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Abstract 

Short life cycle products, especially food products, require a certain type of supply chain management due to their 

particular specifications such as perishability. On the other hand, the food distribution also requires special considerations 

and imparts more complexity compared with the distribution of other goods because in food distribution the quality of 

the food delivered to the customer should be considered as well as transportation costs. Therefore, in this paper, a new 

mathematical model is developed for integrating decisions regarding food supply and distribution under conditions of 

uncertainty (vehicles’ travel time) with aims to minimize purchase and transportation costs and maximize customer 

satisfaction. Customer satisfaction relies upon the quality of the food delivered to the customers. The multi-objective 

model proposed in this paper is NP-hard. Hence, a developed version of NSGA-II called Multi-Objective Time Travel to 

History (MOTTH) algorithm, inspired from the idea of traveling through history, is proposed to solve the problem. In 

order to validate the performance of the proposed algorithm, the results of MOTTH algorithm are compared with the 

results obtained from an exact augmented epsilon-constraint method. Furthermore, a comparison is provided between the 

NSGA-II and MOTTH algorithms, the results of which indicate the superiority of the MOTTH metaheuristic algorithm.  

 

Keywords: Foodstuffs; Perishable goods; Supply chain; Metaheuristic; Augmented epsilon-constraint. 

 

1. Introduction 

Satisfying the demand for food in today’s world is humankind’s one of the main issues. This has led governments to 

consider food safety and food quality improvement as their major goals. An important part of human life is entailed by 

food and as the middle layer, the food industry plays a key role in food supply management by intermediating and keeping 

the balance between farming and the final customer. 

One of the concerns that food companies’ managers have regarding food supply and distribution is the quality of the food 

delivered to the customers. This issue is caused due to the long duration of loading, transportation and delivery to the 

customers. Also, the sudden temperature alteration caused by repeatedly opening and closing the refrigerator during 

delivery results in decreased food quality and consequently reduced customer satisfaction and even may lead to more 

food wastage. Reports suggest that almost one-third of food produced annually is wasted (Gustavsson et al., 2011). Hence, 

the quality of food delivered to the customer is one of the most important criteria in the food supply chain, which depends 

on the travel time from the supplier to the customer, proper temperature, and the humidity level (Song & Ko, 2016; 

Nedović et al., 2016).  

When a vehicle is delivering the demand of customers in a cargo, the long duration of transportation and repeated opening 

and closing the freezer reduce the quality of the remaining food in the vehicle (Hsu, Hung, & Li, 2007). Therefore, in this 
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research, the purchase and delivery planning problem is studied in a two objective food supply chain. The customers’ 

orders are given to the food production company. These orders are purchased according to the suppliers’ production 

capacity and delivered using a heterogeneous transportation fleet, in a way that the purchase and transportation costs are 

minimized, in addition to maximizing customer satisfaction, which is the problem’s main goal. Moreover, it is assumed 

in this study that the final customers’ satisfaction relies on the delivered food quality, which itself depends on the 

transportation duration, the number of times the refrigerator is opened and closed, and the amount of time it is open. Since 

the travel time between two locations in the real world is not exact, the travel times in this study are considered uncertain 

and represented by triangular fuzzy numbers. Furthermore, several constraints such as the vehicles’ setup times, the 

inability of suppliers to produce all products, and the inability of vehicles to carry all types of products are also considered 

in the model. This sort of supply chain is applicable to fields of military, ministries, and governmental organizations. 

In the remainder of this paper, the literature review is conducted in section 2. In section 3, the problem is defined and its 

mixed-integer mathematical model is proposed. The exact augmented epsilon-constraint method and the NSGA-II and 

MOTTH metaheuristics are presented in section 4. In order to evaluate the metaheuristics, their results are compared with 

the ones obtained from the augmented epsilon-constraint method. Moreover, the results of the NSGA-II and MOTTH 

algorithms are also compared with each other. Eventually, conclusions and suggestions for future research are presented. 

 

2. Literature review  

Most reviewed studies suggest that temperature increase occurs in all stages of the cold supply chain (suppliers, 

distributors, retailers, and customers) and is not limited to specific types of foods. 

Koseki and Isobe (2005) investigated containers that transport frozen fillets of tilapia fish in China. They found that the 

containers’ temperature varies from -18.6°C to 16.8°C after six hours of transportation. 

In Slovenia, Likar and Jevšnik (2006) announced that the temperature of the packaged frozen products such as chicken 

in the retailers’ freezers fluctuates between 0°C and 15°C. The temperature fluctuation for products such as butter, cheese, 

and cream is between 0°C and 16°C. Also, for ice-cream products the temperature varies between -23°C and 10°C and 

the fluctuation for eggs is between 0°C and 17°C. Moreover, studies suggest that most staff in the cold supply chain do 

not possess sufficient knowledge. 

In France, Derens et al. (2006) found that in 6.5% to 79.7% of times the frozen food has a higher temperature than the 

desired temperature while it is being delivered to the retailers by refrigerated vehicles. 

In Canada, Rediers et al. (2009) found that the temperature of chicory salad fluctuates up to 16°C, in which the 

transportation stage is responsible for 2°C. 

Koutsoumanis et al. (2010) studied the pasteurized milk supply chain and realized that the temperature fluctuates between 

3.6°C and 10.9°C above the desired temperature during transportation and between 0°C and 11.7°C after they are 

delivered to the retailers. 

In Iceland, it was found that in the transportation of fresh salmon fillets, 35% of the times during air transportation and 

18% of the times during maritime transportation, their temperature was higher than the desired level (0±1°C) 

(Martinsdóttir et al., 2010). In this regard, Mai et al. (2012) reported that in 17% and 36.1% of the time required for the 

air transportation of haddock fillet and cod loins, the temperature was more than above 5°C above the proper temperature. 

In the US, Pelletier et al. (2011) demonstrated that the temperature in the strawberry supply chain fluctuates between 

0.7°C and 3.7°C in the preservation, transportation, and retail stages. Moreover, a considerable number of strawberries 

spoil due to insufficient humidity. 

In Finland, Lundén et al. (2014), claimed that the workers do not notice the temperature increase in the food along the 

supply chain. For instance, in 50% and 46.2% of times, the minced meat and ready-to-cook fish were 3°C above the 

proper temperature for 30 minutes. 

In Spain, Zubeldia et al. (2016) discovered that the temperature in the upper shelves of the retailers’ freezers is above the 

desired temperature, especially in summer. Hence, the lifetime of products such as smoked salmon, cooked chicken, and 

fresh cheese is reduced by 40%, 57%, and 25%, respectively. 

These studies indicate the deviations from the desired temperature in the cold supply chain in developed countries. 

However, there is little information regarding the cold supply chain in developing countries. 

There are many studies conducted regarding the supply-distribution network in the frozen food supply chain under 

uncertainty, some of which are described in the following. 
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Ghare and Schrader (1963) were the first to investigate the inventory model for perishable products. Tarantilis and 

Kiranoudis (2001) solved the heterogeneous Vehicle Routing Problem (VRP) by developing an algorithm based on the 

acceptance threshold in order to achieve a schedule for the milk distribution vehicles. In another paper, they studied the 

vehicle routing problem for fresh meat distribution from warehouses to customers in a region of Athens. They presented 

a probabilistic heuristic for solving the problem (Tarantilis & Kiranoudis, 2002).  

Osvald and Stirn (2008) presented an algorithm for fresh vegetable distribution, in which perishability is a crucial 

criterion. They considered constraints such as delivery time windows and transportation time between two locations. 

Rong et al. (2011) conducted a study on the production and distribution integration in the food supply chain with 

considering food quality. They presented a mixed-integer linear programming model for food quality reduction by 

integrating production and distribution. They also conducted a case study for designing and implementing food 

distribution systems considering the two criteria of food quality and costs. Brito et al. (2012) considered the distribution 

of frozen products in the cold supply chain in environments containing uncertainty and indeterminate data optimization, 

which decision-makers often deal with (fuzzy vehicle routing problem with time windows). Their goal was to minimize 

the costs related to the shortest route and preventing the delivered products’ quality reduction. They included constraints, 

such as service times and solved the problem using fuzzy linear programming and fuzzy optimization. Wang and Hong 

(2015) intended to plan and select an optimization model for cold product distribution and routing with variable customer 

demand. Their purpose was to minimize distribution costs considering time windows. The distribution routing was 

optimized by the saving algorithm. They eventually compared the optimal routes in the forms of probabilistic distribution 

model (probabilistic demand) and an exact distribution model. 

Song and Ko (2016) studied the routing problem of refrigerated and non-refrigerated vehicles for delivering several types 

of perishable foods. They took into account different assumptions, such as the geographical location, customers’ demand, 

vehicles’ capacity, the maximum delivery time, the number of refrigerated and non-refrigerated vehicles. The problem’s 

objective function was to maximize the customer satisfaction level, which depends on food freshness. They presented a 

non-linear mathematical model and a heuristic to solve the problem. Lesmawati et al. (2016) presented a genetic algorithm 

for optimizing the frozen food distribution problem in the cold supply chain with aims to minimize transportation costs, 

which include the departure cost of the loaded vehicle and the arrival cost of the empty vehicle. Hsiao et al. (2017) 

investigated the food distribution problem in the cold supply chain with the purpose of formulating a distribution plan for 

meeting the customers’ needs for several types of frozen food with predetermined quality levels and the minimum possible 

costs. They developed a Biogeography-Based-Optimization (BBO) algorithm in order to solve the problem. Joshi et al. 

(2018) investigated the effect of the cold supply chain and product variety on the qualitative properties of packaged 

modified mushrooms throughout the distribution stage using a mathematical model. A sensitivity analysis was also 

conducted in order to examine the influence of different parameters on the mushrooms’ quality. 

Carson and East (2018) studied the position of the cold supply chain in New Zealand exports. For this purpose, they 

selected the four industries of dairy, red meat, gardening, and seafood. Their goal was to improve energy efficiency in the 

refrigerating process. Ndraha et al. (2019) examined the frozen foods’ temperature conditions during transportation and 

delivery to the final customer in Taiwan. For this purpose, the products’ temperature specifications were recorded and 

their remaining lifetime was estimated in different scenarios using the Monte Carlo algorithm with 10000 iterations. 

Ghomi-Avili et al. (2019) presented a multi-objective model of a supply chain network with price-dependent demand, 

shortage, and random disruptions in reverse logistics. This network is contained the five layers of producer, supplier, 

control centers, distribution centers, and market. The customers’ demand was simulated based on the two linear and 

exponential behaviors. The problem’s objective functions were: increasing the income, reducing the delivery time to the 

customer, and decreasing the number of missing customers. 

Mohebalizadehgashti et al. (2020) modeled the multi-product, multi-period, multi-layer food supply chain with 

environmental considerations. Their goals were to reduce costs, reduce emissions, and increase facilities capacity. They 

used the augmented epsilon-constraint approach for solving the model. They also utilized the decision tree to deal with 

the model’s uncertainty. (In their model, financial factors were assumed to be uncertain) 
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Table 1. Categorized researches of the literature 

 

The deterministic and probabilistic parameters shown in Table 1 are used in network design (such as demand, travel time, 

financial factors, and parameters related to transportation). 

The literature review indicates that in almost no studies the maximization of the delivered products’ quality and costs 

minimization were considered simultaneously. On the other hand, this study takes into account the real conditions of a 

food supply chain and a distribution network, such as uncertain travel times, vehicle setup constraints, the inability of 

suppliers to supply all types of products, and the inability of vehicles to transport all types of products. These assumptions 

increase the problem’s complexity. Hence, this research’s contributions are as follows: 

1. Presenting a mathematical model of the supply chain and distribution network in order to simultaneously maximize 

the delivered products’ quality and minimize costs.  

2. Using an exact augmented epsilon-constraint approach to solve the problem in small sizes. 

3. Using a TTH metaheuristic with non-dominated sorting, called MOTTH, for solving the problem in large sizes. 

 

3. Problem description 

The problem in this study includes a three-layer food supply chain. The first layer encompasses the food suppliers. Since 

the problem is a multi-product supply chain, a supplier is not able to supply all types of products and is only capable of 

supplying some of them. 

The second layer is the heterogeneous transportation fleet and operates as a VRP whereby a vehicle can collect food from 

a supplier and deliver it to the customers in different locations. This results in reducing costs and using vehicles more 

efficiently. Moreover, the vehicle setup time constraint is also considered in the problem. The transportations fleet consists 

of several refrigerated vehicles with different capacities and velocities. Each vehicle has fixed and variable costs and the 

variable cost depends on the traveled distance. As the supply chain is multi-product and each product requires specific 
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Tarantilis and Kiranoudis 

(2001) *  *  *  *        *   * 

Tarantilis and Kiranoudis 

(2002) *  *  *  *        *   * 

Osvald  and Stirn (2008) *  *  *  *        *  *  

Rong et al. (2011) *   * *  *        * *   

Brito et al. (2012)  * *  *    *     * * *   

Wang and Hong (2015) *  *  *   *       * *  * 
Song and ko (2016) *  *   * *       *   *  

Lesmawati et al. (2016) *  *  *  *        *   * 
Hsiao et al. (2017) *  *   * *        *   * 
Ghomi-Avili et al. (2019)  *  *  * *        * *   
Mohebalizadehgashti et 

al. (2020)  *  * *     *     * *   

The present study  *  *  *   *  * * * * * *  * 
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temperature and storage conditions, a vehicle is not able to transport all types of foods. Hence, each type of product 

requires a particular type of vehicle for transportation. On the other hand, considering the climate and traffic conditions, 

travel time is not deterministic. Therefore, the time uncertainty is also taken into account in this study. 

The third layer is composed of the final customers, whom their location and demand are specified and exact. 

Since the products investigated in this study are food, the quality of the products delivered to customers is importantfor 

the customers. The quality of the delivered food to customers directly affects their satisfaction.  Therefore, it is assumed 

in this study that the products’ quality depends on the transportation time, the number of times the freezer is opened and 

closed, and the amount of time it remains open. 

 

3.1. Model assumptions 

There are N orders and NR products, which should be purchased from NS suppliers. One supplier is not capable of 

providing all types of orders. Also, the purchase cost of each unit of product from each supplier is predefined and differs 

between the suppliers. 

After being purchased, the N orders should be delivered to the customers using NV vehicles. These vehicles are 

heterogeneous- that is, their average capacity and velocity are different. The products’ quality reduction rates with respect 

to the traveled time and the amount of time the freezer is open are different in each vehicle, due to the difference in their 

properties (e.g. the freezer’s quality, insulation, etc.). Moreover, the vehicles are not able to transport all types of products. 

In order to efficiently utilize the transportation fleet, it is allowed to use the vehicles for several customers. In other words, 

each vehicle may load and deliver the orders of different customers in one cargo. In addition, after delivering the products 

to the customers, the vehicles are not omitted from the fleet and may be used again. 

Each vehicle has a setup time and is available after its setup time. For instance, a vehicle may be unavailable in the time 

zero due to breakdown. 

All vehicles are located in one place in the initial point of scheduling. This place is called terminal. 

Climate and traffic conditions are considered in the delivery of products to the customers. Hence, delivery times are not 

exact. Since the travel time equals the distance between the two locations divided by the average velocity and the distance 

is constant, the average velocity is uncertain and indicated by triangular fuzzy numbers.  

Product shortage is not allowed. 

The supply and distribution planning in the food supply chain is performed for different periods. 

The purpose of this model is to determine the number of products that should be purchased from a supplier and deliver 

the products to the final customer using a specific vehicle in a way that the customer satisfaction, which depends on the 

delivered product’s quality, is maximized and the total purchase costs and vehicles’ fixed and variable costs are 

minimized. 

 

3.2. The mathematical model of the problem 

In this section, the mixed-integer model of the problem is presented. 

 

Indices 

The number of customers NC The number of suppliers NS 

The number of vehicles NV The number of products NR 

Customers i,j Suppliers s 

Vehicles v Products  r 

The cargo b The scheduling period t 

The transportation priority of an order in a vehicle p  

Parameters 

The amount of area occupied by one unit of the type r product 𝑆ⅈ𝑧ⅇ𝑟 

The capacity of the vth vehicle  𝐶𝑎𝑝𝑣 

The setup time of the vth vehicle in the tth period 𝑉ⅇℎ𝐼𝑛𝐴𝑣𝑣
𝑡  

The average velocity of the vth vehicle (fuzzy triangular number) 𝑉𝑆�̃� 
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The distance between the terminal and the sth supplier 𝑇𝐷𝐼𝑆𝑠 

The distance between the sth supplier and the ith customer 𝑆𝐷𝐼𝑆𝑠𝑖  

The distance between the ith and the jth customer 𝐷𝐼𝑆𝑖𝑗  

The maximum satisfaction for the rth product 𝑆𝐴𝑇𝑟  

The satisfaction reduction rate when the vth vehicle transports the rth product (per unit of distance) 𝑅𝐸𝐷𝑣
𝑟  

The satisfaction reduction rate when the vth vehicle’s freezer is opened for delivering the rth product 

(per unit of time)  
𝑂𝑣

𝑟  

The time for which the freezer remains open for unloading one unit of the type r product 𝑇ⅈ𝑚ⅇ𝑟 

The purchase price of the rth product from the sth supplier in the tth period 𝐶𝑜𝑠𝑡𝑠
𝑟𝑡 

The supply capacity of the sth supplier for the rth product in the tth period 𝑆𝑈𝑠
𝑟𝑡 

The fixed cost of the vth vehicle for transporting the rth product in the tth period 𝑇𝐹𝑣
𝑟𝑡 

The variable cost of the vth vehicle for transporting the rth product in the tth period (per unit of distance) 𝐴𝐶𝑋𝑣
𝑟𝑡 

The ith customer’s demand for the rth product in the tth period 𝐷𝑖
𝑟𝑡  

A NR×NS matrix. If the supplier s is capable of providing the product r, it G(r,s) equals 1; otherwise, it 

equals 0. 
𝐺 

A NR×NV matrix. If the vehicle v is capable of transporting the product r, it N(r,s) equals 1; otherwise, 

it equals 0 
𝑁 

A large number 𝑀 

 

The decision variables  

If there is demand from the ith customer for the rth product in the tth period, it equals 1; otherwise, it 

equals 0 
𝐻𝑖

𝑟𝑡  

If the sth supplier satisfies the demand of the rth product form the ith customer in the tth period, it equals 

1; otherwise, it equals 0 
𝑋𝑠𝑖

𝑟𝑡 

If the ith customer’s rth order have the pth priority in the bth cargo of the vth vehicle in the tth period, it 

equals 1; otherwise, it equals 0 
𝑇𝑣𝑏𝑖𝑝

𝑟𝑡  

The amount of the rth product in the bth cargo of the vth vehicle with the pth priority for the ith customer 

in the tth period 
𝐴𝑋𝑣𝑏𝑖𝑝

𝑟𝑡  

The loading time of the vth vehicle for transporting the bth cargo of the rth order of the ith customer in 

the tth period 
𝐿𝑜𝑎𝑑𝑖𝑏𝑣

𝑟𝑡  

The rth product’s delivery time to the ith customer in the tth period 𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖
𝑟𝑡 

The satisfaction level of the ith customer when the vth vehicle delivers the rth product 𝐼𝐶𝑆𝑖𝑣
𝑟  

The purchase amount of the rth product from the sth supplier in the tth period 𝑃𝑈𝑠
𝑟𝑡  

The mathematical model is presented as follows: 

(1)  Max z1 = ∑ ∑ ∑ ∑ ∑ ∑ 𝑇𝐼𝐶𝑆𝑣𝑏𝑖𝑝
𝑟𝑡

𝑝𝑏𝑟𝑣𝑖𝑡  

(2)  Min z2 =  f1+f2+f3 

  f1=∑ ∑ ∑ (𝑟𝑠𝑡 𝐶𝑜𝑠𝑡𝑠
𝑟𝑡×𝑃𝑈𝑠

𝑟𝑡) 

  f2=∑ ∑ ∑ ∑ ∑ ∑ (𝑝𝑖𝑏𝑡𝑟𝑣 𝑇𝐹𝑣
𝑟𝑡 × 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 ) 

 

 
f3=∑ ∑ ((∑ ∑ ∑ ∑ 𝐴𝐶𝑋𝑣

𝑟𝑡
𝑏𝑖𝑠𝑡𝑣𝑟 × 𝑆𝐷𝐼𝑆𝑠𝑖 × 𝑇𝑋𝑆𝐴𝑋𝑠𝑣𝑏𝑖1

𝑟𝑡 ) +

(∑ ∑ ∑ ∑ ∑ 𝐴𝐶𝑋𝑣
𝑟𝑡 ×𝑝≠1𝑏𝑗≠𝑖𝑖𝑡 𝐷𝐼𝑆𝑖𝑗 × 𝑇𝑇𝐴𝑋𝑣𝑏𝑖𝑗𝑝(𝑝−1)

𝑟𝑡 ))  

 

(3) 

 

∀ ⅈ. 𝑟. 𝑡 

 

𝐷𝑖
𝑟𝑡 ≥ 𝐻𝑖

𝑟𝑡  

(4) ∀ ⅈ. 𝑟. 𝑡 𝐷𝑖
𝑟𝑡 ≤ 𝑀 × 𝐻𝑖

𝑟𝑡  

(5) 
∀ ⅈ. 𝑟. 𝑡 ∑ 𝑋𝑠𝑖

𝑟𝑡

𝑠

= 𝐻𝑖
𝑟𝑡  

(6) 
∀ ⅈ. 𝑟. 𝑡 ∑ ∑ ∑ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡

𝑝𝑏𝑣

= 𝐻𝑖
𝑟𝑡 
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(7) 
∀ 𝑣. 𝑏. 𝑝. 𝑡. 𝑟 ∑ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡

𝑖

≤ 1 

(8) 
∀ 𝑣. 𝑏. 𝑡. 𝑟 ∑ 𝑇𝑣(𝑏+1)𝑖1

𝑟𝑡

𝑖

≤ ∑ 𝑇𝑣𝑏𝑖1
𝑟𝑡

𝑖

 

(9) 
∀ 𝑣. 𝑏. 𝑝. 𝑡. 𝑟 ∑ 𝑇𝑣𝑏𝑖(𝑝+1)

𝑟𝑡

𝑖

≤ ∑ 𝑇𝑣𝑏𝑖𝑝
𝑟𝑡

𝑖

 

(10) 

∀ 𝑟. 𝑣. 𝑏. 𝑡 ∑ ∑ 𝑆ⅈ𝑧ⅇ𝑟

𝑝𝑖

× 𝐷𝑖
𝑟𝑡 × 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 ≤ 𝐶𝑎𝑝𝑣 

(11) 
∀ 𝑟. ⅈ. 𝑣. 𝑠. 𝑡 

𝐿𝑜𝑎𝑑𝑖1𝑣
𝑟𝑡 ≥ 𝑉ⅇℎ𝐼𝑛𝐴𝑣𝑣

𝑡 +
𝑇𝐷𝐼𝑆𝑠

𝑉𝑆�̃�

− 𝑀(2 − 𝑇𝑣1𝑖1
𝑟𝑡 − 𝑋𝑠𝑖

𝑟𝑡) 

(12) 

∀ ⅈ ≠ 𝑗. 𝑟. 𝑣. 

 𝑏 ≠ 1. 𝑠. 𝑝. 𝑡 
𝐿𝑜𝑎𝑑𝑖𝑏𝑣

𝑟𝑡 ≥ 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣(𝑏−1)𝑗𝑝
𝑟𝑡 +

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆�̃�

× 𝑇𝑣(𝑏−1)𝑗𝑝
𝑟𝑡 − 𝑀(3 − 𝑇𝑣𝑏𝑖1

𝑟𝑡

− 𝑇𝑣(𝑏−1)𝑗𝑝
𝑟𝑡 − 𝑋𝑠𝑖

𝑟𝑡) 
 

 

(13) 

 

∀ 𝑟. ⅈ. 𝑏. 𝑣. 𝑠. 𝑡 
𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖

𝑟𝑡 ≥ 𝐿𝑜𝑎𝑑𝑖𝑏𝑣
𝑟𝑡 +

𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆�̃�

− 𝑀(2 − 𝑇𝑣𝑏𝑖1
𝑟𝑡 − 𝑋𝑠𝑖

𝑟𝑡) 

(14) 

            ∀ ⅈ ≠ 𝑗 . 𝑟. 𝑣. 𝑏. 

             𝑝 ≠ 1. 𝑡 

𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖
𝑟𝑡 ≥ 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣𝑏𝑗(𝑝−1)

𝑟𝑡 +
𝐷𝐼𝑆𝑖𝑗

𝑉𝑆�̃�

× 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡 − 𝑀(2 − 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡

− 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡 ) 

(15) 

∀ ⅈ. 𝑟. 𝑣. 𝑏. 𝑠. 𝑡 
𝐼𝐶𝑆𝑖𝑣

𝑟 ≤ 𝑆𝐴𝑇𝑟 −
𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆�̃�

× 𝑅𝐸𝐷𝑣
𝑟 × 𝑇𝑋𝑠𝑣𝑏𝑖1

𝑟𝑡 − 𝑇ⅈ𝑚ⅇ𝑟 × 𝑂𝑣
𝑟 × 𝐷𝑖

𝑟𝑡

× 𝑇𝑋𝑠𝑣𝑏𝑖1
𝑟𝑡  

 

(16) 

 

           ∀ⅈ ≠ 𝑗. 𝑣. 𝑏. 𝑟. 

            𝑝 ≠ 1. 𝑡 

 

𝐼𝐶𝑆𝑗𝑣
𝑟 ≤ 𝑇𝐼𝐶𝑆𝑣𝑏𝑖(𝑝−1)

𝑟𝑡 −
𝐷𝐼𝑆𝑖𝑗

𝑉𝑆�̃�

× 𝑅𝐸𝐷𝑣
𝑟 × 𝑇𝑣𝑏𝑖(𝑝−1)

𝑟𝑡 − 𝑇ⅈ𝑚ⅇ𝑟

× 𝑂𝑣
𝑟 × 𝐷𝑖

𝑟𝑡 × 𝑇𝑣𝑏𝑖(𝑝−1)
𝑟𝑡 + 𝑀(2 − 𝑇𝑣𝑏𝑗𝑝

𝑟𝑡 − 𝑇𝑣𝑏𝑖(𝑝−1)
𝑟𝑡 ) 

(17) 
∀ 𝑠. 𝑟. 𝑡 𝑃𝑈𝑠

𝑟𝑡 = ∑ 𝐷𝑖
𝑟𝑡 × 𝑋𝑠𝑖

𝑟𝑡

𝑖

 

(18) ∀ 𝑠. 𝑟. 𝑡 𝑃𝑈𝑠
𝑟𝑡 ≤ 𝑆𝑈𝑠

𝑟𝑡 

(19) ∀ 𝑟. 𝑡. 𝑠. ⅈ|  𝐺(𝑟. 𝑠) = 0 𝑋𝑠𝑖
𝑟𝑡 = 0 

(20) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 | 𝑁(𝑟. 𝑣) = 0 𝑇𝑣𝑏𝑖𝑝
𝑟𝑡 = 0 

(21) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝐴𝑋𝑣𝑏𝑖𝑝
𝑟𝑡 = 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 × 𝐷𝑖
𝑟𝑡  

(22) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ ∑ 𝐴𝑋𝑣𝑏𝑖𝑝
𝑟𝑡 = 𝑆𝐴𝑋𝑣𝑏𝑖

𝑟𝑡

𝑝

 

(23) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐼𝐶𝑆𝑣𝑏𝑖𝑝
𝑟𝑡 ≤  𝑀 × 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡  

(24) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐼𝐶𝑆𝑣𝑏𝑖𝑝
𝑟𝑡 ≤  𝐼𝐶𝑆𝑖𝑣

𝑟  

(25) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐼𝐶𝑆𝑣𝑏𝑖𝑝
𝑟𝑡 ≥  𝐼𝐶𝑆𝑖𝑣

𝑟 − 𝑀 × (1 − 𝑇𝑣𝑏𝑖𝑝
𝑟𝑡 ) 

(26) ∀ 𝑟. 𝑡. 𝑠. 𝑣. 𝑏. ⅈ. 𝑝 2 × 𝑇𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ≤ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 + 𝑋𝑠𝑖
𝑟𝑡 

(27) ∀ 𝑟. 𝑡. 𝑠. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ≥ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 + 𝑋𝑠𝑖
𝑟𝑡 − 1 

(28) ∀ 𝑟. 𝑡. 𝑠. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝑋𝑆𝐴𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ≤ 𝑆𝐴𝑋𝑣𝑏𝑖

𝑟𝑡  

(29) ∀ 𝑟. 𝑡. 𝑠. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝑋𝑆𝐴𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ≤  𝑀 × 𝑇𝑋𝑠𝑣𝑏𝑖𝑝

𝑟𝑡  

(30) ∀ 𝑟. 𝑡. 𝑠. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝑋𝑆𝐴𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ≥ 𝑆𝐴𝑋𝑣𝑏𝑖

𝑟𝑡 − 𝑀 × (1 − 𝑇𝑋𝑠𝑣𝑏𝑖𝑝
𝑟𝑡 ) 

(31) 

∀ ⅈ ≠ 𝑗 . 𝑟. 𝑣. 𝑏. 

𝑝 ≠ 1. 𝑡 

2 × 𝑇𝑇𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ≤ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 + 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡  
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3.2.1. Describing the model’s objective functions and constraints 

Equation 1 indicates the maximization of customer satisfaction and Equation 2 represents the minimization of the costs, 

including product purchase costs and vehicles fixed and variable costs (f1, f2, and f3 respectively indicate the products’ 

purchase costs, the vehicles’ fixed costs, and the vehicles’ variable costs). Equations 3 and 4 suggest that if the ith customer 

does not have demand for the rth product, then 𝐻𝑖
𝑟𝑡  equals zero; Otherwise, it equals one. Equation 5 ensures that the rth 

order of the ith customer is purchased and Equation 6 guarantees that the purchased product of the ith customer is assigned 

to a cargo and given a transportation priority in the vth vehicle. Equation 7 prevents the orders of two customers in the 

period t from being allocated to the same cargo with the same priority. Equation 8 indicated that if no orders are assigned 

to the bth cargo in the tth period, then no orders must be assigned to the b+1th cargo. Equation 9 assures that if no orders 

are allocated to the pth priority of the bth cargo, then no orders are allocated to the p+1th priority of the bth cargo, either. 

Equation 10 implies that the area occupied by the orders in a cargo should not exceed the transportation capacity of the 

vth vehicle. Equation 11 determines the loading time of the rth order of the ith customer for the first cargo of the vth vehicle. 

Equation 12 determines the loading time of the rth order of the ith customer in the vth vehicle for all 𝑏 ≠ 1 cargos. Equation 

13 calculates the delivery time of the rth order to the ith customer using the vth vehicle when it has the first delivery priority. 

Equation 14 determines the delivery time of the rth order to the ith customer with the pth priority, while the jth customer 

has the p-1th delivery priority. The satisfaction level of the customer from the products’ quality in the first delivery priority 

by the vth vehicle is represented by the Equation 15, and Equation 16 determine the satisfaction level of other customers 

from the products’ quality that have the priority of 𝑝 ≠ 1 by the vth vehicle. Equation 17 indicates the amount of the rth 

product that should be purchased from sth supplier. Equation 18 suggests that the purchase amount must not exceed the 

supplying capacity of the sth supplier. Equations 19 and 20 respectively represent the supplier’s inability to provide all 

product types and the vehicles’ inability to transport all product types. Equation 21 determines the amounts of products 

in each transportation priority in each cargo. Equation 22 indicated the total amount of products in each cargo of each 

vehicle. Equations 23 to 38 are intended for model linearization. Eventually, Equation 39 defines the decision variables’ signs. 

 

3.3. The corresponding deterministic model 

In this paper, it is assumed that the products’ delivery duration affects their quality. In order to better reflect the ambiguity 

of real-world decision making in this problem, the delivery time is not certain. Since the travel time equals the distance 

between the two locations divided by the average velocity and the distance is constant, the average velocity is uncertain. 

Due to computational efficiency simplicity in data collection, the triangular fuzzy distribution is used to model the 

uncertain nature of the parameter 𝑉𝑆�̃� . For this purpose, 𝑉𝑆�̃� is considered as 𝑉𝑆�̃� = (𝑉𝑆1𝜈 . 𝑉𝑆2𝑣 . 𝑉𝑆3𝑣). 

Furthermore, in order to convert the problem’s probabilistic model, which includes uncertain coefficients constraints 11, 

12, 13, 14, 15 and 16, to the corresponding deterministic model, the Jimenes method is used. This method significantly 

(32) 

∀ ⅈ ≠ 𝑗 . 𝑟. 𝑣. 𝑏. 

𝑝 ≠ 1. 𝑡 

𝑇𝑇𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ≥ 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 + 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡 − 1 

(33) ∀ⅈ ≠ 𝑗. 𝑟. 𝑡. 𝑣. 𝑏. 𝑝 ≠ 1 𝑇𝑇𝐴𝑋𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ≤ 𝐴𝑋𝑣𝑏𝑖𝑝

𝑟𝑡  

(34) ∀ⅈ ≠ 𝑗. 𝑟. 𝑡. 𝑣. 𝑏. 𝑝 ≠ 1 𝑇𝑇𝐴𝑋𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ≤  𝑀 × 𝑇𝑇𝑣𝑏𝑖𝑗𝑝(𝑝−1)

𝑟𝑡  

(35) ∀ⅈ ≠ 𝑗. 𝑟. 𝑡. 𝑣. 𝑏. 𝑝 ≠ 1 𝑇𝑇𝐴𝑋𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ≥ 𝐴𝑋𝑣𝑏𝑖𝑝

𝑟𝑡 − 𝑀 × (1 − 𝑇𝑇𝑣𝑏𝑖𝑗𝑝(𝑝−1)
𝑟𝑡 ) 

(36) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣𝑏𝑖𝑝
𝑟𝑡 ≤ 𝑀 × 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡  

(37) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣𝑏𝑖𝑝
𝑟𝑡 ≤ 𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖

𝑟𝑡 

(38) ∀ 𝑟. 𝑡. 𝑣. 𝑏. ⅈ. 𝑝 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣𝑏𝑖𝑝
𝑟𝑡 ≥ 𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖

𝑟𝑡 −  𝑀 × (1 − 𝑇𝑣𝑏𝑖𝑝
𝑟𝑡 ) 

(39) 

𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖
𝑟𝑡 ≥0 𝐿𝑜𝑎𝑑𝑖𝑏𝑣

𝑟𝑡 ≥0 

𝑃𝑈𝑠
𝑟𝑡 ≥0 𝐼𝐶𝑆𝑖𝑣

𝑟 ≥0 

𝑋𝑠𝑖
𝑟𝑡 ∈ (0.1) 𝐴𝑋𝑣𝑏𝑖𝑝

𝑟𝑡 ≥0 

𝑇𝑣𝑏𝑖𝑝
𝑟𝑡 ∈ (0.1) 𝐻𝑖

𝑟𝑡 ∈ (0.1) 
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efficient in terms of computation because it retains the linear property of the model and does not increase the number of 

unequal constraints (Jimenes et al., 2007). 

For this reason, consider the following fuzzy mathematical planning model, in which all parameters are defined in the 

fuzzy form: 

Min Z= �̃�x 
s.t 
�̃�𝑖𝑥 ≥ �̃�𝑖              i=1,…,l                                                                                   

�̃�𝑖𝑥 = �̃�𝑖              i=l+1,…,m 
𝑥 ≥ 0 

The deterministic model obtained using Jimenes’ method (Jimenes et al., 2007) is as follows: 

Min  𝑍 = 𝐸𝑉(�̃�)𝑥 
s.t 

[(1 − 𝛼)𝐸2
𝑎𝑖 + 𝛼𝐸1

𝑎𝑖]𝑥 ≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖        ⅈ = 1. … . 𝑙     

[(1 −
𝛼

2
) 𝐸2

𝑎𝑖 +
𝛼

2
𝐸1

𝑎𝑖] 𝑥 ≥
𝛼

2
𝐸2

𝑏𝑖 + (1 −
𝛼

2
) 𝐸1

𝑏𝑖         ⅈ = 1 + 𝑙. … . 𝑚     

[
𝛼

2
𝐸2

𝑎𝑖 + (1 −
𝛼

2
) 𝐸1

𝑎𝑖] 𝑥 ≤ (1 −
𝛼

2
) 𝐸2

𝑏𝑖 +
𝛼

2
𝐸1

𝑏𝑖         ⅈ = 1 + 𝑙. … . 𝑚     

𝑥 ≥ 0                

where: 

𝐸𝑉(�̃�) =  
𝑐𝑝 + 2𝑐𝑚 + 𝑐𝑜

4
 

𝐸1
𝑐 =

1

2
(𝑐𝑝 + 𝑐𝑚) 

𝐸2
𝑐 =

1

2
(𝑐𝑚 + 𝑐𝑜) 

and the α set (α-cut), indicated by �̃�𝛼, is a set whose members is the fuzzy set of �̃� have membership functions equal to 

or greater than α. 

�̃�𝛼 = {𝑥 ∈ 𝑋|𝜇𝐴(𝑥) ≥ 𝛼}     
Therefore, the constraints 11, 12, 13, 14, 15, 16 are converted to the equations 40, 41, 42, 43, 44, and 45. 

 (40) ∀ 𝑟. ⅈ. 𝑣. 𝑠. 𝑡 
𝐿𝑜𝑎𝑑𝑖1𝑣

𝑟𝑡 ≥ 𝑉ⅇℎ𝐼𝑛𝐴𝑣𝑣
𝑡 + (𝛼 ×

𝑇𝐷𝐼𝑆𝑠

𝑉𝑆2𝑣
+

𝑇𝐷𝐼𝑆𝑠

𝑉𝑆1𝑣

2
+ (1 − 𝛼) ×

𝑇𝐷𝐼𝑆𝑠

𝑉𝑆3𝑣
+

𝑇𝐷𝐼𝑆𝑠

𝑉𝑆2𝑣

2
) − 𝑀(2

− 𝑇𝑣1𝑖1
𝑟𝑡 − 𝑋𝑠𝑖

𝑟𝑡) 

 

 

 

(41) 

 

 

∀ ⅈ ≠ 𝑗. 𝑟. 𝑣. 

𝑏 ≠ 1. 𝑠. 𝑝. 𝑡 

𝐿𝑜𝑎𝑑𝑖𝑏𝑣
𝑟𝑡 ≥ 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣(𝑏−1)𝑗𝑝

𝑟𝑡 + (𝛼 ×

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆2𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆1𝑣

2
+ (1 − 𝛼)

×

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆3𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆2𝑣

2
) × 𝑇𝑣(𝑏−1)𝑗𝑝

𝑟𝑡 − 𝑀(3 − 𝑇𝑣𝑏𝑖1
𝑟𝑡 − 𝑇𝑣(𝑏−1)𝑗𝑝

𝑟𝑡

− 𝑋𝑠𝑖
𝑟𝑡) 

(42) ∀ 𝑟. ⅈ. 𝑏. 𝑣. 𝑠. 𝑡 𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖
𝑟𝑡 ≥ 𝐿𝑜𝑎𝑑𝑖𝑏𝑣

𝑟𝑡 + (𝛼 ×

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆2𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆1𝑣

2
+ (1 − 𝛼) ×

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆3𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑗

𝑉𝑆2𝑣

2
) 

− 𝑀(2 − 𝑇𝑣𝑏𝑖1
𝑟𝑡 − 𝑋𝑠𝑖

𝑟𝑡) 
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4. The proposed solving method 

In this section, first, the augmented epsilon-constraint method is presented as the exact solving method. Then, the 

NSGA-II and MOTTH algorithms are introduced. 

 

4.1. The exact solving method 

There are various methods for solving multi-objective problems, among which the augmented ε-constraint method is used 

in this paper. This method is a developed form of the ε-constraint method introduced by Chankong and Haimes (1983). 

It optimizes one objective function, while the other objective functions are converted into upper-bound or lower-bound 

constraints. These bounds are defined by different ε levels and provide the Pareto solution. However, the augmented ε-
constraint method, presented by Mavrotas (2009), has drawn the attention of many researchers due to its significant 

advantages. For instance, it guarantees the efficiency of Pareto optimal solutions. Moreover, when the problem has more 

than two objective functions, it reduces the solving time (Mavrotas, 2009)   

The steps of the augmented epsilon-constraint method are as follows: 

Step 1: select an objective function as the main objective function. In this research, the first objective function (quality 

increase) is selected as the main objective function. 

Step 2: form the pay-off table in order to find the range of the objectives that are transferred into constraints. To do this, 

solve the problem considering each objective function alone, and obtain the optimal and nadir values. In this study, there 

are two values for each objective function, which are used for obtaining the maximum and the minimum values of the 

objective functions.  

Step 3: divide the interval between the optimal and nadir values for the secondary objective function (in this paper, the 

second objective function, which is cost reduction, is considered as the secondary objective function) into a predefined 

number (q) of segmentations. Each segmentation forms a new problem which should be solved separately. 

Step 4: Change the proposed model as follows: 

Max Z1 
s.t. 
Z2≤Z2(min)+v.𝛥𝜀𝑧2

 

Where v=0,1,2,…,q 

𝛥𝜀𝑧2
= 

𝑍2(𝑚𝑎𝑥)−𝑍2(𝑚𝑖𝑛)

𝑞
 

Step 5: convert the objective functions that are transformed into a constraint, into an equation by adding slack or surplus 

variables. This results in the efficiency of the Pareto optimal solutions. Moreover, the slack or surplus variables should 

be added to the main objective function as well. Therefore, the model is formed as follows. In fact, the following 

mathematical model should be solved q times, separately: 

(43) 

∀ ⅈ ≠ 𝑗 . 𝑟. 𝑣. 𝑏. 

𝑝 ≠ 1. 𝑡 

𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑖
𝑟𝑡 ≥ 𝑇𝐷ⅇ𝑙ⅈ𝑣ⅇ𝑟𝑦𝑣𝑏𝑗(𝑝−1)

𝑟𝑡 + (𝛼 ×

𝐷𝐼𝑆𝑖𝑗

𝑉𝑆2𝑣
+

𝐷𝐼𝑆𝑖𝑗

𝑉𝑆1𝑣

2
+ (1 − 𝛼) ×

𝐷𝐼𝑆𝑖𝑗

𝑉𝑆3𝑣
+

𝐷𝐼𝑆𝑖𝑗

𝑉𝑆2𝑣

2
)

× 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡 − 𝑀(2 − 𝑇𝑣𝑏𝑖𝑝

𝑟𝑡 − 𝑇𝑣𝑏𝑗(𝑝−1)
𝑟𝑡 ) 

(44) ∀ ⅈ. 𝑟. 𝑣. 𝑏. 𝑠. 𝑡 𝐼𝐶𝑆𝑖𝑣
𝑟 ≤ 𝑆𝐴𝑇𝑟 − (𝛼 ×

𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆2𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆1𝑣

2
+ (1 − 𝛼) ×

𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆3𝑣
+

𝑆𝐷𝐼𝑆𝑠𝑖

𝑉𝑆2𝑣

2
) × 𝑅𝐸𝐷𝑣

𝑟

× 𝑇𝑋𝑠𝑣𝑏𝑖1
𝑟𝑡 − 𝑇ⅈ𝑚ⅇ𝑟 × 𝑂𝑣

𝑟 × 𝐷𝑖
𝑟𝑡 × 𝑇𝑋𝑠𝑣𝑏𝑖1

𝑟𝑡  

(45) 

∀ⅈ ≠ 𝑗. 𝑣. 𝑏. 𝑟. 

𝑝 ≠ 1. 𝑡 

𝐼𝐶𝑆𝑗𝑣
𝑟 ≤ 𝑇𝐼𝐶𝑆𝑣𝑏𝑖(𝑝−1)

𝑟𝑡 − (𝛼 ×

𝐷𝐼𝑆𝑗𝑖

𝑉𝑆2𝑣
+

𝐷𝐼𝑆𝑗𝑖

𝑉𝑆1𝑣

2
+ (1 − 𝛼) ×

𝐷𝐼𝑆𝑗𝑖

𝑉𝑆3𝑣
+

𝐷𝐼𝑆𝑗𝑖

𝑉𝑆2𝑣

2
) × 𝑅𝐸𝐷𝑣

𝑟

× 𝑇𝑣𝑏𝑖(𝑝−1)
𝑟𝑡 − 𝑇ⅈ𝑚ⅇ𝑟 × 𝑂𝑣

𝑟 × 𝐷𝑖
𝑟𝑡 × 𝑇𝑣𝑏𝑖(𝑝−1)

𝑟𝑡 + 𝑀(2 − 𝑇𝑣𝑏𝑗𝑝
𝑟𝑡

− 𝑇𝑣𝑏𝑖(𝑝−1)
𝑟𝑡 ) 
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Max (Z1+β∗ 𝑆1) 
s.t. 
Constraints 3-10, 17-39, and 40-45 
Z2+𝑆1 = Z2(min)+v.𝛥𝜀𝑧2

 

v=0,1,2,…,q 

where β is an arbitrarily small number, usually between 10-6 and 10-3, and does not have a considerable effect on the 

problem’s main objective function. Moreover, the variable 𝑆1 should equal zero or close to zero in order to obtain efficient 

Pareto optimal solutions. It should be noted that there is no single solution that optimizes both objective functions, 

simultaneously. Thus, a Pareto solution set should be obtained, which is calculated using the augmented ε-constraint 

method. The Pareto solution’s optimality is guaranteed when there is no single solution capable of improving the first 

objective function without altering the second objective function’s value. In order to solve the model, a random problem 

with the following parameters is generated, which is solved by the augmented ε-constraint method with q=7 using the 

GAMS 25.1.2 software on a computer with Corei5 2.5GHz CPU. Figure 1 illustrates the Pareto optimal solutions for the 

random problem. As indicated in this figure, with increasing the delivered products’ quality, the costs are also increased, 

and vice versa. Nevertheless, the decision-maker chooses the final solution with regard to their current condition. 

Table 2. The random problem’s parameters 

 

G=N=
1 0 0
0 1 0
0 0 1

 

 

Table 3. Pay-off table to show the range of Z2 

 

 

𝛥𝜀𝑧2
= 

11152−9801

7
= 193 

Table 4. The Pareto optimal solution 

v Z1 Z2 

0 1293.8 9801 

1 1299.1001 9994 

2 1304.8 10187 

3 1308.3001 10380 

4 1309.7 10573 

5 1310.0003 10766 

6 1313.4002 10959 

7 1352.4 11152 

 

NR=3 NV=3 NS=3 NC=6 

𝑆𝐴𝑇𝑟=100 t=1 

𝛼=0.4 𝑆𝑈𝑠
𝑟𝑡=300 

𝑆ⅈ𝑧ⅇ𝑟= U{1,5} 𝑉ⅇℎ𝐼𝑛𝐴𝑣𝑣
𝑡=U{1,5} 

𝑇𝐷𝐼𝑆𝑠=U{1,20} 𝐶𝑎𝑝𝑣=U{250,300} 

𝐷𝐼𝑆𝑖𝑗=U{1,20} 𝑆𝐷𝐼𝑆𝑠𝑖=U{1,20} 

𝐶𝑜𝑠𝑡𝑠
𝑟𝑡=U{5,20} 𝐷𝑖

𝑟𝑡=U{0,50} 

𝐴𝐶𝑋𝑣
𝑟𝑡= U{1,3} 𝑇𝐹𝑣

𝑟𝑡= U{1,5} 

𝑂𝑣
𝑟=U(1,0) 𝑉𝑆𝑣= U{1,6} 

 𝑇ⅈ𝑚ⅇ𝑟=U(1,0) 𝑅𝐸𝐷𝑣
𝑟=U(1,0) 

Z2 Z1 Objective function 

11152 1352.4 Maximize Z1 

9801 1293.8 Minimize Z2 
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Figure 1. The Pareto optimal solution for the two-objective problem 

The supply chain network design problem in this study is considered an NP-Hard problem due to its complexity. This means 

that in order to obtain the optimal or near-optimal solution for the problem in large sizes in a reasonable time, metaheuristic 

algorithms should be used. Hence, in this study, the NSGA-II and MOTTH algorithms are used to solve the problem. 

 

4.2. The NSGA-II metaheuristic algorithm 

First proposed by Srinivas and Deb (1994), NSGA-II is a well-known evolutional algorithm used for solving multi-

objective problems. It retains the variety of the Pareto front while converging to the global optimal solutions. For more 

information regarding the NSGA-II method and its implementation steps, please refer to Deb et al. (2002).  

The NSGA-II algorithm’s pseudo-code is presented in Figure 2. 

Start 

Generate initial solutions as many as the population size (Popsize) 

Select the best population members, which produce better objective function values than others (fitness evaluation). 

     Iterate the following steps as many as the maximum number of generations (Maxiter) 

     Select the parents for crossover and mutation operations. 

     Perform the crossover operation and generate the offspring population. 

     Perform the mutation operation and generate the mutated population. 

     Integrate the populations (the total of the current population and the children obtained from the crossover and mutation 

operations. 

     Perform the non-dominated sorting method. 

     Calculate the crowding distance control parameter. 

     Examine the termination conditions and iterate if it is needed. 

End of the main loop 

Print the non-dominated solution 
Figure 2. the proposed multi-objective GA’s pseudo-code 

 

4.2.1. The chromosome structure 

The chromosome structure in the presented NSGA-II algorithm is two-dimensional. The vertical dimension represents 

the suppliers and vehicles and the horizontal dimension indicates the orders assigned to each supplier and vehicle. To 

demonstrate, assume that there are 6 orders, 3 suppliers, and 2 vehicles and the assignment of orders to the suppliers and 

vehicles is shown in Figure 3. The chromosome structure for this assignment is illustrated in Figure 4. 

 
Supplier 1 1 

Supplier 2 2-3-5 

Supplier 3 4-6 

Vehicle 1 2-3-1 

Vehicle 2 4-6-5 

Figure 3. The assigned orders to the suppliers and vehicles. 

Supplier 1 1   

Supplier 2 2 3 5 

Supplier 3 4 6  

Vehicle 1 2 3 1 

Vehicle 2 4 6 5 

Figure 4. The chromosome structure in the proposed multi-objective GA 
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All assignments in the chromosome structure are random. In the above chromosome, the order of customer 1 in purchased 

from the first supplier. Similarly, the orders of customers 2, 3, and 5 are provided by the second supplier and the orders 

of customers 4 and 6 are purchased from the third supplier. First, the orders of customers 2 and 3 are loaded into vehicle 

1 by the second supplier, according to its transportation capacity. Once the orders are delivered to customers 2 and 3, the 

order of customer 1 is loaded into vehicle 1 by the first supplier. A similar procedure is also carried out for vehicle 2. 

 

4.2.2. The crossover and mutation operators 

The crossover and mutation operators used in this study are similar to the ones used by Ullrich (2013). 

For performing the crossover operator, first, two chromosomes are selected randomly. Then, a random binary array is 

generated, whose number of arrays is equal to the number of orders. The order to which the number zero is assigned 

achieves its place in the offspring chromosome from the first parent chromosome, and the order to which the number one 

is assigned achieves its place from the second parent. If the place has already been filled, the order is allocated to the first 

empty cell on the right side (Figure 5). 

Figure 5. The crossover operator 

Figure 6 shows the mutation operator. In this case, the suppliers or the vehicles section is selected with the possibility of 

0.5, and two orders are randomly replaced with each are.  In the mutation operator used in this study, a random number 

between 0 and 1 is generated. If the generated number is between 0 and 0.5, two genes are selected from the suppliers 

section and are replaced with each other. If the number is between 0.5 and 1, two genes are selected from the vehicles 

section and are replaced with each other. In the new assignment of orders, it should be checked whether the new order 

can be provided by the supplier or can be transported by the vehicle. If not, a large penalty is considered for the objective 

function of this chromosome. 
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Figure 6. The mutation operator 

 

4.3. The MOTTH metaheuristic algorithm 

Taheri and Beheshti Nia (2019) presented a new extension of GA inspired by human’s ultimate fantasy of time travel. In 

this algorithm, the worst solutions in R generations earlier are replaced by the best solutions in the present generation. 

This allows for searching more parts of the solution area, which eventually delays convergence (Taheri and Beheshti Nia, 

2019). The TTH used in their study was single-objective whereas in this study, a new extension of TTH, namely MOTTH, 

is presented for solving multi-objective problems. In the MOTTH algorithm, one condition and two parameters are added 

to the NSGA-II algorithm, which are described in the following: 

The reverse condition: once this condition is satisfied, the reverse movement in history begins. In this study, the reverse 

condition is that the generation counter variable reaches a certain number, indicated by GB. 

R: this parameter determines the number of the previous generation to which the chromosomes are transferred. If current 

indicates the current generation’s number, then the chromosomes are transferred to generation current-R. 

Transrate: this parameter specifies the number of the chromosomes in the current generations that should be transferred 

in history. In other words, as many as Transtrate chromosomes in the current generations’ first non-dominated front that 

do not exist in the current-Rth generation are selected and transferred to generation current-R. On the other hand, as many 

as Transtrate chromosomes in generation current-R that exist in the last non-dominated front (worst chromosomes) are 

eliminated. 
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 Figure 7. The flowchart of MOTTH algorithm. 

Figure 7 shows the MOTTH algorithm’s flowchart, in which the difference between MOTTH and NSGA-II is illustrated. 

Therefore, the steps of the MOTTH algorithm are as follows: 

Step 1: generate some random chromosomes as the initial generation and let CURRENT=1 (CURRENT indicates the 

generation number) 

Step 2: increase the current generation’s population by performing crossover and mutation operations. 

Step 3: if the reverse condition is satisfied (CURRENT>GB), go to step 6; otherwise, proceed to step 4 

Step 4: if the termination condition is satisfied, then terminate the algorithm; otherwise, proceed to step 5. 

Step 5: produce the next generation based on non-dominated sorting and crowding distance of the population members 

and let CURRENT=CURRENT+1 and go to step 2. 

Step 6: select as many as Transrate chromosomes from the current generation’s chromosomes that exist in the first non-

dominated front and do not exist in R generations earlier. Also, eliminate as many as Transrate chromosomes from the 

generation current-R that exist in the last non-dominated front (worst chromosomes). Let CURRENT=1 and go to step 2. 

In order to determine the MOTTH algorithm’s control parameters, the Taguchi method is employed. The MOTTH 

metaheuristic has six control parameters, namely the initial population, the termination criteria which is a certain number 

of populations, the crossover rate, the mutation rate, GB, and R. Three levels are considered for each parameter, as shown 

in Table 5. 

Table 5. Levels related to the control parameters of the MOTTH algorithm 

Levels 
Parameters 

Initial population size Crossover rate Mutation rate GB R Algorithm termination 

Level 1 50 0.20 0.15 20 5 150 

Level 2 100 0.50 0.30 25 10 200 

Level 3 150 0.70 0.45 30 15 250 

 

By using the Taguchi method in the design of experiments, the experiment design L27 was formed for investigating the 

impact of parameters on the algorithm’s solution. The results obtained from the design of experiments by the Minitab 

software are shown in Figure 8. 
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Figure 8. The SN Ratio for setting MOTTH parameters  

The SN Ratio (Figure 8) is known as the solutions’ robustness. Therefore, the more the solution’s robustness, the better 

is the solution. For this reason, according to Figure 8, the MOTTH algorithm’s control parameters’ values, obtained by 

the Taguchi experiment, are depicted in Table 6. For having equal conditions in comparing the results of MOTTH and 

NSGA-II, the values for the NSGA-II algorithm’s parameters are considered the same as the ones for MOTTH. 

Table 6. The values specified for the parameters of NSGA-II and MOTTH 

Parameter Value 

Initial population size 100 

Crossover rate 0.7 

Mutation rate 0.15 

GB 20 

R 5 

Algorithm termination Examining 200 generations 

 

5. Validating the algorithms  

In order to evaluate the algorithms’ performance, first, their performance in solving small problems are compared with 

exact solving methods. Thereafter, 27 random problems were generated in different sizes and the two algorithms’ 

performances are compared with each other. All required computer programming was performed on MATLAB 

software and run on a computer with Intel Corei5 2.5 GHz CPU. 

 

5.1. Comparing with the exact method 

In this section, six random problems were generated in different sizes and solved using the augmented ε-constraint method 

and the NSGA-II and MOTTH algorithms. Each random problem is indicated by the three parameters of the number of 

customers, suppliers, and vehicles. Other parameters for each problem are shown in table 2. 

The comparison results are shown in Table 7. In this table, the first four columns indicate the problem specifications. The 

best solutions found for the first and second objective functions among the Pareto points using the augmented ε-constraint 
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method and the problem-solving time are shown in the next three columns. The results regarding NSGA-II are shown in 

columns eight to ten and the results of MOTTH are depicted in columns 11 to 13. In the last four columns, the errors of 

NSGA-II and MOTH are shown for each objective function and are calculated using the following equation. 

The solution difference rate = | 
𝑇ℎ𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑇ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑇ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
| × 100 

(46) 

Table 7. Comparing NSGA-II and MOTTH with the exact solutions 

 
 

The above table suggests that the MOTTH algorithm produced solutions that are closer to the exact solution than the ones 

produced by NSGA-II, in terms of the best solution for each objective function. Moreover, by investigating the solving 

times it was found that the augmented ε-constraint method’s solving time increases exponentially whereas the increase in 

the NSGA-II and MOTTH algorithms’ solving times are linear and insignificant (Figure 9).  This shows the perfectly 

reasonable solving time of metaheuristics. On the other hand, the exact solving method is not capable of solving problem 

6, due to being NP-Hard. 
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Figure 9. comparing problem-solving times of the exact solving method and the metaheuristics 

 

5.2. Comparing the algorithms 

In order to compare the NSGA-II and MOTTH algorithms, first, 27 random problems in different sizes are generated 

and then solved by both algorithms. 

 

5.2.1. Generating random problems 

This problem has three main parameters, namely the number of customers, the number of suppliers, and the number of 

vehicles. three levels of high, medium, and low are considered for each parameter, as shown in the following table. Other 

parameters are shown in Table 2. 

Table 8. different values for the three main parameters 

Low Medium High  
10 50 100 Number of customers 
3 15 25 Number of suppliers 
3 15 25 Number of vehicles 

By combining the above parameters (3*3*3), 27 random problems are generated. 

 

5.2.2. Comparison results 

All 27 random problems were solved by both algorithms and the results are shown in Table 9. The multi-objective 

algorithms’ performance is far more complicated than that of single-objective algorithms. Thus, one evaluation criterion 

is not enough to examine the solutions obtained from the presented algorithms. For this reason, the two comparison 

criteria of Q metric (the number of non-dominated solutions found) and S metric (the scatter criterion) are used in this 

study in order to evaluate the solutions’ quality obtained from the two algorithms. The higher the Q metric and the lower 

the S metric, the better is the quality of the presented solution. 

A low value for the scatter criterion shows that generated solutions are homogeneous. 

S metric is obtained using the following equation.  

(47) 
𝑆 = √

∑ (𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛)2𝑁−1
𝑖=1

(𝑁 − 1)𝑑𝑚𝑒𝑎𝑛

 

In the above equation, di indicates the Euclidean distance between two neighbor non-dominated solutions, and dmean 

indicates the average of di values. 

Therefore, table 9 consists of 5 criteria: 

1. The best solution found for the first objective function and its corresponding solution for the second objective function; 

2. The best solution found for the second objective function and its corresponding solution for the first objective 

function; 

3. Q metric; 

4. S metric; 

5. Solving time. 
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Table 9. The comparison between MOTTH and NSGA-II 
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Table 9. Continued 
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Among the above 27 problems, the MOTTH algorithm produced better solutions than NSGA-II in 5 problems (6-13-18-

22-25) for both objective functions (customer satisfaction and costs). The Q metric and S metric evaluation for the 

remaining problems also suggests the better performance of MOTTH. 

Because the MOTTH algorithm managed to find more solutions than NSGA-II in the first non-dominated front which 

has a lower scatter criterion. For this reason, the decision-maker has more alternatives that are more homogeneous and 

they can choose any solution based on the importance of each objective function. 

In NSGA-II, the algorithm converges to one solution after a few generations and the chromosomes’ structures in the last 

generation are similar. When two chromosomes are similar, their crossover offspring will also be similar to them and the 

chance for searching and finding new solutions will be jeopardized. As a result, producing new generations will not lead 

to an improvement in the current best solution. However, as mentioned in the TTH introduction, the reverse movement 

in history increases the chance to search more parts of the solution area by replacing the current generation’s best solutions 

with the worst solutions of R generations earlier. Therefore, convergence is delayed (Taheri & Beheshti nia, 2019).  

The average solving time of NSGA-II is less than that of MOTTH. The reason is that MOTTH uses the reverse movement 

mechanism. However, the problem-solving time is directly related to the computer’s processor speed and using computers 

with higher processor speed will improve the solving time. 

 

6. Conclusion and future research 

In this paper, the integration of decisions regarding food supply and distribution is investigated in conditions of 

uncertainty. The objectives considered in this study were maximizing customer satisfaction, which depends on the quality 

of the delivered products to them and minimizing the purchase costs, and the vehicles’ fixed and variable costs. First, the 

mathematical model of the problem was presented and solved using the augmented epsilon-constraint method. By using 

this method, the relationship between the two objective functions was identified and it was demonstrated that by 

increasing the quality of delivered products to customers, the costs will also increase. Because according to constraints 

15 and 16, quality improvement occurs when the number of cargos with one delivery priority is increased. In that case, 

each vehicle only services one customer and no other products are left in the refrigerated vehicle to endure temperature 

fluctuations and quality reduction. On the other hand, increasing the number of cargos with one delivery priority causes 

the vehicles’ fixed and even variable costs to increase. For this reason, managers choose a solution based on the 

importance of each objective function and their company’s circumstances. 

Moreover, it was shown in Table 7 that an exact solving method is not capable of solving large problems in a reasonable 

time. Therefore, metaheuristics must be used for solving them, and the MOTTH algorithm is presented in this study, 

which is a new extension of the genetic algorithm is inspired from human’s ultimate fantasy of time travel. In this 

algorithm, by replacing the best solutions of the current generation with the worst solutions of R generations before, the 

algorithm’s premature convergence is prevented and more solutions are searched in the solution area. 

In order to evaluate the proposed algorithm, its performance is first compared with the exact solution, and then with the 

performance of the NSGA-II algorithm. According to the results of this research, a practical suggestion for cold supply 

chain managers is to use MOTTH for determining which orders should be purchased from which suppliers and which 

refrigerated vehicles should deliver them in which cargo and which priority. The reason is that this algorithm produces 

better solutions compared to NSGA-II, that is the quality of the delivered products is better and purchase costs and the 

vehicles’ fixed and variable costs are less. Furthermore, another practical suggestion is use partitioned refrigerated 

vehicles with separate doors and separate refrigeration systems for delivering food products because by repeatedly 

opening and closing the one partition’s door and unloading its containing products, the remaining products in other 

partitions will not endure any temperature fluctuation and as the result, not any quality loss. In this study, a mathematical 

model was presented to minimize the purchase costs, and the vehicles’ fixed and variable costs and maximize the quality 

of the delivered products and the MOTTH metaheuristic algorithm was proposed to solve the problem, which is the main 

difference of this research form the previous studies. Also, based on the results of this research, the following suggestions 

may be considered in conducting future studies: 

 In this study, only the product travel time was considered probabilistic. Other parameters, such as the loading time 

and the amount of time the refrigerator’s door is open may also be considered probabilistic in future studies. 

 Only the two objective functions of costs and products’ quality were considered in this research. In future studies, 

other related variables may be investigated, such as the delivery duration and pollution reduction. 

 In this study, only the delivery of products to customers was considered. The return of rejected or expired products 

may be examined in future research. 

 The combination of MOTTH with other metaheuristics such as the simulated annealing and the bee colony 

algorithms may also be examined in future studies. 
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