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Abstract 

In Location-Arc Routing Problems (LARP), unlike the well-known locating-routing problems, demand is on the arc and using 

deadheading arcs is permitted. Few studies have focused on an arc-routing problem. In this research, a complex bi-objective 

linear mathematical model for the LARP with time windows under uncertainty is presented. Time windows in the arc-routing 

problem modeling have complexity since the required arc with time windows becomes a deadheading arc without time windows 

after service. Furthermore, modeling of the vehicle servicing to multiple required arc with the minimum deadheading arc in 

route is a feature of this work. The proposed LARP is used for modeling of transforming cash in the bank case study. In this 

case study, demand has uncertainty with unknown probability distributions and we used Bertsimas and Sim approach for it. The 

case study problem is a node-basing problem with the closest node and time windows for servicing branches. For this purpose, 

the Multi-Objective Dragonfly Algorithm (MODA) and Non-dominated Sorting Genetic Algorithm (NSGA-II) are used for 

locating the cash supply centers of a bank in Tehran. Furthermore, comparing results of robust and deterministic LARP models 

show that the mean and standard deviation of objective function values in the robust model has better performance in realization. 

 

Keywords: Location-arc routing problem; Time windows; Multiple periods; Robust optimization; Demand Uncertainty. 

 

1. Introduction 

The aim of a routing problem is to select the optimal routes for vehicles to service the customers considering limitations, 

equipment, and objectives. In this problem, customers are located on the node or arc/edge of a graph. The Vehicle Routing 

Problem (VRP) is the node routing problem and the Rural Postman Problem (RPP) is the arc routing problem. Some 

researchers have focused on arc routing problems recently.  

The Capacitated Arc Routing Problem (CARP) is an expansion of the RPP with multi-vehicle and capacity conditions 

(Golden and Wong, 1981). This problem is defined on an undirected connected graph 𝐺 = (𝑉, 𝐸) that each edge (i.e., 

customer) has a demand 𝑞𝑖𝑗 ≥ 0. For serving required edges, undemanded (deadheading) edges with minimum numbers 

must be used. After servicing the required edge, it becomes a deadheading edge and can services other required edges.  

A Location-Arc Routing Problem (LARP) is a combination of the CARP and the Location-Allocation Problem (LAP) (Ghiani et 

al., 2001). The LARP is defined as a graph that can be directed, undirected or both. The crucial difference between the CARP and 

the LARP is that along with routing, the best depot location must be determined. Therefore, this issue is added as a binary decision 

variable to the mathematical model and makes it even more complicated. The LARP can be used for arc-routing problems (e.g., 

snow plowing or node-routing problems) with nearby nodes (e.g., the distribution network of supermarkets) (Albareda-Sambola, 

2015). Limited studies have been focused on the second application of the LARP (Tavakkoli-Moghaddam et al., 2018).  
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1.1. Contribution 

The main purpose of this paper is to solve transforming the problem of cash in the branches network in a bank. This 

problem is to select an optimal number and the location of the cash supply center as well as the optimal routing for cash 

delivery to branches. In the case study, four cash supply centers are carried out delivery and collection of cash to 517 

banking units (i.e., 250 branches, 202 counters, and 65 fuel stations) in Tehran. Three cash supply centers have been 

closed and bank has a challenge for delivery and collection of cash on time. This is a node routing problem with nodes 

close and can be considered as an arc routing problem for solving it. Therefore, in the case study, branches with a distance 

of less than 1 km and similar availability can be considered as a required arc with the sum of branches demand. In the 

case study, delivering and collecting cash on time are necessary, and the definition of time windows constraint is 

important. Considering the time windows in the arc-routing problem has a different structure than the node-routing 

problem, since a required arc with time windows after servicing can be used as a deadheading arc without time windows 

as a path. The waiting time of the vehicle in servicing time is minimized considering the low probability of rubbery, 

indirectly. The number of cash supply centers, vehicles, and equipment depends on the demand for cash collection or 

delivery. This demand is uncertain due to uncertainty in the factors affecting the liquidity of the society (Pavlis et al. 

2018). Therefore, a robust approach is used for uncertain demand. This paper presents a bi-objective and multi-period 

LARP model with time windows under uncertainty to minimize the cost and waiting time. The deterministic and robust 

LARP model are solved by the Multi-Objective Dragonfly Algorithm (MODA) and Non-dominated Sorting Genetic 

Algorithm (NSGA-II) under nominal data and realization. 

 

1.2. Organization 

The rest of this paper is structured as follows. Section 2 is associated with the literature review, including the LARP, time 

windows in an arc routing problem, and robust approach. In Section 3, a robust mathematical model for the LARP is 

presented. The case study is described in Section 4. In Section 5, the MODA and solution representation are explained. 

To evaluate the performance of the proposed deterministic and robust models are solved by the MODA and NSGA-II for 

the bank case study in Section 6. Finally, this paper is concluded in Section 7. 

 

2. Literature review 

The number of LARP researches are increased, recently. However, LARP has a higher complexity versus to Location-

Routing Problem (LRP), and many features such as time window, uncertainty needs to be surveyed in this problem.  

 

2.1. Review of location-arc routing problems 

The LARP was proposed by Levy and Bodin (1989) to solve the routing problem at the post office in the USA. They used 

a Location-Allocation-Routing method to solve this model. Ghiani and Laporte (2001) presented a linear multi-depot 

model for the LARP. They converted it to RPP model and solved it by a branch-and-cut. Liu et al. (2014) presented a 

survey of recent researches on LARP. The specifications of the LARP are addressed in Table 1. 

Doulabi and Seifi (2013) presented two MILP models for single and multi-depot problems with the flow variables and 

solved them by simulated annealing. Lopes et al. (2014) proposed a LARP mathematical model and solved it by several 

heuristics. They tested different constructive heuristics combining variable neighborhood search, greedy randomized 

adaptive search procedure, and tabu search. Their model implies each customer has required an individual vehicle that is 

not practical. Laporte et al. (2015) developed LARP models presented by Doulabi and Seifi (2013) and Lopes et al. 

(2014). They solved their model with the exact method. Essink and Wagelmans (2015) used Lopes et al. (2014) model 

and solved it by metaheuristic TS-GRASP. Riquelme-Rodríguez et al. (2016) proposed a non-linear model for a periodic 

LARP and used a heuristic method for solving their model. Huber (2016) presented a bi- objectives model without 

formulating constraints. He used heuristic method for solving benchmark instances. Amini et al. (2017) addressed an 

uncertain LARP and employed two scenario-based approaches. They evaluated the performance of models with the results 

of the numerical example.  

Tavakkoli-Moghaddam et al. (2018) presented a multi-product LARP by developing two mathematical models under two 

assumptions. All types of products of a required arc must be supplied by a tour and each type of a required arc product 

must be supplied by a tour. Fernández et al. (2019) modeled several LARPs on an undirected graph and solved them with 

branch and cut. Amini et al. (2019) developed the LARP when there are transportation decisions from suppliers to 

established depots. They used augmented ε-constraint, NSGA-II, and Multi-Objective Late Acceptance Hill-Climbing 
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algorithm for solving this problem. Mirzaei-Khafri et al. (2019) considered a CLARP with deadlines and a fleet of 

capacitated heterogeneous vehicles. They showed that the result of the sensitivity analysis of their proposed model can 

meet arc routing timing requirements more precisely compared to the CARP.  

 

2.2. Time windows in an arc routing problem 

In this paper, the time window is important for servicing branches of the bank case study. The CARP researches address 

this concept. Vansteenwegen et al. (2010) used a meta-heuristic method to solve the ARP problem with soft time windows 

for a case study of the mobile mapping van problem. They did not present any mathematical programming model. Macedo 

et al. (2011) are not modeled time window and solved it with metaheuristic methods. Lystlund et al. (2012) presented two 

linear models for the CARP problem with hard and soft time windows and solved it with the heuristic. Black et al. (2013) 

define a CARP model with prize-collecting. The proposed model was non-linear that was not possible to linearize. 

Therefore, a heuristic method has been used for solving the model. Çetinkaya et al. (2013) claim that it is not possible to 

model time windows in arc routing problems and should be transformed into a node routing problem. They did not present 

a model for the ARP with time windows and prize-collecting and used a meta-heuristic to solve it. Çetinkaya et al. (2018) 

proposed a model for the LRP by defining time windows for arcs with military applications. While in the proposed model, 

the time window is defined for arcs, the customers are located on the nodes and the model is node-based.  

 
Table 1. Comparison of LARP features 

Reference 

Depot Customer Vehicle Material Model Features 
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(Doulabi & Seifi, 2013) × ×       × ×           × 

(Lopes et al., 2014) ×                    × 

(Essink & Wagelmans, 2015) ×           ×   ×     ×  

(Riquelme-Rodríguez et al., 2016) ×   ×                 × 

(Huber, 2016) ×   ×          ×      ×  

(Amini et al., 2017) × ×                ×  ×  

(Tavakkoli-Moghaddam et al., 2018) × ×       ×   ×        ×  

(Javanmardi & Hafezalkotob, 2018) × ×            ×   ×    × 

(Fernández et al., 2019) × ×                 ×   

(Amini et al., 2019) × ×       ×     ×       × 

(Mirzaei-Khafri et al., 2019) × ×        ×           × 

(Mirzaei-Khafri et al., 2020) × ×        ×        ×  ×  

This paper × × ×  ×  × × × × × ×   ×   × ×  × 

 

2.3. Uncertainty in arc routing problem 

The main approaches to deal with data uncertainty in optimization are stochastic, fuzzy and robust programming. These 

approaches have different applications (Teimoori et al., 2014; Fazli-Khalafa, Hamidieh, 2017; Hamidieha et al., 2018). 

Stochastic programming i.e. Scenario-based stochastic programming can be applied for probabilistic randomness data. 

Fuzzy programming is like stochastic programming and the difference is in the way uncertainty is modeled. Robust 

optimization approaches can be used for data with unknown probability distributions. A robust approach is a method for 

solving problems of linear optimization under uncertain conditions. To ensure that the solution remains near-optimal and 

feasible when the data changes, this approach has accepted a sub-optimal solution for nominal data values. Optimal 

solutions that are less sensitive to uncertainty is called a robust solution (Bertsimas & Sim, 2004). This method is an 

alternative for stochastic programming and sensitivity analysis that is used in discrete problems. Different models have 

been developed to formulate linear optimization problems with robust methods. Three primary models in a robust 

approach based on interval uncertainty are Soyster (1973), Ben-Tal and Nimrovsky (1998), and Bertsimas and Sim (2004). 

The Soyster approach is the most conservative method among others, such that the objective value is much worse than 

the objective value of nominal linear optimization problem. Ben-Tal and Nimrovsky approach is a quadratic conical 
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model with 𝑛 +  2𝑘 variable and 𝑚 +  2𝑘 constraint. Since this model is non-linear, it is not efficient solution for discrete 

optimization models. The Bertsimas and Sim (2004) approach change the linear programming (a) to a robust model (b) 

as follows: 

 

Min 𝑐𝑇𝑥  Min       𝑐𝑇𝑥 + 𝑞0Γ0 + ∑ 𝑟0𝑗
𝑗∈𝐽0

 
 

s. t.  s. t.  

∑ �̃�𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖           ∀𝑖

𝑗

 
(a)     ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗
+ 𝑞𝑖Γ𝑖 + ∑ 𝑟𝑖𝑗

𝑗∈𝐽𝑖

≤ 𝑏𝑖                       ∀ 𝑖 (b) 

𝑙 ≤ 𝑥 ≤ 𝑢      𝑞𝑖 + 𝑟𝑖𝑗 ≥ �̂�𝑖𝑗𝐸𝑗                                                    ∀𝑖 ≠ 0, 𝑗𝜖𝐽𝑖  

      𝑞0 + 𝑟0𝑗 ≥ 𝑒𝑗𝐸𝑗                                              ∀𝑗𝜖𝐽𝑖  

       𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗                                                   ∀𝑗𝜖𝐽𝑖  

       𝑞𝑖 , 𝑟𝑖𝑗 , 𝑦𝑗 ≥ 0                                                         ∀𝑖, 𝑗𝜖𝐽𝑖  

where coefficients �̃�𝑖𝑗  are uncertainty and random variable in [𝑎𝑖𝑗 − �̂�𝑖𝑗 , 𝑎𝑖𝑗 + �̂�𝑖𝑗], 𝑎𝑖𝑗  and �̂�𝑖𝑗 are the nominal values 

and the variation magnitude of the uncertain parameter, respectively. 𝐽𝑖 denote the set of uncertain coefficients of row i. 

For the i-th constraint, a control parameter 𝛤𝑖 , is called the price of robustness. Parameters 𝛤𝑖𝜖[0, |𝑗𝑖|] and |𝑗𝑖| are the 

cardinality of the set 𝑗𝑖.  

Babaee Tirkolaee et al. (2018) presented a robust periodic CARP for urban waste collection considering drivers and 

crew’s working time. Babaee Tirkolaee et al. (2019) proposed a robust bi-objective multi-period CARP for urban waste 

collection using a Multi-Objective Invasive Weed Optimization (MOIWO). Babaee Tirkolaee et al. (2020) consider the 

multi-trip CARP under fuzzy demands for urban solid waste management. Mirzaei-Khafri et al. (2020) consider a 

location-arc routing problem (LARP) on an undirected network. The proposed robust model was less sensitive to demand 

variations and was validated through Monte-Carlo simulation and Relative Extra Cost (REC) measures with promising 

results. The results of sensitivity analysis showed that by increasing the degrees of conservatism, planners might employ 

more vehicles. Also, more depots might be opened to service all required roads. 

The literature review in this section shows that the models for LARPs do not address time windows. The review of arc 

routing researches with time windows shows that a few researches focus on presenting a mathematical model, and all 

models except Lystlund et al. (2012) are non-linear. Besides, the models for LARPs are not used for the financial case 

study. The scenario-based stochastic programming and fuzzy approach to deal with data uncertainty in the models for 

LARPs are used and robust programming is not used so far. 

 

3. Mathematical model 

The LARP is defined as a graph 𝐺 = (𝑉, 𝐸 ∪ 𝑅), which 𝑉 = {𝑣𝑖, … . , 𝑣𝑛} is a set of vertex,  
𝐸 = {[𝑣𝑖 , 𝑣𝑗]: 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is a set of edges, and 𝑅 = {(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is a set of arcs, which can be directed, 

undirected, or a combination of both. Here, the LARP problem is a directional graph and the connection of two vertexes 

is called an arc. The vertex set 𝑉 contains a non-empty subset 𝐽 of 𝑛 potential 

depot locations (𝐽 ⊆ 𝑉). Every arc (𝑖, 𝑗) ∈ 𝑅 has a non-negative traversal cost and a non-negative demand for service. 

The arcs with positive demand form the subset A of the arcs required to be serviced, only once, by a vehicle K with 

capacity Q in a determined time window. Vehicles start and end their route in the same depot, and each new vehicle. The 

deadheading arc is movement from the end i of one required arc to the start j of another required arc without servicing the 

traversed arcs. 

The assumptions, sets, parameters, uncertain parameters, decision variables for robust bi-objective LARP model are 

presented in the following subsections. 
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3.1. Assumptions 

The main assumptions are as follows: 

 Every required arc is traversed by one vehicle 

 The vehicle is returned to the depot that was started  

 The total demand for the arcs selected on tour is less than the vehicle capacity 

 The number of deadheading arc selected in every tour is minimized 

 Each required arc is serviced once that can be used as a deadheading arc without a time windows 

 Waiting time is allowed for each required arc at the start of service 

 The distribution of products is delivery and collection 

 The number of deadheaded traverses in each arc is not limited 

 

3.2. Sets, parameters, and decision variables 

Sets, parameters, and decision variables used in mathematical models are as follow: 

 

Sets 

I Set of all vertices (I = {1, ..., i}, which includes customers and depots) 

J  Set of depots (𝐽 = {1, … , 𝑗′} that 𝑗′ is the maximum number of depots) 

K Set of vehicle 𝐾 = {1, … , 𝑘} 

P Set of period 𝑃 = {1, … , 𝑝} 

S Set of steps that every vehicle travels 𝑆 = {1, … , 𝑠} 

A  Set of required arcs that has to be visited 

𝑉𝐴 Set of vertices that are extremities of the arcs in set A  

�̂� Union of the set J and 𝑉𝐴 (�̂� = 𝑉𝐴 ∪ 𝐽) 

�̂� Set of arcs forming a complete graph with �̂� 

𝛿+(𝐽)(𝛿−(𝐽)) Set of arcs leaving (entering) on the set of vertices J. When S contains a single vertex v, 𝛿+(𝑣) is a 

simplification for 𝛿+({𝑣}) 

 

Parameters 

𝑓𝑗′𝑝  Costs of creating a depot 𝑗′ in period p 

𝑐𝑖𝑗𝑝   Costs of traversing arc (𝑖, 𝑗) in period p, if arc (𝑖, 𝑗) ∈ 𝐴 cost of servicing is equal to �̂�𝑖𝑗  and if the arc is 

deadheading (i.e. arc (𝑖, 𝑗) ∉ 𝐴 ) is equal �́�𝑖𝑗  

𝑏𝑗′𝑝  The capacity of depot j in period p 

𝑡𝑖𝑗𝑝 Travel time on arc (𝑖, 𝑗) ∈ 𝐴 in period p, if arc (𝑖, 𝑗) ∈ 𝐴 time of traveling is equal to �̂�𝑖𝑗𝑝 and if the arc is 

deadheading (i.e., arc (𝑖, 𝑗) ∉ 𝐴 ) is equal arcs �́�𝑖𝑗𝑝 

𝑇𝑘 The maximum time allowable for vehicle k in period p 

𝐹𝑘 Fixed costs of using vehicle k 

𝑁𝑝 The number of customers in period p 

𝑄𝑘𝑝 The capacity of vehicle k in period p 

M A very large number 



Kahfi, Tavakkoli-Moghaddam and Seyed-Hosseni 

 

 

  

Int J Supply Oper Manage (IJSOM), Vol.8, No.1 6 

 

Uncertain Parameter 

�̃�𝑖𝑗𝑝 Demand for service of arc (𝑖, 𝑗) ∈ 𝐴 

Decision variables 

𝑥𝑖𝑗𝑘𝑠𝑝 1 if arc (𝑖, 𝑗) ∈ �̂� is traveled by vehicle k in period p at step s; and 0, otherwise 

𝑦𝑖𝑗𝑘𝑠𝑝 1 if arc (𝑖, 𝑗) ∈ 𝐴 is serviced by vehicle k in period p at step s; and 0, otherwise 

𝑤𝑖𝑗𝑗′𝑝 1 if arc (𝑖, 𝑗) ∈ 𝐴 is allocated to depot j' in period p 

𝜔𝑖𝑗𝑝 The time that service of the arc (𝑖, 𝑗) ∈ �̂� starts 

𝜑𝑖𝑘𝑠𝑝 The time that vehicle k arrives in node i at step s 

𝜌𝑖𝑗𝑘𝑠𝑝 The time that vehicle k starts traversing arc (𝑖, 𝑗) ∈ �̂� at step s 

𝑢𝑖𝑘𝑝 Slack variable for eliminating sub-tours 

 

3.3. Robust bi-objective LARP model 

The first proposed LARP model is bi-objective, multi-period, and mixed-integer non-linear programming with uncertain 

demand. Finally, the proposed model is converted into a linear and robust model. 

 

3.3.1. Objective functions  

The objective function (1) minimizes the sum of the costs of depots creation, serviced arcs, and selected vehicles, 

respectively. The second objective (2) minimizes the waiting time of the vehicle. 

 

Min     𝑍1 = ∑ ∑ 𝑓𝑗′𝑝𝑤𝑖𝑗𝑗′𝑝

𝑝𝜖𝑃𝑗′𝜖𝐽

+ ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑝𝑥𝑖𝑗𝑘𝑠𝑝

𝑝𝜖𝑃𝑠𝜖𝑆𝑘𝜖𝐾(𝑖,𝑗)𝜖𝐴

+ ∑ ∑ ∑ ∑ 𝐹𝑘𝑥𝑖𝑗𝑘𝑠𝑝

𝑝𝜖𝑃𝑠𝜖𝑆(𝑖,𝑗)∈𝛿+(𝐽)𝑘𝜖𝐾

 
(1) 

Min      𝑍2 = ∑ ∑ ∑ ∑(𝜌𝑖𝑗𝑘𝑠𝑝 − 𝜑𝑖𝑘𝑠𝑝)

𝑝𝜖𝑃𝑠𝜖𝑆\{1}(𝑖,𝑗)𝜖𝐴𝑘𝜖𝐾

 
(2) 

 

3.3.2. Basic Constraints 

Standard LARP includes basic Constraints (3-11). Constraint (3) ensures that each required arc is serviced once by 

precisely one vehicle. Constraint (4) guarantees that the flow is preserved i.e., the number of arrivals at any node is equal 

to the number of leaving. Constraint (5) implies that an arc is serviced by a particular vehicle only if it is traversed by the 

same vehicle. Constraint (6) is a sub-tour elimination constraint. A tour is started from a depot and is ended at the same 

depot. The constraint of allocated of the required arcs to a depot is defined by ∑ 𝑥𝑗′𝑚𝑘𝑠𝑝𝑦𝑖𝑗𝑘𝑠𝑝𝑚𝜖𝑉𝐴
≤ M𝑤𝑖𝑗𝑗′𝑝. This 

constraint is non-linear. Therefore, 𝑥𝑗′𝑚𝑘𝑝 × 𝑦𝑖𝑗𝑘𝑝, replaced by ℎ𝑗′𝑚𝑖𝑗𝑘𝑝. Besides, this constraint is replaced with Constraints 

(7-9). The constraints make sure all required arcs that are in the same route are devoted to depot j that route is started 

from it and ended. This constraint forced the vehicle to service to multiple required arc. These constraints are necessary 

to establish Constraint (10) that ensures the capacity of the depots is not violated. Constraint (11) ensures that the vehicle 

capacity is not exceeded. 

 

∑ 𝑦𝑖𝑗𝑘𝑠𝑝

𝑘𝜖𝐾

= 1                                                                       ∀ (𝑖, 𝑗)𝜖𝐴, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (3) 

∑ 𝑥𝑖𝑗𝑘𝑠𝑝

(𝑖,𝑗) 𝜖𝛿+(𝑖)

− ∑ 𝑥𝑖𝑗𝑘𝑠𝑝

(𝑖,𝑗)𝜖 𝛿−(𝑖)

= 0                           ∀ 𝑖𝜖𝑉𝐴, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (4) 
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 𝑥𝑖𝑗𝑘𝑠𝑝 ≥ 𝑦𝑖𝑗𝑘𝑠𝑝                                                                     ∀ (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (5) 

 𝑢𝑖𝑘𝑝 − 𝑢𝑗𝑘𝑝 + 𝑁𝑝𝑥𝑖𝑗𝑘𝑠𝑝 ≤ 𝑁𝑝 − 1                                    ∀ (𝑖, 𝑗)𝜖𝑉𝐴, 𝑖 ≠ 𝑗, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (6) 

ℎ𝑗′𝑚𝑖𝑗𝑘𝑝 ≤ 𝑀𝑤𝑖𝑗𝑗′𝑝                                                               ∀𝑗′𝜖𝐽, 𝑚𝜖𝑉𝐴, (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑝𝜖𝑃 (7) 

𝑥𝑗′𝑚𝑘𝑝+𝑦𝑖𝑗𝑘𝑝 ≤ 1 + ℎ𝑗′𝑚𝑖𝑗𝑘𝑝                                              ∀𝑗′𝜖𝐽, 𝑚𝜖𝑉𝐴, (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑝𝜖𝑃 (8) 

𝑥𝑗′𝑚𝑘𝑝+𝑦𝑖𝑗𝑘𝑝 ≥ 2 ∗ ℎ𝑗′𝑚𝑖𝑗𝑘𝑝                                         ∀𝑗′𝜖𝐽, 𝑚𝜖𝑉𝐴, (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑝𝜖𝑃  (9) 

∑ �̃�𝑖𝑗𝑝𝑤𝑖𝑗𝑗′𝑝

(𝑖,𝑗)𝜖𝑅

≤ 𝑏𝑗′𝑝                                                        ∀ 𝑗′𝜖𝐽, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (10) 

∑ �̃�𝑖𝑗𝑝𝑦𝑖𝑗𝑘𝑠𝑝

(𝑖,𝑗)𝜖𝐴

≤ 𝑄𝑘𝑝                                                      ∀ 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (11) 

 

3.3.3. Time windows constraint 

Time window constraints are summarized in Constraints (12) – (19). The time windows in the arc routing problem have 

a different structure compared to the node routing problem. After servicing a required arc, we can use it as a deadheading 

arc without time windows. Constraint (12) denotes that the start time of the journey on arc (𝑖, 𝑗)𝜖�̂� cannot be before the 

arrival time in node i at step s. Index s is steps that every vehicle travels. This index is necessary for Constraints (12) – 

(19), since arrival time in node j is calculated based on arrival time in node i in previous step of vehicle. In standard 

LARP, this index is not necessary.  

Constraints (13) – (14) implies that if vehicle k services to the required arc (𝑖, 𝑗)ϵ𝐴, the arrival time in node j will equal 

to sum of the start time and service time. Constraints (15) and (16) demonstrates that if vehicle k traverses the deadheading 

arc (𝑖, 𝑗)ϵ�̂�, the arrival time in node j will equal the sum of the start time and travel time. Constraints (13) – (16) are 

functional constraints if the vehicle selects the arc for service or travel. Constraint (17) ensures that the service time 

variable 𝜔𝑖𝑗𝑝 is equal to start time of servicing the vehicle. Constraint (18) ensures that required arc cannot be deadheading 

arc earlier than finishing the service time. Constraints (12) – (18) are functional constraints if the required arc (𝑖, 𝑗)ϵ𝐴 is 

selected in optimum routes. Constraint (19) ensures that the vehicles, at the first step, will start in the depot at time zero. 

Constraint (20) ensures that the vehicle usage time in each tour does not exceed the maximum available time. 

 

  𝜑𝑖𝑘𝑠𝑝 − 𝜌𝑖𝑗𝑘𝑠𝑝 ≤ 𝑀(1 − 𝑥𝑖𝑗𝑘𝑠𝑝)                                                    ∀ (𝑖, 𝑗)𝜖�̂�, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃   (12) 

   𝜌𝑖𝑗𝑘𝑠𝑝 + �́�𝑖𝑗𝑝 − 𝜑𝑗𝑘𝑠+1𝑝 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘𝑠𝑝)                                    ∀ (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃   (13) 

  𝜑𝑗𝑘𝑠+1𝑝 − (𝜌𝑖𝑗𝑘𝑠𝑝 + �́�𝑖𝑗𝑝) ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘𝑠𝑝)                                 ∀ (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃  (14) 

  𝜌𝑖𝑗𝑘𝑠𝑝 + 𝑡𝑖𝑗𝑝 − 𝜑𝑗𝑘𝑠+1𝑝 ≤ 𝑀 (1 − (𝑥𝑖𝑗𝑘𝑠𝑝 − 𝑦𝑖𝑗𝑘𝑠𝑝))               ∀ (𝑖, 𝑗)𝜖�̂�, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 (15) 

  𝜑𝑗𝑘𝑠+1𝑝 − (𝜌𝑖𝑗𝑘𝑠𝑝 + 𝑡𝑖𝑗𝑝) ≤ 𝑀 (1 − (𝑥𝑖𝑗𝑘𝑠𝑝 − 𝑦𝑖𝑗𝑘𝑠𝑝))           ∀ (𝑖, 𝑗)𝜖�̂�, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃 

 

(16) 

  𝜌𝑖𝑗𝑘𝑠𝑝 − 𝜔𝑖𝑗𝑝 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘𝑠𝑝)                                                     ∀ (𝑖, 𝑗)𝜖𝐴, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃   

 

(17) 

  𝜔𝑖𝑗𝑝 + �́�𝑖𝑗𝑝 − 𝜌𝑖𝑗𝑘𝑠𝑝 ≤ 𝑀 (1 − (𝑥𝑖𝑗𝑘𝑠𝑝 − 𝑦𝑖𝑗𝑘𝑠𝑝))                     ∀ (𝑖, 𝑗)𝜖�̂�, 𝑘𝜖𝐾, 𝑠𝜖𝑆, 𝑝𝜖𝑃  

 

(18) 
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  𝜑0𝑘1𝑝 = 0                                                                                           ∀ 𝑘𝜖𝐾, 𝑝𝜖𝑃 (19) 

∑ 𝑡𝑖𝑗𝑝𝑥𝑖𝑗𝑘𝑠𝑝

(𝑖,𝑗)𝜖𝐴

≤ 𝑇𝑘𝑝                                                                         ∀ 𝑘𝜖𝐾, 𝑝𝜖𝑃 (20) 

  

3.3.4. Decision variables 

Constraints (21) make sure that the decision variables are binary and non-negative. 

𝑥𝑖𝑗𝑘𝑠𝑝 , 𝑦𝑖𝑗𝑘𝑠𝑝 , 𝑤𝑖𝑗𝑗′𝑝, 𝑢𝑖𝑘𝑝, ℎ𝑗′𝑚𝑖𝑗𝑘𝑠𝑝 ∈ {0,1},   𝜑𝑖𝑘𝑠𝑝 , 𝜌𝑖𝑗𝑘𝑠𝑝 , 𝜔𝑖𝑗𝑝 ≥ 0 (21) 

If demand in Constraints (10) and (11) is considered determined, objectives function of (1) and (2) and Constraints (3) to 

(21) are made the deterministic LARP model. In the bank case study, demand is uncertain with unspecified distribution 

function. In the next subsection, we present a robust model for the LARP by using the approach proposed by Bertsimas 

and Sim (2004). 

 

3.3.5. Robust LARP model 

In the proposed model for the LARP, �̃�𝑖𝑗𝑝 ∈ [𝑑𝑖𝑗𝑝 − �̂�𝑖𝑗𝑝 , 𝑑𝑖𝑗𝑝 + �̂�𝑖𝑗𝑝] in Constraints (10) and (11) has uncertainty. 

Accordingly, based on Section 2.3, by introducing variables 𝑞𝑘𝑝
1 , 𝑟𝑖𝑗𝑘𝑝

1  and 𝛤𝑘𝑝
1 , Constraint (10) is replaced by the following 

constraints: 

 

𝑑𝑖𝑗𝑝𝑦𝑖𝑗𝑘𝑝 + 𝑞𝑘𝑝
1 𝛤𝑘𝑝

1 + ∑ 𝑟𝑖𝑗𝑘𝑝
1

(𝑖,𝑗)𝜖𝑅
≤ 𝑄𝑘𝑝                     ∀ 𝑘𝜖𝐾, 𝑝𝜖𝑃 

(22) 

𝑞𝑘𝑝
1 + 𝑟𝑖𝑗𝑘𝑝

1 ≥ �̂�𝑖𝑗𝑝𝑦𝑖𝑗𝑘𝑝                                                       ∀ (𝑖, 𝑗)𝜖𝑅, 𝑘𝜖𝐾, 𝑝𝜖𝑃 (23) 

𝑞𝑘𝑝
1 , 𝑟𝑖𝑗𝑘𝑝

1 ≥ 0 (24) 

Similarly, by introducing variables 𝑞𝑘𝑝
2  and 𝑟𝑖𝑗𝑘𝑝

2  and 𝛤𝑘𝑝
2 , Constraint (11) will be replaced with the these constraints: 

𝑑𝑖𝑗𝑝𝑤𝑖𝑗𝑗′𝑝 + 𝑞𝑘𝑝
2 𝛤𝑘𝑝

2 + ∑ 𝑟𝑖𝑗𝑘𝑝
2

(𝑖,𝑗)𝜖𝑅
≤ 𝑏𝑗′𝑝                 ∀ 𝑗′𝜖𝐽, 𝑘𝜖𝐾, 𝑝𝜖𝑃 

(25) 

𝑞𝑘𝑝
2 + 𝑟𝑖𝑗𝑘𝑝

2 ≥ �̂�𝑖𝑗𝑝𝑤𝑖𝑗𝑗′𝑝                                                    ∀ (𝑖, 𝑗)𝜖𝑅, 𝑗′𝜖𝐽, 𝑘𝜖𝐾, 𝑝𝜖𝑃 (26) 

𝑞𝑘𝑝
2 , 𝑟𝑖𝑗𝑘𝑝

2 ≥ 0 (27) 

Therefore, the proposed bi-objective robust model for the LARP is mixed-integer linear programming with objective 

functions (1) and (2) and Constraints (3) – (9) and (12) – (27). This robust proposed model is used for solving the location 

and routing problem of the bank as case study with uncertain demand for cash collection and delivery. 

 

4. Bank case study 

Processing the cash supply should be on time in the bank branches network. In this paper, the bank case study has two 

challenges in the cash supply. Challenge 1: according to the instructions of the Central Bank of Iran, cash collection and 

delivery should be done by the cash supply center of the bank or the National Bank by fee-paying. The cost-benefit of 

these solutions should be calculated with the number and location of the required cash supply center. Kahfi et al. (2018) 

solved this challenge with an LARP model. Challenge 2: the cash supply center of the bank in Tehran has several 

problems. In this case study, four cash supply centers (i.e., red, green, purple, and pink rectangles in Figure 1a) collect 

and deliver the cash for 517 banking units (250 branches, 202 counters, and 65 fuel stations) in Tehran. Also, a special 
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cash supply center (i.e.blue rectangles in Figure 1a) is communicated with the Central Bank of Iran and other cash supply. 

The problems of the cash supply of the Tehran center are as follows: 

 Two cash supply centers were included in the urban development planning (blue and purple in Figure 1a) the bank 

is forced to move them to another cash supply center (i.e., green rectangle in Figure 1a).  

 One of the cash supply centers (red rectangle in Figure 1a) had security problems. Therefore, it moved to a 

temporary cash supply center (orange rectangle in Figure 1a). 

 

 
a) Current cash supply centers location 

 
b) Potential cash supply centers location 

 Branches  Current cash supply centers  Potential cash supply centers 

Figure 1. Current and potential cash supply centers location 

Therefore, there are three cash supply centers (i.e., green, orange, and pink rectangles in Figure 1a) that service all 

branches in Tehran. These problems increase servicing time and transportation costs and decrease the security of cash 

supply centers and cash transfers. Determining the optimum number of the cash supply center and its location in Tehran 

was the main problem in this case study. Also, two cash supply centers are fixed. The potential locations are shown in 

Figure (1b). This problem is a node-basing problem with the closest node that could be converted arc-routing problem 

with smaller dimensions. For this purpose, branches with 2 km distance are replaced by the required arc. Therefore, 517 

nodes in this case study problem are converted to 214 nodes that decrease problem dimensions. 

In the case study, we use Tehran map with the required information, such as the branches location, the type of streets, the 

type of traffic allowed, the width of the street and the length of the street. For this purpose, the GIS Bank team used 

ArcMap 10 software. Figure 2 shows a small part of the map after identifying the permitted routes (bold green lines), the 

selected routes (blue lines) and the branches (green circular). 
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Figure 2. Part of the Tehran map with bank information  

 

5. Solution approach 

The proposed model for the LARP is NP-hard and bi-objective. Therefore, we use the MODA (Mirjalili, 2016) and 

NSGA-II (Deb et al. 2002). To solve this model, first, we present a solution representation of the problem as a necessary 

step in designing the algorithm. Then, we describe the MODA, a generation of the initial solution and a verified algorithm.  

 

5.1. Solution representation  

The solution representation in routing problems is based on a sequence of nodes number. Different solution representation 

is introduced in the research paper (Armas et al., 2018). In Lacomme et al. (2004), the solution representation is as a 

vector. The initial value of this vector is generated randomly that the vector is divided into several parts, and each part is 

assigned to a vehicle. The infeasible vector will be removed. In Kirlik and Sipahioglu (2012), the solution representation 

is defined as a matrix with a variable number of rows and columns, in which the number of rows is the number of the 

vehicle. In this representation type, selecting the vehicles are always in order. In this research, a solution representation 

is as a matrix with unknown dimensions (Figure 3a). The number of rows and columns is variable. The numbers of rows 

and columns are dependent on routes and nodes that are serviced by the vehicle, respectively. 

For example, in a problem with three depots and four vehicles, if the set of required arcs is {1-4, 4-5, 5-7, 5-8, 7-8, 8-6, 

2-6, 2-4, 8-10, 2-10, 9-10, 3-7}, the solution representation is shown in Figure 3b. The first row shows that vehicle 2 is 

assigned to depot 1 and services to the required arcs {1-4, 4-5, 5-8, 8-7, 7-5}. In route 2, the required arc of {8-5} is as a 

deadheading arc that is serviced in route 1. This solution is presented in Figure 3c. 

 

5.2. Multi-Objective Dragonfly Algorithm 

The Dragonfly Algorithm (DA) is introduced by Mirjalili (2016). Dragonflies have special swarming behaviors. The aims 

of dragonflies swarm are hunting (i.e., static swarm) and migration (i.e., dynamic swarm). Dragonflies in a static swarm 

create small group that has abrupt changes and local movement in the flying path. The huge number of dragonflies in 

dynamic swarms create swarms to migrate over long rout in one way. The DA is originated from static and dynamic 

dragonflies swarming behavior. These two behavior are identical to the two main stages of optimization: exploration and 

exploitation in meta-heuristic algorithms. Dragonflies make sub-swarms and fly in disparate locations in a static swarm 

that is the aim of the exploration stage. In a dynamic swarm, dragonflies fly in larger swarms along one path that is the 

main objective in exploitation. The multi-objective DA (MODA) is used to solve the presented multi-objective model. 

The MODA is described in Figure 4.  
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Vehicles 

number 

Depots 

number 

Nodes 

number 
 

 
Vehicles 

number 

Depots 

number 

Nodes number 

1 2 …  1 2 3 4 5 6 7 

Route 1       Route 1 2 1 4 5 8 7 5 1 - 

Route 2       Route 2 4 2 6 8 5 4 2 - - 

…       Route 3 3 2 10 9 3 7 8 10 2 

a) Solution representation  b) Sample solution representation 

 

1

4

2

3

5

6

7
8

10

Required arc

Open depot

Close depot

red – route 1

blue – route 2

orange – route 3

Serviced 

required arc 

Traversed 

deadheading arc 

9

 
c) A sample feasible solution 

Figure 3. Solution representation with a sample for the proposed LARP 

 

 
Initialize the dragonflies population Xi (i = 1, 2, ..., n) and step vectors ΔXi (i = 1, 2, ..., n) 

Define the maximum number of hyperspheres (segments) and the archive size 

While the end condition is not satisfied 

Calculate the objective values of all dragonflies 

Find the non-dominated solutions 

Update the archive for the obtained non-dominated solutions 

If the archive is full 

Run the archive maintenance mechanism to omit one of the current archive members 

Add the new solution to the archive 

End if  

If any of the new added solutions to the archive is located outside the hyperspheres 

Update and re-position all of the hyperspheres to cover the new solution(s) 

End if 

Select a food source from archive 

Update w, s, a, c, f, and e 

Calculate S, A, C, F, and E using: 𝑆𝑖 = − ∑ 𝑋 − 𝑋𝑗
𝑁
𝑗=1 , 𝐴𝑖 =

∑ 𝑉𝑗
𝑁
𝑗=1

𝑁
, 𝐶𝑖 =

∑ 𝑋𝑗
𝑁
𝑗=1

𝑁
− 𝑋, 𝐹𝑖 = 𝑋+ − 𝑋, 𝐸𝑖 = 𝑋− + 𝑋 

Update neighboring radius 

Select an enemy from archive  

Update position vectors using 

If a dragonfly has at least one neighboring dragonfly 

Update the velocity vector using ∆𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤∆𝑋𝑡 and position vector using 𝑋𝑡+1 = 𝑋𝑡 +
∆𝑋𝑡 

Else 

Update position vector using 𝑋𝑡+1 = 𝑋𝑡 + 𝐿�́�𝑣𝑦(𝑑) × 𝑋𝑡, 𝐿�́�𝑣𝑦(𝑥) = 0.01 ×
𝑟1×𝜎

|𝑟2|
1
𝛽

, 𝜎 = (
Γ(1+β)×sin (

𝜋𝛽

2
)

Γ(
1|𝛽

2
)×β×2(

𝛽−1
2 )

)

1 𝛽⁄

, Γ(x) = (𝑥 − 1)! 

End if 

Check and correct the new positions based on the boundaries of variables 

End while 

Figure 4. Pseudo-codes of the MODA 

 

Where 𝑋, 𝑋𝑗, 𝑉𝑗 , 𝑋+ , 𝑋− and 𝑁 are the position of the current dragonfly, the position of the j-th dragonfly in the 

neighborhood, speed of the j-th dragonfly in the neighborhood, position of the food source, position of the enemy, and 

the number of neighborhood dragonflies, respectively. Also, s, a, c, f, e are the coefficient of separation, alignment, 
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cohesion, attraction, the distraction of enemy, respectively. 𝑤 is the weight of inertia and 𝑡 is the counter of the algorithm. 

Also, 𝑑 is the dimensions of the position vector, 𝑟1 and 𝑟2 are two random numbers in the interval [1-0] and 𝛽 are assumed 

to be a constant value equal to 1.5. The position of dragonflies is updated using five factors as follows: 

 Separation: Avoid colliding with other neighbors (𝑆𝑖) 

 Alignment: Adjust the speed with neighbors (𝐴𝑖)  

 Cohesion: Tendency to the center of gravity of neighbors (𝐶𝑖) 

 Attraction: Absorption to food sources (𝐹𝑖)  

 Distraction: Outward to enemy (𝐸𝑖) 

 

5.3. Initial solution Generation 

To generate the initial solution, the following steps are performed: 

1. Choose a random vehicle between the vehicles that have the volume and time capacity. 

2. Choose a random depot between the depots that have the volume capacity. 

3. Choose a random required arc with the following conditions: 

3.1. Start point is selected depot in Step 2. 

3.2. If the demand is less than the capacity of the depot, go to Step 3.3, otherwise, go back to Step 2. the number of this 

depot is added to the blacklist. 

3.3. If demand is smaller than the capacity of the vehicle and arc travel time is in time windows interval, the selected 

arc is removed from the required arc list and added to the deadheading arc list. Then, depot and vehicle capacity and 

vehicle time capacity are updated. Otherwise, go back to Step 1 and the vehicle number is added to the blacklist. 

4. Choose a random required arc with the following conditions: 

4.1. If the ending node of selected arc is the starting node of another required arc goes to Step 4.2; otherwise, go to Step 6. 

4.2. If arc demand is less than the depot and vehicle capacity and arc travel time is in time windows interval, the selected 

arc is removed from required arc list and is added to deadheading arc list. The depot and vehicle capacity as well 

as vehicle time capacity are updated. Otherwise, return to Step 1 and add the vehicle number to the blacklist. 

5. Choose a random deadheading arc with the following conditions and return to Step 4: 

5.1. Starting node arc is the ending node of selected arc in Step 4. 

5.2. Arc has smallest traveling time. 

6. If all required arcs are serviced, go to the correction algorithm, otherwise, if the vehicle and depots are not on blacklist, 

go to step 4; otherwise, go back to Step 1 and the vehicle and depots add to the blacklist. 

 

5.4. Correction algorithm 

For an infeasible solution, the following corrective steps are required: 

1. If the end of vehicle route is not the depot, remove it from the solutions. 

2. If the route is not serviced by required arc, this route is deleted. 

3. If there are consecutive deadheading arcs on the route and there is a shorter route between the starting and ending 

nodes of these arcs, consecutive deadheading is replaced by this arc. 

6. Experimental results 

The LARP is an NP-hard problem with a large number of binary variables (Khajepour et al. 2020). In this paper, we use 

the MODA to solve the proposed LARP for the case study problem. Also, the NSGA-II is used for the validation of the 

MODA. This model is tested on a PC with Intel Pentium 4, core i5, 2.4 GHz processor with 4 GB memory. Also, The 

Taguchi method is used for parameter tuning for the MODA and the NSGA-II (Table 2). 

 

Table 2. Parameter tuning with the Taguchi method 
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MODA 
Population size Separation Alignment Cohesion Attraction Distraction 

400 0.1 0.1 0.7 1 1 

NSGA-II 
Population size Cross over Mutation    

350 0.36 0.72    

 
To evaluate the performance of the proposed deterministic and robust models, the bank case study described in Section 4 

is selected. The deterministic and robust model is solved for this case study under nominal data. In the proposed robust 

model of the LARP, the experiments are performed under four different uncertainty levels               𝜌 = 0.2, 0.4, 0.8, 1. 

Then, for realization, ten problems are solved for this case study under uncertainty levels. The objective function value 

and computational time for solving each model are reported in Table 3. In the robust model, some demand values are in 

the worst case compared to the nominal value. Then, the robust objective value is larger than the deterministic objective 

value. A comparison results of the deterministic and robust model for both objectives shows that although the results of 

the robust model are worse than the deterministic model with nominal data, the mean and standard deviation present 

better solutions in the realization (Figure 5). Also, increasing the amount of uncertainty level 𝜌, increase the number of 

created depots, employed vehicles and costs. The solving time in the robust model compared to the deterministic model 

is increased, due to the increasing number of constraints.  

 

Table 3. Result comparison of the proposed LARP model for the bank case study 

Solving 

method 

Uncertainty 

level (𝜌) 

Results with nominal data  Results under realizations 

O1
*  O2  T  M1  M2  S1  S2 

D R  D R  D R  D R  D R  D R  D R 

MODA 

0.2 15698 15949  6698 6864  1 1  15,346 15,000  6746 6632  743 59  81 53 

0.4 16106   7106   1.31  15,469 14,757  6382 6328  864 125  152 90 

0.8 16430   7430   1.67  15,326 14,648  6807 6173  978 267  207 136 

1 16957   7957   1.92  15,298 14,530  6820 6206  1602 324  236 210 

NSGA-II 

0.2 4478 19246  5478 5832  5720 7680  19951 18838  8783 8432  1367 170  204 85 

0.5 19884   6014   7825  19997 18542  9434 8246  2235 197  314 135 

0.8 19435   6273   8078  19423 18139  9950 8012  2518 415  567 162 

1 19103   6354   8234  19136 18678  10230 7754  2651 598  712 231 
* O: objective, T: Time (Sec), M: Mean, S: Standard deviation 
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Figure 5. Mean and standard deviation of the first and second objectives under uncertainty level 𝜌 
 

To validate the MODA, the proposed model is also solved by the NSGA-II (Table 3). As usual, metrics (e.g., the number 

of non-dominated solutions, spacing, and quality solutions) are used for the comparison of the results in multi-objective 

algorithms (Collette and Siarry, 2003). Comparison of the MODA and NSGA-II results based on the number of non-

dominated solutions (Figure 6), the spacing, and the quality of solutions (Table 3) shows that the proposed MODA for 

solving the model of the LARP has better performance. Also, the solving time of the MODA is better than NSGA-II.  
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Figure 6. Pareto fronts of two meta-heiristics 

 

The MODA Pareto front is demonstrated in Figure 6. However, the MODA Pareto front is not sufficient for the 

determination of cash supply centers in the bank case study. Selecting the best and most efficient final solution depends 

on the priorities of the decision-makers. Therefore, the bank experts have surveyed the Pareto front of the case study. 

They have selected a solution based on bank rules. The most important of these rules are as follows: 

1) Availability of the estate, security issues and traffic in the proposed area of the solution. 

2) Minimum waiting time as second objective in the solution. 

3) Existence of at least four supply centers in the solution based on the bank experts experiences. 

As an example, two solutions from the Pareto front (Figure 6) obtained from the MODA are shown in Figure 7. 

Although solution (a) has the minimum cost between Pareto front and there are at least four supply centers; however, 

solution (b) has all of conditions and is selected as the best solution by bank experts. 

 

 

 

Figure 7. (a) Sample of Pareto front  
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Figure 7. (b) Sample of Pareto front 

 

 

7. Conclusion and future research 

To cope with the issue of the location of cash supply centers that servicing to bank branches under uncertain demand, this 

paper proposed a new mixed-integer linear programming model for a bi-objective and multi-period Location-Arc Routing 

Problems (LARP) with time windows. To the best of our knowledge, for the first time, the time windows were modeled 

in the LARP with a condition of converting the required arc with time windows to a deadheading arc without time 

windows after service. Also, the model forces the vehicle to service multiple required arc with the minimum deadheading 

arc in route. The case study was a node-routing problem with the closest nodes that were converted to the model of the 

LARP with a reduced dimension. The proposed model was solved by the Multi-Objective Dragonfly Algorithm (MODA) 

and Non-dominated Sorting Genetic Algorithm (NSGA-II), in which the MODA based on the multi-objective metrics has 

better performance. The approach proposed by Bertsimas and Sim was used due to the uncertainty in demand. The 

computational results showed that the robust model under the realization outperforms the deterministic model in terms of 

the mean and standard deviation. However, the deterministic model with nominal data had better objective function 

values. In this case study to determine the cash supply centers, bank experts surveyed the MODA Pareto front based on 

the availability of the estate, security issues, minimum waiting time, etc. Finally, five cash supply centers in Tehran were 

selected. Considering other features for developing the model of the LARP, investigating the uncertainty in other model 

parameters and solving the model with an exact method can be a good direction for future research. Another direction is 

to consider the risk of cash-in-transit for the bank case study. 
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