ 𝑐𝑜𝑣𝑖                                                                                                                                                      (33) 

𝑙𝑐𝑎𝑝𝑗 = 𝛼 ∗ 𝑐𝑜𝑣𝑗                                                                                                                                                       (34) 

 

 

 

5.2.  Parameter tuning of genetic algorithms  

Parameter tuning is one of the main determinants of the efficiency of evolutionary algorithms such as genetic algorithm. 

The inappropriate selection of an efficient algorithm parameter leads to weak performance (Zandieh et al., 2009). In this 

research, the Taguchi method was employed to calibrate the developed HG-ES algorithm parameters. This method has 

been extensively applied in tuning evolutionary algorithm parameters in (Akbari Kaasgari et al., 2017; M Hajiaghaei-

Keshteli & Aminnayeri, 2014; M. Hajiaghaei-Keshteli et al., 2010; Mokhtarinejad et al., 2015). In this method, factors 
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affecting the performance of the genetic algorithm were firstly specified based on the literature review. Population size, 

crossover rate, mutation rate, and selection pressure were selected as the effective factors for calibration. The factors and 

their levels are shown in Table 4. In this method, the signal-to-noise(S/N) ratio was maximized to find the optimal levels 

of factors according to equation 35; 𝑦𝑖  and 𝑛 define the solution value and the number of replications, respectively. 

2

1

/ 10log /
n

i

i

S N y n


 
   

 
                                                                                                                               (35)     

Table 4. Levels of effective factors for genetic algorithm 

factors level Values 

Size of population 3 50,75,100 

Crossover rate 3 0.7,0.8,0.9 

Mutation rate 3 0.1,0.2,0.3 

Selection pressure 3 1,2,3 

 

Nine experiments (run four times) were designed in this research, and the average values were calculated. The response 

variable considered in this research was the robust parameter design (RPD), the maximization of which was the point of 

purpose, as defined in equation 36. 𝑂𝐹𝑀𝑎𝑥 and 𝑂𝐹𝑖  were the best solutions obtained for a specific problem and the 

objective function for the 𝑖𝑡ℎ example. The obtained values for S/N and average were inserted in Figs 9 to 14, according 

to which, the best levels of factors for the developed algorithms are mentioned in Table 5. The Roulette Wheel was used 

for the selection method. The stopping condition of the algorithm was set to 20 iterations, which not improve the best 

solution. 

 

( ) /Max i MaxRPD OF OF OF                                                                                                                            (36)    

 

 
Figure 9. The average of means and S/N ratios for HG-ES-1 algorithm 

 

 
Figure 10. The average of means and S/N ratios for HG-ES-2(STD) algorithm 
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Figure 11. The average of means and S/N ratios for HG-ES-2(DG) algorithm 

 

 
Figure 12. The average of means and S/N ratios for HG-ES-2(AD) algorithm 

 

 
Figure 13. The average of means and S/N ratios for HG-ES-2(DE) algorithm 
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Figure 14. The average of means and S/N ratios for HG-ES-2(RA) algorithm 

 
Table 5. The values of parameters selected for all types of the HG-ES algorithms 

 

 

 

 

 

 

 

 

 

 

 

5.3. Evaluation of the proposed algorithms  

To compare the proposed algorithms, three instances were prepared in small, medium, and large sizes. Table 6 shows the 

specifications of the instances. In this paper, nine criteria were reported as commotional results, six of which were 

considered in evaluating the algorithm performance (See Table 7). The lower values of the nine criteria exhibited higher 

algorithm performance. Legillon et al. (2012) introduced direct rationality (DR) to evaluate the bi-level solution, which 

counted the number of times the algorithm enhanced its response. Two criteria (INF and AIT) were calculated based on 

equations 37-41, respectively. According to equation 26, the deviation of lower-bound (DLB) is equal to the subtraction 

proportion of the best ULM solution from the lower-bound of bi-level model (LBBL). In the present paper, the lower-

bound of the bi-level model (LBBL) was obtained from solving the relaxed model (RXBL) by an exact algorithm.   

( ) /DLB BSU LBBL LBBL                                                                                                                        (37) 

inf /r r rINF N Nso                                                                                                                                           (38) 

1

/
r

r

r

AINF INF r


                                                                                                                                          (39) 

/h r rIT CPUTime Nit                                                                                                                                     (40) 

1

/
r

h

r

AIT IT r


                                                                                                                                                 (41) 

𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑔𝑜𝑟𝑖ℎ𝑚 𝑟𝑢𝑛𝑠                                                                                 

𝐼𝑁𝐹𝑟 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑓𝑒𝑠𝑒𝑎𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑟𝑡ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑢𝑛                                                                                 

𝑁𝑠𝑜𝑟 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  𝑓𝑜𝑟 𝑟𝑡ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑢𝑛 

𝑁𝑖𝑡𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑟𝑡ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑢𝑛      

𝐼𝑇𝑟 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑟𝑡ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑢𝑛      

 

 

 

 

 
                                            

Algorithm 
Pop 

size 

Crossover 

rate 

Mutation 

rate 

Selection 

pressure 

HG-ES-1 100 0.8 0.2 1 

HG-ES-2(STD) 50 0.9 0.2 1 

HG-ES-2(DG) 100 0.7 0.3 1 

HG-ES-2(AD) 100 0.9 0.2 1 

HG-ES-2(DE) 50 0.7 0.1 2 

HG-ES-2(RA) 75 0.9 0.1 1 
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Table 6. Specification of the designed problems   

 

 

 

 

 

 

 
 

 

Table 7. Criteria for the proposed algorithm evaluation 

Name of criteria Abbreviation  
Apply to 

evaluate  
Units of values 

Average objective function  value of  

ULM 
AOFU √ 

weighted distances 

(W*D) 

Standard deviation objective function 

value of ULM 
SDOFU √ 

weighted distances 

(W*D) 

Best solution of ULM BSU √ 
weighted distances 

(W*D) 

Best solution of LLM BSL × 
weighted distances 

(W*D) 

Average CPU Time CPUT × Second (sec) 

Average direct rationality DR √ Index∈[0-1] 

Deviation from the lower-bound DLB √ Index∈[0-1] 

Average iteration time AIT × Second (sec) 

Average infeasibility proportion AINF √ Index∈[0-1] 

 

 

The small-size instance was solved in two modes, namely a and b .The BL-EW-LAP model was considered in Mode (a), 

and in Mode (b), the distance threshold constraint was removed from the BL-EW-LAP model. According to Table 8, four 

genetic algorithms calculated the optimal solution (best solution of FE-EA algorithm) for the small-size problem in both 

modes. As shown in Table 9, HG-ES-1 and HG-ES-2(STD) obtained the best solution of ULM in the medium-size 

instance. According to Fig 15-17 and Table 10, HG-ES-1 outperformed all the sub-groups of HG-ES-2 with AOFU, 

SDOFU, and BSU for large variables model. The HG-ES-1 algorithm obtained the best results for the DR and AINF (see 

Table 11). As illustrated in Fig. 19, HG-ES-1 achieved better DLB values regarding all problem sizes. Ultimately, HG-

ES-1 was superior to the other five algorithms in terms of the six evaluation criteria; therefore, this algorithm was selected 

as the appropriate algorithm for this research. The BL-EW-LAP was a long-term problem, and CPU time and ATI were 

not used to choose the appropriate algorithm. Fig. 18 and Table 19 show that the HG-ES-1 algorithm ranked fourth among 

the six algorithms in terms of CPU Time and had the highest value for ATI index. 

 

 
 

Table 8. The results of BL-EW-LAP (small-size)  

Name of 

algorithm 

Mode(a) Mode(b) 

BSU BSL BSU BSL 

FE-EA 1394908294.2 1521270482.2 912589320.2 2913096362.3 

HG-ES-1 1394908294.2 1521270482.2 912589320.2 2913096362.3 

HG-ES-2(STD) 1394908294.2 1521270482.2 912589320.2 2913096362.3 

HG-ES-2(DG) 1396118600.9 1589158738.1 946221123 2709942155.5 

HG-ES-2(AD) 1396118600.9 1589158738.1 946221123 2709942155.5 

HG-ES-2(DE) 1394908294.2 1521270482.2 912589320.2 2913096362.3 

HG-ES-2(RA) 1394908294.2 1521270482.2 912589320.2 2913096362.3 

 

 

 

𝒍𝒎𝒂𝒙 𝒖𝒎𝒂𝒙 

Number of 

demand 

cities(k)  

Number of 

regional 

warehouse 

candidate (j) 

Number of 

national 

warehouse 

candidate (i) 

Problem 

size 

Problem 

number 

3 2 5 6 5 Small 1 

6 3 38 19 9 Medium 2 

9 5 117 31 9 Large 3 
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Table 9. The results of BL-EW-LAP (medium-size) 

Algorithm code AOFU SDOFU BSU BSL 
CPUT 

(sec) 

HG-ES-1 1719427978 0 1719427978 4843577231 908 

HG-ES-2(STD) 1908065773 50402335.98 1887489105 3964128160 986 

HG-ES-2(DG) 2264293525 255366766.4 2065258980 4076310089 782 

HG-ES-2(AD) 2087432395 320994009.1 1719427978 1719427978 999 

HG-ES-2(DE) 2167416505 246822805.6 2010949110 4868108559 876 

HG-ES-2(RA) 2432397178 413134182.3 1887489105 1887489105 901 

 
Table 10. The results of BL-EW-LAP (large-size) 

 Algorithm code AOFU SDOFU UBS LBS 
CPUT 

(sec) 

HG-ES-1 2901798931 743578068.6 1905346704 14129090278 2432 

HG-ES-2(STD) 6179698851 858247863.7 5144236733 15985743371 2857 

HG-ES-2(DG) 5052407285 928165770.9 4232517664 15880775166 2036 

HG-ES-2(AD) 5606144035 2180603340 2843806906 11877905344 1682 

HG-ES-2(DE) 6000184435 1280348619 4834429230 13034504401 2653 

HG-ES-2(RA) 5169373506 1656754817 3659385473 14568610874 1451 

 
Table 11.Result of evaluation criteria for large-size instance    

 Medium-size Large-size 

Algorithm code AINF DR AIT AINF DR AIT 

HG-ES-1 0.042 0.040 43.4 0.19 0.040 80.71 

HG-ES-2(STD) 0.16 0.129 20.5 0.28 0.077 52.65 

HG-ES-2(DG) 0.21 0.143 18.9 0.566 0.132 38.26 

HG-ES-2(AD) 0.15 0.132 21.4 0.342 0.175 34.52 

HG-ES-2(DE) 0.18 0.103 21.0 0.2095 0.132 36.22 

HG-ES-2(RA) 0.26 0.196 21.1 0.818 0.167 17.15 

 

 
Figure 15. Result of the large-size instance (AOFU) 
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Figure 16. Result of the large-size instance (SDOFU) 

 
Figure 17. Result of the large-size instance (BSU) 

 

 
Figure 18. Result of the large-size instance (CPUT) 
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Figure 19. DLB of proposed algorithms for all size instance 

 

 

 

5.4.  Analysis  

The following examines the effect of changing parameters on the objective function of the bi-level model. The maximal 

number of national and regional warehouses placed at (𝑢𝑚𝑎𝑥, lmax) and the capacity of warehouses (𝑢𝑐𝑎𝑝𝑖 , 𝑙𝑐𝑎𝑝𝑗) are 

the key parameters affecting the objective functions. As shown in Table 12, changing the maximal number of regional 

warehouses (𝑙𝑚𝑎𝑥) did not impact the increase in the objective function values of both levels; however, with the increase 

in the maximal number of regional warehouses (𝑢𝑚𝑎𝑥), the value of the ULM objective function was reduced. This 

underscores the need for the modeler to accurately determine this parameter in the model. Moreover, according to Table 

13, it was found that increasing the capacities of each national and regional warehouse could separately reduce the 

objective function of the ULM. Fig. 20, shows the behavior of the objective functions and the effect of the leader’s 

response on the follower for different solutions. The leader is monotonically decreasing, while the follower has some 

variations. 

 

 

 
Table 12.  Impact of change 𝑢𝑚𝑎𝑥 , 𝑙𝑚𝑎𝑥 on objective functions  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

𝑳𝒎𝒂𝒙 𝑼𝒎𝒂𝒙 
Objective function 

(LLM) 

Objective function 

(ULM) 
Instance 

4 2 5323428965 3771031849 1 

5 2 5323428965 3771031849 2 

6 2 5323428965 3771031849 3 

7 2 5323428965 3771031849 4 

4 3 6397497550 1669882335 5 

5 3 5337344728 1756957065 6 

6 3 4843577231 1719427978 7 

7 3 4843577231 1719427978 8 

4 4 5189249823 1065013326 9 

5 4 5189249823 1065013326 10 

6 4 5189249823 1065013326 11 
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Table 13. Impact of change ,ic   on objective functions  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. The changes in objective functions by HG-ES-1 

 

6. Conclusion 

The emergency warehouse location-allocation problem can be formulated by the bi-level programming when the decision-

making structure is decentralized and hierarchical. In this paper, we presented a new binary bi-level programming model 

for this problem. The central government and the regional manager were respectively considered as the leader and the 

follower. The optimization model presented in this research is conducive to reducing the managerial conflicts at the 

national and the regional levels and provide consensus in decision-making for the central government and regional 

managers. In other words, the proposed framework can reduce management crises in disaster management.  

The bi-level optimization models in a simple and linear form are complex and difficult to solve. Particularly, with the 

addition of integer and binary variables, this complexity increases (Sinha et al., 2017). Three approaches were developed 

to solve the bi-level emergency warehouse location-allocation problem (BL-EW-LAP). The first approach, FE-EA, was 

designed based on the explicit complete enumeration. According to the computational results, this algorithm is suitable 

for optimally solving small-size models. The size of real-world problems is usually large, and it is difficult to design 

optimal global algorithms. Evolutionary algorithms are among the approaches to solving these problems. The general 

framework of the second (HG-ES-1) and third (HG-ES-2) approach is based on Matheuristic approach.  

The HG-ES-1 algorithm exhibited better results in this paper. With the addition of distance threshold constraints, the HG-

ES-2 lost its effectiveness in solving the model. The main reasons behind the superiority of HG-ES-1 over HG-ES-2 are 

related to the allocation method and the solution generation procedure of the two algorithms. The HG-ES-1 allocated 

Objective 

function 

(LLM) 

Objective 

function 

(ULM) 

𝜶 ( regional 

warehouse) 

Capacity of national 

warehouse (𝒄𝒊)  
Instance 

4847162626 2709200368 0.4 5500000 1 

4843577231 1719427978 0.5 5500000 2 

5132827589 2262382669 0.6 5500000 3 

5079818939 2203986298 0.4 6000000 4 

4843577231 1719427978 0.5 6000000 5 

5149054551 1349969708 0.6 6000000 6 

5079818939 2203986298 0.4 6500000 7 

4843577231 1719427978 0.5 6500000 8 

4826802816 1683825138 0.6 6500000 9 

4386446911 2170159579 0.4 7000000 10 

4843577231 1719427978 0.5 7000000 11 

5149054551 1349969708 0.6 7000000 12 
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facilities at both levels through an exact method, but the allocation in the HG-ES-2 was performed by the heuristic 

algorithms. The use of the exact method for allocation enhanced the exploitation of the best observed solutions 

(intensification), a fact further highlighted by the low Direct Rationality (DR) of HG-ES-1. The solution generation of 

HG-ES-1 was performed by Sub-routine procedure, and the nearest distance algorithm with allocation in the upper-level 

(𝑋𝑖𝑗) was estimated without having to specify the allocation in the lower-level (𝑌𝑗𝑘). The solution generation of the HG-

ES-2 is a bottom-up approach (lower level model to upper level model), meaning that to calculate (𝑋𝑖𝑗), (𝑌𝑗𝑘) must be 

calculated first. In certain cases, the generation of good solutions for the follower may exclude the generation of good 

solutions for the leader. This mechanism reduced the exploration of the search space (diversification), markedly impacting 

its performance. The solution repair through Sub-routine procedure of HG-ES-1 was avoided to generate infeasible 

solutions, leading to a low value for average infeasibility proportion (AINF). To improve the proposed algorithm, 

innovative design of chromosomes is recommended. For discrete bi-level optimization programming, future research can 

also consider other evolutionary approaches such as co-evolutionary approach with various evolutionary algorithms such 

as Ant colonies and Particle Swarm Optimization (PSO), and Artificial immune systems (AIS).  
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