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Abstract 

This paper considers a two-level supply chain which is composed of a single manufacturer and multiple retailers. The 

ordered quantities of the retailers are delivered in some equal sized batches from the manufacturer. Customer demand is 

linearly dependent on the retail price of the product. Lead time is random and it follows a normal distribution. The 

proposed models are developed for both the centralized and the decentralized scenarios. In the decentralized model, a 

Stackelberg gaming approach is used to find the optimal solution. The developed models are illustrated by a numerical 

example. It is found that integration of the supply chain players gives an impressive increment in profit of the whole 

supply chain. Sensitivity analysis is also carried out to explore the impacts of key parameters on the expected average 

profit of the supply chain system.   

 

Keywords: Two-level supply chain; single manufacturer; multiple retailers; price dependent demand; stochastic lead 

time. 

 

1. Introduction 

The supply chain management involves with the activities for coordinating raw materials, information, production and 

financial flow to fulfil the customer demand with the aim of maximizing customer value and gaining competitive 

advantage in the market. In addition to efficient business management, supply chain spans various fields such as livestock 

management, waste management. Nowadays, supply chain plays an important role even in disaster management also 

(Khalilpourazari et al., 2020). In a supply chain, raw materials are delivered to the manufacturer from the supplier. Then 

produced items are transferred from the manufacturer to the retailer and finally delivered to the end customers to meet 

their demands. The most important factor that affects the consumer demand is the retail price of the product. The customer 

demand falls with the increase in retail price. So, many companies are now focusing on achieving the best pricing strategy 

to increase the sales volume. Many researchers (Ray and Jewkes, 2004; Banerjee, 2005; Yang et al., 2009) have also 

developed their models considering price-sensitive demand.  

Nowadays, due to the globalization of the marketplace and rapidly increasing competition between various 

organisations, companies are facing many obstacles to compete exclusively. So, collaboration between different business 

units leads to a significant way to obtain spirited advantage. For better efficiency, the supply chain players are showing 

great interest in making their decisions jointly. Goyal (1976) was the first author who introduced integration between 

supply chain members in inventory model with finite production rate. Later, his work has encouraged many researchers 

(Banerjee, 1986; Goyal and Nebebe, 2000; Ben-Daya and Hariga, 2004; Pandey et al., 2007; Glock, 2012) to develop 

various integrated inventory models. 
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Lead time refers to the time interval between order placement and receiving the delivery of items. It may be random 

in nature. It affects the demand forecasting and makes the customer looking for alternatives. So, for an efficient 

management of supply chain and facilitate of economic success, it is essential to concentrate on such a sensible factor. 

The literary review reflects that numerous research works have been carried out focusing on lead time (Ouyang et al., 

2004; Lee, 2007). In two-level supply chain system, an interesting strategic problem arises at the retailer’s end in 

determining optimal ordering quantity and the number of shipments decided by the manufacturer to transfer the ordered 

quantity of the retailer. Keeping in mind the importance of lead time and focusing on multi-retailer scenario, in our model, 

we develop a single-manufacturer multi-retailer supply chain model assuming that the lead time is a random variable 

following normal distribution and the customer demand is influenced by its selling price. 

 

2. Literature Review  

Over the last few decades, integration of vendor and buyer in supply chain management has attracted the attention of 

researchers remarkably. The key objective of their researches is to enhance the efficiency of the supply chain through the 

cooperation of supply chain players. In this section, we review some existing relevant literatures on supply chain models 

under several assumptions spanning across the streams – price-sensitive demand, stochastic lead time and multi-retailer 

inventory system. 

Determination of the best pricing strategy and inventory decisions that influence the customer demand has been 

focused by many researchers and practitioners. A seminal research work in this direction was done initially by Whitin 

(1955). Later, many researchers (Yang et al., 2009; Khanra et al., 2010; Maragatham and Lakshmidevi, 2014) 

investigated joint pricing and inventory problems. Sohrabi et al. (2015) investigated a supplier selection problem in the 

vendor managed inventory (VMI) scenario under price dependent customer demand. Alfares and Ghaithan (2016) 

developed an inventory model considering storage time-dependent holding cost, quantity discount and price-dependent 

demand. Giri et al. (2017) implemented a profit sharing contract between the retailer and the manufacturer under price-

sensitive market demand. Maragatham and Palani (2017) determined an optimal replenishment policy aimed at 

minimization of the total cost under time dependent ordering and holding costs and deterioration rate with price sensitive 

demand. Rastogi et al. (2018) derived optimal retail price and optimal time interval for an economic order quantity 

(EOQ) model considering non-instantaneous deterioration of items and price-sensitive consumer demand. Pervin et al. 

(2019) developed a two-level supply chain model with deteriorating multiple items under trade-credit policy and price- 

and stock-dependent demand. Biswas et al. (2019) developed an integrated inventory model and derived optimal 

decisions in order to optimize the system profitability for deteriorating item and price-dependent demand rate. Pervin et 

al. (2019) incorporated inflation in an economic production quantity (EPQ) inventory model for deteriorating items with 

preservation technology investment under price- and stock-dependent demand. Sarkar et al.(2019) proposed a price 

discount policy where the vendor offers a price discount depending on the buyer’s ordered quantity in a price-sensitive 

market. Mashud et al.(2019) studied a deteriorating inventory model with selling price dependent demand under trade 

credit policy and preservation technology investment. Das et al.(2020) applied preservation technology in an inventory 

model for non-instantaneous deteriorating items, price sensitive demand and partially backlogged shortage. Mashud et 

al.(2020) implemented both the advance payment and delay payment in a supply chain model with the trade credit policy 

under price- and advertisement-sensitive customer demand. 

Lead time has attracted the interest of many researchers in the areas of inventory management and production control. 

It plays a crucial role in business management. Lead time variability often causes shortages and, to hold the market 

demand, sometimes the retailers offer price discount or any other attractive offers on backorder demand (Roy et al., 2018). 

Lead time can be shortened by paying an additional cost. Many researchers (Ouyang et al., 2007; Ho, 2009; Glock, 2012; 

Vijayashree and Uthayakumar, 2017) investigated several production-inventory models with lead time reduction. Li et 

al. (2011) considered controllable lead time in their models. Sajadieh et al. (2009) allowed the uncertainty of the lead 

time with exponential distribution in a vendor-buyer model with equal batch shipments. Later, Hoque (2013) extended 

this model by considering combined equal and unequal batch shipments and showed that the model with normal 

distribution is more profitable than the model with exponential distribution for lead time. Vijayashree and Uthayakumar 

(2015) provided an effective iterative algorithm to minimize the cost of an integrated inventory model under controllable 

lead time. Lin (2016) derived production strategy and investment policy for reducing lead time variability in a vendor-

buyer supply chain model with stochastic lead time. Giri et al. (2018) developed a closed-loop supply chain model 

considering learning effect in production in a stochastic lead time scenario under price and quality dependent demand. 

Wangsa and Wee (2019) studied an integrated inventory model with inspection error, stochastic lead time and freight 

cost. Then concluded that type I error is more significant than type II error and the distance between buyer and vendor 

impacts the lead time and the total cost effectively. 
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In today’s competitive business world, it is hard to find that one manufacturer sells a product to a single retailer. It is 

more practical to focus on the scenarios where the manufacturer supplies the product to several retailers or trading for 

multiple items. Khalilpourazari et al. (2019a) investigated an economic order quantity model for multiple imperfect items. 

Khalilpourazari et al. (2019b) developed an EPQ model for multiple defective items with random defective rate and 

rework process. Khalilpourazari et al. (2019c) considered a multi-item EOQ model with partially backlogging shortages 

and warehouse capacity constraint. Researchers are also currently showing a great interest in developing such multi-

retailer models. Taleizadeh et al. (2012) compared the results of the PSO (Particle Swarm Optimization) approach and 

GA (Genetic Algorithm) approach in a multi-product inventory model comprised of a single vendor and multiple buyers 

where the lead time varies with the lot size. Jha and Shanker (2013) considered a single-vendor multi-buyer supply chain 

model under controllable lead time and applied the Lagrangian multiplier technique to evaluate optimal results under 

service level constraints. Poorbagheri and Niaki (2014) studied a VMI model composed of a single vendor and multiple 

retailers under stochastic demand. Giri and Roy (2015) developed a single-vendor multi-buyer inventory model 

considering controllable lead time to maximize the profit of the whole supply chain. Uthayakumar et al.(2019) studied a 

single-vendor multi-buyer integrated model with stochastic demand and controllable lead time. 

The above literature review reveals that researchers have studied single-manufacturer multi-retailer models 

considering important factors like stochastic lead time, price dependent market demand, etc. separately. A single-

manufacturer multi-retailer supply chain model has not been studied where the customer demand is price dependent and 

the lead time is stochastic. To reflect a real business scenario, it is worth to incorporate these key factors under one 

umbrella. Inspired by the previous research works, in this paper, our aim is to fulfill this gap and answer the following 

research questions. 

 What will be the optimal pricing and the batch shipment policy for the retailers and the manufacturer in a price 

sensitive market ? 

 How does the stochastic nature of lead time influence optimal inventory decisions in a single manufacturer multi-

retailer model with price-dependent demand ? 

 What is the impact of integration on the profitability and managerial decisions of the supply chain ? 

A comparison of the current work with the relevant existing literature is given in Table 1.  

Table 1. Comparison of the present paper with the existing literature 

Authors Model type Batch shipment Demand Lead time 

Sajadieh et al.(2009) Single-manufacturer single-retailer Equal Deterministic Stochastic 

Jha et al. (2013) Single-manufacturer multi -retailer Equal Deterministic Controllable 

Hoque(2013) Single-manufacturer single-retailer Equal and unequal Deterministic Stochastic 

Yang et al. (2013) Single-manufacturer multi-retailer No Price- dependent No 

Mandal & Giri (2015) Single-manufacturer multi-retailer Equal Stochastic Controllable 

Giri & Masanta (2019) Single-manufacturer single-retailer Equal Deterministic Stochastic 

This paper Single-manufacturer multi-retailer Equal Price- dependent Stochastic 

 

Remaining of this paper is summarized as follows: Section 3 provides assumptions and notations we have used 

throughout the paper. In Section 4, mathematical models are formulated and solution procedures are given to derive the 

optimal solutions. A numerical example is explained in Section 5 to analyze the proposed models. In section 6, sensitivity 

analysis with respect to some key parameters is carried out. Lastly, the conclusion is drawn and future research directions 

are provided in Section 7. 

 

3. Notations and Assumptions 

Notations used for developing the proposed models are given below. The subscript ‘ i ’ is used to indicate the i-th retailer. 

Index: 

                  i Index of retailer, i = 1,2,…N 

 

Parameters: 

R Production rate 

 Av Set up cost /set up 

hv Holding cost / item / unit time (hv > hi) 
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𝐹 Transportation cost per batch shipment 

w Unit wholesale price 

𝑁 Number of retailers 

𝑄 Total order quantity [= ∑N
i=1 Qi] 

D Total market demand [= ∑N
i=1 Di] 

EAPV Average expected profit of the manufacturer 

L Lead time, a random variable 

Ai Ordering cost of the i-th retailer / order  

hi Holding cost of the i-th retailer / item / unit time 

Di Demand rate of the i-th retailer [R > ∑N
i=1 Di] 

ai Basic market demand of the i-th retailer 

βi Consumer sensitivity coefficient to retail price of the i-th retailer 

Qi Ordering quantity of the i-th retailer 

ci Shortage cost of the i-th retailer / item / unit time  

ri Reorder point of the i-th retailer 

 l𝑖 

Ti 

Lead time variable of the i-th retailer 

Cycle time of the i-th retailer 

σi Standard deviation of the lead time of the i-th retailer 

fL(. ) Probability density function of the lead time 

EAPi Average expected profit of the i-th retailer 

 

Decision variables:  

                  n Number of batches delivered to each retailer 

zi Batch size of the i-th retailer 

pi Unit retail price of the i-th retailer 

 

The basic assumptions made to formulate the proposed models are as follows:  

1. The manufacturer produces a single product and meets the demand of multiple retailers.  

2. The i-th retailer places his order of quantity Qi. The manufacturer produces the total order quantity ∑N
i=1 Qi of all 

retailers in one set up at a production rate R, and then transfers the ordered quantity of the i-th retailer in n equal 

batches of size zi such that 
i

i

Q Q

D D
 for all i =1,2,....,N.  

3. The consumer’s demand rate depends linearly on the selling price of the product, i.e. the consumer demand rate at 

the i-th retailer is  i i i i i
D p a p  , where 𝑎𝑖 represents the basic consumer demand and βi is a positive integer 

such that 
i i i

a p  for all i =1,2,....,N.   

4. The production rate is constant and higher than the collective demand rates of all the retailers i.e. R > ∑ N
i=1 Di.  

5. Shortages are allowed and are assumed to be completely backlogged at each retailer’s end.  

6. The i-th  retailer places his next order when its stock level reaches a certain reorder point ri.  

7. The lead time is stochastic in nature and follows a normal distribution, and the lead time for all shipments are 

independent of each other.  
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4. Model Development 

We assume that, the manufacturer transfers the order quantity Qi of the i-th retailer in n equal batch shipments of size zi. 

If the total order quantity of N retailers is Q, then we have 
i i

Q nz  and 
1

N

i
i

Q Q


 . 

The i-th retailer places the next order when the stock reaches to a level ri. The reorder level is determined so as to arrive 

the shipment to the retailer’s end at or before the time of selling this ri quantity at a demand rate Di. The mean lead time 

is 
i

i

r

D . Due to various reasons, the batches may reach the retailer’s end early or late. So, depending on the duration of 

lead time three cases may arise: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Inventory of 𝑖- th retailer under stochastic lead time 
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Case(i)  When the batch 𝑧𝑖 reaches to the retailer earlier i.e. 0
i

i
i

r
l

D
  . 

In this case, the holding inventory area of the i-th  retailer is determined from Figure 1(a) as 

               = Area (    ABCD +     CEGH +     EFG ) 

        = [
1

2
× (AB + CD) × BC] + (CE × EG) + (

1

2
× EF × EG) 

       
 

 
 1 1

.
2 2

i i i i i i i

i i i i i i i i i i

i i

r z D l z D l
r r D l l r D l z r

D D

 
         

 
2

1
2

2
i i

i i

i i

z r
z l

D D

  
     

   

 where i i
i

z D
r

R
  

 The ordered quantity of the i-th retailer 𝑄𝑖  for n shipments is given by  

            
2

2
2

i i
i i

i i

z rn
z l

D D

  
    

   

 

 The expected inventory holding cost for the ordered quantity 𝑄𝑖  of the i-th retailer is 

            
2

0

1
2 ( )

2

i

i

r

D

i i
i i i L i i

i i

z r
nh z l f l dl

D D

  
    

   
  

Case (ii)  When the batch zi reaches late to the 𝑖-th retailer and the lead time li lies in the range 
i i i

i
i i

r r z
l

D D


  .  

In this case, both inventory and shortages occur at the retailer’s end. From Figure 1(b), shortage area of the i-th retailer is 

obtained as Area (     CDE ) 

                                                                      
2

2

i i i

i

D l r

D


  

So, the expected shortage cost at the i-th retailer for n batches is given by      
2

( )
2

i i

i

i

i

r z

D
i i i

i L i i
r i

D

D l r
nc f l dl

D






 

Holding inventory area of the i-th retailer for the batch 𝑧𝑖 is 

                = Area (     ABC +     EFHI +      FGH ) 

               
   

2
2

2 2

i i i i i i ii

i i i

r z D l z D lr

D D D

 
    

        
 

2

2

i i i i

i

z D l r

D

 
  

Hence the expected holding cost at the i-th retailer for n shipments is obtained as                  

             
2

( )
2

i i

i

i

i

r z

D
i i i i

i L i i
r i

D

z D l r
nh f l dl

D



 


 

It is assumed that, during this delay period, the batches remain in the manufacturer’s stock house. So it causes an extra 

holding cost to the manufacturer. The extra inventory for this delayed delivery is 

 
1

N
i i i i

i i

nz D l r

D


 . 
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Therefore, in this scenario, the extra holding cost paid by the manufacturer is  

             
 

 
1

i i

i

i

i

r z

DN
i i i i

v L i i
i r i

D

nz D l r
h f l dl

D






    

Case (iii)  When the batch zi reaches late to the retailer and lead time lies in the range 
i i

i
i

r z
l

D


   . 

In this case, only shortages occur at the retailer’s end and, from Figure 1(c), the shortage area for the batch 𝑧𝑖 is obtained 

as = Area (    ABCD ) 

                 
2

2
i

i

z

D
 + Area (    BCDE) 

                 
2

2
i i i

i i

i i

z z r
z l

D D

 
    

 

 

So, the expected shortage cost of the i-th retailer for all batch shipments is 

         
2

( )
2

i i

i

i i i i i
i i L i i

r z i i

D

z D l z r
nc z f l dl

D D





   
   

   
   

Similarly as case(ii), the additional expected holding cost of the manufacturer is  

           
 

 
1

i i

i

N
i i i i

v L i i
i r z i

D

nz D l r
h f l dl

D



 


   

Combining all three cases, the expected holding cost at the i-th retailer for all batch shipments is given by  

     
2

2

0

1
2 ( ) ( )

2 2

i i i

i i

i

i

r r z

D D
i i i ii i

i i i L i i L i i
ri i i

D

z D l rz r
nh z l f l dl f l dl

D D D

 
     

      
    

  

   

and the expected shortage cost for all batch shipments is  

    
 

2
2

( ) ( )
2 2

i i

i

i i i

i i

r z

D
i i i i i i i i

i L i i i L i i
r r zi i i

D D

D l r z D l z r
nc f l dl z f l dl

D D D







 
     

     
    

  

   

 

  

4.1. Decentralized Model 

In the decentralized model scenario, the manufacturer and the retailers make their decisions independently in order to 

improve their own profits. Here we incorporate a Stackelberg gaming structure where the retailers act as the leader and 

the manufacturer is the follower. The manufacturer sets the number of shipments. Then, taking this response function into 

consideration, the retailers determine optimal retail prices of the product and batch sizes. 

 

Retailer’s profit function: 

The expected total profit of the i-th retailer is   
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 

 







 
     

          
    

  

    
     
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 



2
2

0
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1
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( ) ( )
2 2

i i i

i i

i

i

i i

i

i i i

i

r r z

D D
i i i ii i

i i i i i i i L i i L i i
ri i i

D
r z

D
i i i i i i i i

i L i i i L i
r r zi i i

D

z D l rz r
p Q wQ A nF nh z l f l dl f l dl

D D D

D l r z D l z r
nc f l dl z f l

D D D



 
 
 
 
  



i

i

D

dl

 

The average expected profit of the i-th retailer is obtained as  

   
 

 





 
    

        
   

  

    
     

   

 



2
2

0

2
2

( ) 1 2
, ( ) ( )

2 2

( ) (
2 2

i i i

i i

i

i

i i

i

i

i

r r z

D D
i i i ii i i

i i i i i i i i i i L i i L i i
ri i i

D
r z

D
i i i i i i i i

i L i i i L
r i i i

D

z D l rA nF D z
EAP z p p D wD nh r D l f l dl f l dl

Q Q n Q

D l r z D l z r
nc f l dl z f l

Q Q Q





 
 
 
 
  
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Proposition 1. The average expected profit function of the i-th retailer is concave in zi for given pi provided that  
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Proof. Differentiating (1) with respect to zi, we obtain 
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Proposition 2. The average expected profit function of the i-th retailer is concave in pi for given zi if   
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Proof. After differentiating (1) with respect to pi, we obtain  
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Manufacturer’s profit function: 
Total extra holding cost for the manufacturer, from both case (ii) and case (iii), is 
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Figure 2.  Joint inventory of the manufacturer and the retailers 
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Proposition 3. The average expected profit function of the manufacturer is concave in n if 
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Proof. Assuming n as real, not just integer, we get from (8)  

 

                        
2 22 2 2

v v v v v
EAP A D h s h sD h s

n Rn s n


   


                                                                                                 (10) 

                
2

2 3 3

2
v v v

EAP A D h s

n n s n


  


                                                                                                                               (11) 

So, the manufacturer’s average expected profit function 𝐸𝐴𝑃𝑉  is concave in n if 
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Solution Algorithm 

Taking the best response from the manufacturer, the average expected profit of the 𝑖-th retailer can be optimized using 

the following solution algorithm. Here, we first assign some initial values to the decision variables of the remaining 

retailers to maximize the average expected profit of one retailer. 
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 Step 1: Set k =1. 

 Step 2: Set i = 1 and zj = zj
(k-1)

, pj = pj
(k-1)

 for all j = i+1, i+2, ..... ,N. 

 Step 3: Optimize EAPi taking n from the response function of the manufacturer and zj = zj
(k-1)

,  

          pj = pj
(k-1)

 for all j = i+1, i+2, .....,N. Set the optimal results as 

         zi = zi
(k)

  and pi = pi
(k)

.    

Step 4: Set i = i + 1.  

Step 5: Optimize EAPi taking n from the response function of the manufacturer and zj = zj
(k)

, 

       pj = pj
(k)

 for j = 1,2, … ,i − 1 and zj = zj
(k -1)

, pj = pj
(k-1)

 for j = i + 1, 

         i + 2, . . . . , 𝑁. Set the optimal results as 𝑧𝑖 = 𝑧𝑖
(𝑘)

 and 𝑝𝑖 = 𝑝𝑖
(𝑘)

.  

Step 6: Repeat steps 4 and 5 until i =  𝑁. 

Step 7: Stop if  zj
(k)

 = zj
(k-1)

 and  pj
(k)

=  pj
(k-1)

 for all j = 2, 3, . . . . . , 𝑁 and consider 

      zj
(*)

=  zj
(k)

  and  pj
(*)

=  pj
(k)

 for all j = 1,2,3, . . . . . , 𝑁. Otherwise, set k = k + 1  

      and repeat steps 2 to 6. 

Step 8: Evaluate the optimal value of n* taking zj
* and pj

* for all 𝑗 = 1,2,3, . . . . . , 𝑁. 

Step 9: Using these results, calculate the optimal values of EAPV and EAPS. 

 

4.2. Centralized Model 

Centralized decision making gives an efficient management of resource allocation through information sharing and better 

utilization of resources. Coordination between the supply chain members enhances the supply chain performance by reducing 

manufacturing cost, transportaion costs, labour costs and lost-sale cost, and improving the product’s availability to avoid stock-

outs. In the centralized structure, the manufacturer and all the retailers act as a single decision maker without worrying about 

their own profit levels. They jointly decide the optimal selling prices, number of batch shipments and batch sizes which lead to 

maximum average expected profit of the entire supply chain. The average expected profit of the supply chain is  
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Proposition 4. The average expected profit function (3) is concave in n for known zi and pi if  2 2
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and the optimal number of batch shipments is  
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Proof. Assuming n as real, not just an integer, we get from (12) 
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Proposition 5. The average expected system profit function (3) will be concave in zi for given n and pi if 
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Now, the average expected profit of the entire supply chain is concave in zi if 
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Proposition 7. The average expected profit function (12) is jointly concave with respect to n, zi and pi if 
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Proof. From equation (12), we have 
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The Hessian matrix associated with the average expected profit function EAPs(n, zi, pi) is obtained as  
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The second order minor
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Therefore, the Hessian matrix H is negative definite if the above conditions (40), (41) and (42) are satisfied. It ensures 

the concavity of the average expected profit of the entire supply chain with respect to n, zi and  pi and existence of unique 

optimal solution.   

                   

5. Numerical Analysis 

To analyze the proposed model numerically, an example is taken with the following set of parameter- values: 

R = 2500 units / year; Av = $500 / set up; c1 = $6 / unit; 

c2 = $6 / unit; a1 = 1000 units / year; a2 = 1000 units / year; 

w = $80 / unit; ℎ1 = $5 per unit / year; h2 = $4.8 / unit / year; 

F = $10 / shipment; hv = $3.5 per unit / year; A1 = $50 / order; 

A2 = $45 / order; σ1 = 0.12; σ2 = 0.13; 

β1 = 3.5; β2 = 4.5; N = 2; 

The p. d. f. of the lead time of 𝑖-th retailer is assumed as  
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Here we have studied a system consisting of a single manufacturer and two retailers. The concavity of the profit 

function of the whole supply chain system with respect to its decision variables is observed for the chosen parameter-

values. Figure 3 exhibits the concavity of the average expected profit function of the entire supply chain with respect to 

𝑛. The nature of the profit functions of both the retailers has been found to be concave for different values of (z1, p1), 

and (z2, p2) in all situations. One instance for each retailer is reflected in Figures 4 and 5.  
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Figure 3. Concavity of the average expected profit of the supply chain w.r.t. n 

 

 

 
Figure 4. Concavity of the average expected profit function of 

the first retailer 

 

 
Figure 5. Concavity of the average expected profit function of 

the second retailer 

 
Table 2. Optimal results for different models  

Models n* z1
*  z2

*  p1
*  p2

*  EAP1
* EAP2

* EAPV
* EAPS

* 

Decentralized 4 69.29 74.42 183.01 151.26 36821 22590 52805 112215 

Centralized 6 60.07 63.49 143.33 111.59 - - - 124771 

   

Using the prescribed solution algorithm, we find the optimal batch sizes as well as the order quantities of the retailers, 

selling price of the product and the number of batch shipments in the decentralized model. Table 2 shows the optimal 

results of both the decentralized and centralized models. It can be observed from Table 2 that the profit in the centralized 

model is more than the profit in the decentralized model. In our proposed model, we assume that, the customer demand 

is linearly dependent on its retail price. In the centralized decision making scenario, the manufacturer and all the retailers 

act as a single business manager and jointly make their optimal decisions in order to achieve highest system profit. So, 

the retailers can provide the product to the customers at a cheaper price than that of the decentralized case. That’s why 

lower priced product increases the consumer demand significantly. Then the retailers order more quantity from the 

manufacturer. As a result, integration between the manufacturer and the retailers increases the total system profit 

significantly. We observe that the optimal ordering quantity of the first retailer is increased by 83.26 units and for the 

second retailer, it is increased by 83.26 units in the centralized model. Moreover, the retail prices of the product also 

decrease for both the retailers. This results in an increase of profit for the entire supply chain.  
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6. Sensitivity Analysis 

The impacts of several important parameters on the expected average profit of the supply chain are analyzed in this 

section. We change one parameter-value at a time, keeping other parameter-values fixed. The results of sensitivity analysis 

are presented in Table 3. From Table 3 we have the following observations: 

(𝑖) The expected average profit of the entire supply chain is highly sensitive with respect to the parameters β1 and β2. 

It can be noticed that, both the retailers reduce their selling prices of the product when the values of β1 and β2 increase. 

As higher values of β1 and β2 indicate that the customers prefer to purchase cheaper products, so in order to keep the 

consumer demand intact, the retailers reduce their selling prices. Also, the ordered quantities of both the retailers decrease 

as β1 and β2 increase. Consequently, the average expected profits of all individual supply chain players as well as the 

entire supply chain decrease gradually as β1 and β2 increase. 

(𝑖𝑖) The impacts of the basic market demands a1 and a2 on the average expected profit of the supply chain can be 

realised from the optimal results given in Table 3. Whenever the customer demand increases, the retailers place orders 

for more items from the manufacturer. Also, with the increment of the basic market demand, the retailers get the 

opportunity to raise the retail prices and earn more revenue. This leads the supply chain system to a better profit level. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        Figure 7. Average expected profit of the supply chain vs. c2 

 
  

(𝑖𝑖𝑖) From Figure 6 and 7, it can be seen that the average expected profit decreases while shortage costs c1 and c2 

increase. It is quite natural that, when the shortage cost increases, the retailers increase their order quantities to avoid 

shortage. But the retail prices remain almost the same for all values of shortage cost. 
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Figure 6. Average expected profit of the supply chain vs. c1 
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Table 3. Optimal results for different values of β1, β2, a1 and a2 

Parameter  Value n z1 z2 p1 p2  EAPS 
 3.1 6 59.4274 62.3693 161.782 111.597 133999 

 3.3 6 60.0768 63.4912 151.984 111.585 129100 

β1 3.5 6 60.0696 63.4904 143.326 111.585 124771 

 3.7 6 60.0624 63.4896 135.604 111.585 120910 

 3.9 6 60.0552 63.4889 128.674 111.585 117445 

 4.1 6 59.4274 62.3693 161.782 111.597 133999 

 4.3 6 60.0768 63.4912 151.984 111.585 129100 

β2 4.5 6 60.0696 63.4904 143.326 111.585 124771 

 4.7 6 60.0624 63.4896 135.604 111.585 120910 

 4.9 6 60.0552 63.4889 128.674 111.585 117445 

 800 6 52.1983 62.7725 114.803 111.625 99154 

 900 6 56.1819 63.1056 129.063 111.604 111247 

a1 1000 6 60.0696 63.4904 143.326 111.585 124771 

 1100 6 63.8784 63.9203 157.59 111.566 139725 

 1200 6 67.6216 63.3906 171.856 111.548 156110 

 800 6 59.6716 55.0633 143.366 89.411 104870 

 900 6 59.8473 59.3196 143.345 100.497 114264 

a2 1000 6 60.0696 63.4904 143.326 111.585 124771 

 1100 6 60.3313 67.5938 143.307 122.675 136391 

 1200 6 67.6272 71.6443 143.289 133.766 149125 

 

(𝑖𝑣) From Figure 8, we notice that the transportation cost affects the optimal number shipments significantly. As the 

transportation cost increases, the optimal number of batch shipments decreases. The average expected profit of the supply 

chain also decreases with increased transportation cost. 

 

 
 

Figure 8. Average expected profit of the supply chain vs. 𝐹 

 

 

 (𝑣) The standard deviations of the lead times of both the retailers do not affect the profit of the supply chain 

considerably. When the standard deviations σ1 and σ2 increase approximately by 36% and 33%, respectively, the average 

system profit decreases approximately by 4%. 
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7. Conclusion 

In this paper, we have considered a two-level supply chain model consisting of a single manufacturer and multiple retailers 

under price-sensitive customer demand and stochastic lead time. The manufacturer produces a single product at a constant 

production rate and transfers it to the retailers in some equal batch shipments. Due to the stochastic nature of lead time 

the batches may reach early or late to the retailers. Depending on the length of lead time duration, three possible cases 

take into consideration at the retailers’ end. Both the decentralized and centralized models are formulated. A solution 

algorithm is suggested to find the optimal solution of the decentralized model with a Stackelberg gaming structure. It is 

found that cooperation between the manufacturer and the retailers becomes more profitable for the entire supply chain 

whenever the consumer demand is price dependent and lead time of delivering the ordered quantity follows a normal 

distribution. By collaborating with each other, the supply chain players can sell the product at a cheaper price to the end 

customers and enhance the market demand. This leads to a significant increment of the profitability of the whole supply chain. 

Our proposed model is well-connected to the real world business environment. The present study would be helpful to 

companies to make the efficient management of supply chains in stochastic environments. The proposed model provides 

effective pricing strategies in a highly price-sensitive market. Companies can adopt integrated decision making to achieve 

the highest system profit and make their products more acceptable to the end customer at a lower price. Also, they can 

achieve higher customer service levels and survive in today's competitive market by efficiently managing the stochastic 

nature of lead time. 

In our proposed model, we have considered that one manufacturer is trading with multiple retailers for a single product. 

Our model can be further extended considering multiple items. One can also implement any suitable coordination scheme 

between the manufacturer and all the retailers to improve their profits in the decentralized scenario. Furthermore, our 

proposed model can be enriched by considering more realistic assumptions, such as combined equal and unequal sized 

batch shipments, quality dependent demand and multiple manufacturers trading with multiple retailers. 
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