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Abstract 

The efficiency evaluation of a network opens the “black box” and focuses on the internal structures and innermost 

interactions of the system. In this paper, we have made efforts to consider a three-stage system, comprising of six sub-

DMUs, in combination with additional inputs and undesirable outputs. The proposed models are simulations of a factory, 

with a production area and three warehouses for goods and two delivery points. Hence, an authentic example of production 

planning and inventory control in a factory for a year and within duration of 24 periods was taken under consideration as 

a dynamic structure. In this simulation, all costs were considered, including, production costs, setup cost, maintenance 

costs of the products, warehouse reservation costs, transportation costs, delay penalty costs and the profit obtained from 

the sale of products. We utilized the multiplicative DEA with a double-frontier approach to measure the efficiency of a 

general system and improve the accuracy of efficiencies. Moreover, a heuristic technique was used to convert non-linear 

models into linear models. The ranking results of the 24 time periods indicate that the time periods 24 and 1 respectively 

are the best and poorest periods in terms of efficiency.  Finally, we suggest using a k-means method to cluster DMUs into 

several groups with similar characteristics based on double-frontier Standpoint. 

 

Keywords: Network DEA; Three-stage; Double-frontier; Additional inputs; Undesirable outputs; k-means technique. 

 

 

1. Introduction 

It is evident that a lack of resources, the utilization of undesirable and limited resources available, and an increment in 

costs make it essential to take advantage of managerial techniques in more prominent organizations. Thereby, in order to 

be successful, organizations must improve their processes and produces consistently. Today, all organizations have 

somehow depicted the importance of having a measurement system for performance. As a principle, every organization 

should, wherever feasible, measure its performance capacities. The absence of an effective assessment or evaluation 

system is directly related to the disintegration of an organization and this shortcoming is considered an organizational 

disease; for without measuring, there shall be no basis for judgments, opinions and evaluations. Whatever cannot be 

evaluated cannot be even fittingly managed. So as to ensure an effective management, every organization must use 

scientific models for the evaluation of performance, so that its efforts and the results achieved from its performance can 

be appraised. Several factors have an impact on the growth and development of countries. Researches executed in this 

arena indicate that efficiency impacts enhance the speed of economic development. These surveys have revealed that in 

the past years, there was a difference in the economic growth and development of countries due to modification in the 

level of efficiency and productivity of factors relative to production. Thence, an increment in performance and efficiency 
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of organizations is an inevitable necessity for survival in global markets today.  This issue is not confined to a particular 

sector or industry and in a limited period of time shall encompass all the sectors of economy. A performance assessment 

is a process which appraises measures, evaluates and judges the performance of an organization during a given period.  It 

is carried out by comparing the present circumstances with desirable or ideal conditions, which are based on pre-

determined indexes. In general, the objectives of assessing the performance are a response to the results in specifying 

quality improvement measures and to reduce costs, as well as comprehend what is being evaluated.   

Currently, efficiency measurement is an extremely crucial issue towards a better understanding of problems in a 

system and planning for future improvement (Kao, 2014).  Data Envelopment Analysis (DEA) is one of the most 

important and appropriate approaches for measuring the performance of decision-making units (DMUs). (Ma et al., 2017). 

In Farrell (1957)’s initial DEA task, which was later developed by Charnes et al. (1978), CCR or the Charnes-Cooper-

Rhodes Model was reputedly known. Then, Banker et al. (1984) developed the DEA and proposed BCC or the Banker-

Charnes-Cooper Model. DEA is a non-parametric linear programming model for measuring the performance for a set of 

homogeneous DMUs with multiple inputs and multiple outputs (Chen et al., 2009). In classical DEA models, such as the 

CCR and BCC models, we do not consider the intermediate measures of DMUs or internal operations of DMUs and 

measure the efficiencies of DMUs as a “black box” (Lee et al., 2016; Kritikos, 2017). In other words, ignoring the internal 

structure of systems leads to the classical DEA models where important information and segregation between the efficient 

units cannot be presented (Lewis and Sexton, 2004). To overcome the problem, Fare and Grosskopf (1996; 2000) 

suggested a network DEA model. In the network DEA models, the internal structure of systems and internal interactions 

of DMUs are taken into consideration until there is an increase in the accuracy of efficiencies. The network DEA models 

can simulate systems with complex internal structures by using stages and sub-DMUs and then evaluate the overall 

efficiencies of systems, stages and sub-DMUs, respectively, (Kou et al., 2016; Wanke and Barros, 2014). The internal 

structure of systems can simulate with the sub-DMUs either in series or in parallel. Thus, the systems with series and 

parallel structures are two very significant areas in network DEA (Kao, 2009a). For the parallel structure, the sum of the 

inputs or outputs of all stages are considered as the inputs or outputs of the whole structure, but in the series structure the 

inputs of first stage and the outputs of last stage are the inputs and outputs of the whole structure (Kao and Hwang, 2008). 

The general efficiency of the parallel and series structures are measured by the multiplicative and additive methods, 

respectively, (Cook and Zhu, 2014). In recent years, the efficiency evaluation of the multi-stage is one of the most 

important topics in DEA, and the parallel and series structures are used by many researchers. Kao (2009b) proposed a 

“closed system” with a series structure to be taken into consideration for intermediate measures, but without any additional 

input or output in each stage; whereas, Yu and Lin (2008) used the network DEA to measure service effectiveness and 

technical efficiency. Kao (2014) utilized the network DEA approach to estimate the overall efficiency of the system with 

multi-stage and additional inputs. Hua and Bian (2008), Cook et al. (2010) and Tone and Tsutsui (2009) used the network 

DEA for the evaluation of efficiency. In the network structure, the sub-DMUs have desirable or undesirable outputs. Fare 

et al. (1989) developed the DEA and utilized the undesirable outputs initially. Seiford and Zhu (2002) considered a 

network structure and proposed a model for efficiency evaluation that increased the desirable output and decreased the 

undesirable output. A non-radial network DEA model is suggested by Jahanshahloo et al. (2005) for considering the 

undesirable outputs. Badiezadeh and Farzipoor (2014) reflected on a production line, as a system with undesirable outputs, 

and measured the overall efficiency of the system under consideration and the internal interactions of DMUs. Lu and Lo 

(2007) categorized the methods for working with undesirable outputs in DEA in the following three modes: 1-The first 

method is to ignore the undesirable outputs, which are done, in order to simplify the models, 2-the second method is to 

measure distances in such a manner, so as to limit the expansion of the undesired output or that the undesired output is 

modeled as a nonlinear DEA model, 3-the third method is to consider the undesired output as a desired input, or to employ 

the negative sign as a desirable output, or that a decrease in conversion is applied to them. 

The Data Envelopment Analysis (DEA) with a double-frontier considers two efficiencies for each DMU. One is called 

the optimistic efficiency or the best relative efficiency and the other efficiency is known as the pessimistic or the poorest 

efficiency (Amirteimoori, 2007). In the optimistic efficiency, each DMU is compared with a set of efficient DMUs that 

are located on the efficiency frontier; whereas,  in the pessimistic efficiency, each DMU is compared with a set of 

inefficient DMUs that are located on the inefficiency frontier (Wang and Chin, 2009; Parkan and Wang, 2000 ). The value 

of the optimistic approach is less than or equates to (1); and from the pessimistic viewpoint is it more than (1) or equal to 

(1). The efficiency value of the optimistic approach is less than (1) when the DMU under evaluation is not on the efficiency 

frontier; whereas, it equates to (1) when the DMU under assessment or evaluation is on the efficiency frontier. The 

pessimistic value approach is more than (1) when the DMU under evaluation is not on the inefficiency frontier; but is 

equivalent to (1) when the DMU under evaluation is on the efficiency frontier (Azizi and Ajirlu, 2011; Azizi and Wang, 

2013; Jahanshahloo and Afzalinejad, 2006). In fact, the double-frontier views each DMU from two perspectives and any 

conclusion which implies to only one of the two viewpoints shall result in a one-sided and an incomplete perspective 

(Azizi and Ajirlu, 2011). The measurement of efficiency, based on the optimistic and pessimistic views in a mutual 

fashion, can lead to an increment in accuracy for the purpose of ranking the DMUs (Badiezadeh et al., 2018). Doyle et al. 
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for the first time in 1955 obtained the efficiency of DMUs from the two optimistic and pessimistic viewpoints. Entami et 

al. (2002) attained the double-frontier in order to measure the efficiency for each lower bound and upper bound DMU as 

optimistic and pessimistic efficiencies, respectively. So as to combine the results of the optimistic and pessimistic 

approaches, which would usher a general or overall efficiency, several other researchers suggested mathematical 

combinations (i.e. averaging out the optimistic and pessimistic values) (Azizi, 2014). Wang and Chen (2009) used a 

geometric mean to combine the results of an optimistic and pessimistic viewpoint for ranking the DMUs. In recent years, 

numerous other researchers have utilized the double-frontier to measure efficiency and in this regard Jiang et al. 2012; 

Wang and Lan 2013; Yang and Morita 2013; Azizi et al. 2015; Jahed et al. 2015 and Badiezadeh et al. 2018 can be 

helpful.  

Throughout the past years, an increment in the importance of the production sector and anxiety over the development 

and efficiency growth of this segment is directly correlated with that of the economic system. A rise in costs has led to 

haul the production units towards incrementing their organizational performance. The optimal mode which would 

increase efficiency is to logically utilize, adopt and modify the available resources. This could only be achieved by 

ensuring a correct managerial performance, including a rational evaluation of the returns attained (Swell, 1997). In this 

paper, we simulate a factory in a factual world that produces three perishable goods and each of the goods is placed in a 

warehouse. The factory has a production area and three warehouses for goods and two delivery points. Therefore, we are 

faced with a hybrid system having a complex internal structure with three stages, six sub-DMUs, additional inputs and 

undesirable outputs in the second and third stages. We have a sub-DMU in the first stage and three sub-DMUs in the 

second stage that are parallel and two sub-DMUs in the third stage that are parallel and the stages are linked in series. The 

purpose of this paper is to estimate the overall efficiency of the system on the basis of a cooperative approach. We use 

the optimistic and pessimistic views to increase the accuracy of the measurement for ranking the DMUs. The cooperative 

models cannot be turned into linear models, from the optimistic and pessimistic views because of the additional inputs 

and outputs in the second stage. Therefore, we use a heuristic technique to convert the nonlinear models into linear models. 

This factory is considered as a dynamic network and measures the overall efficiency and the efficiencies of the DMUs. 

The paper is organized as follows: Section (2) issues the model description and presents a three-stage network DEA model 

with additional inputs and undesirable outputs. Section (3) renders the model solution and presents the solution of the 

models according to the heuristic method. Section (4) offers a case study description and a factory is described as a factual 

example, and finally, Section (5) concludes the paper.  

 

2. Model description 

We consider a set of n homogeneous DMUs that are denoted by DMUj (j=1,..., n), and each DMUj (j=1,…,n) has three-

stages with a complex internal structure, as shown in Fig. 1.  where there is one sub-DMU is in the first stage (sub-DMU1j) 

and three sub-DMUs form a parallel structure in the second stage (sub-DMU2j, sub-DMU3j, sub-DMU4j) as well as two 

sub-DMUs form a parallel structure in the third stage (sub-DMU5j, sub-DMU6j) and all the stages are connected together 

in series. We denote the inputs to sub-DMU1j, sub-DMU2j, sub-DMU3j and sub-DMU4j by xi1j
1  (i1=1,…,I1), xi2j

2  

(i2=1,…,I2), xi3j
3  (i3=1,…,I3) and xi4j

4  (i4=1,…,I4), respectively. We denote the intermediate measures between stage 1 

and 2 by zd1j
1  (d1=1,…,D1), zd2j

2 (d2=1,…,D2) and zd3j
3  (d3=1,…,D3), and between stage 2 and 3 by zd4j

4  (d4=1,…,D4), 

zd5j
5  (d5 = 1, … , D5),  zd6j

6  (d6 = 1, … , D6), zd7j
7  (d7 = 1, … , D7), zd8j

8  (d8=1,…,D8) and zd9j
9  (d9=1,…,D9).  The outputs 

of sub-DMU2j, sub-DMU3j and sub-DMU4j are denoted by yr1j
1  (r1=1,…,R1), yr2j

2 (r2=1,…,R2), yr3j
3  (r3=1,…,R3), yr4j

4  

(r4=1,…,R4), yr5j
5  (r5=1,…,R5) and yr6j

6  (r6=1,…,R6), respectively, where, yr2j
2 , yr4j

4  and yr6j
6  are undesirable outputs. 

Finally, the outputs of sub-DMU5j and sub-DMU6j are denoted by yr7j
7  (r7=1,…,R7), yr8j

8  (r8=1,…,R8), yr9j
9  (r9=1,…,R9) 

and yr10j
10  (r10=1,…,R10), respectively, where, yr8j

8  and yr10j
10  are undesirable outputs.  

We adopt vi1

1 , vi2

2 , vi3

3  and vi4

4  as the weights of the inputs to sub-DMU1j, sub-DMU2j, sub-DMU3j and sub-DMU4j, 

respectively. We adopt ur1
1 , ur2

2 , ur3
3 ,ur4

4 , ur5
5  and ur6

6  as the weights of the outputs to sub-DMU2j, sub-DMU3j and sub-

DMU4j, respectively. Kao and Hwang (2008) used the same weights for the intermediate measures. In accordance 

with this, we value the intermediate measures in this research, irrespective of their dual role (as an input in one 

stage and as an output in the next stage). We assume that the weights relative to the intermediate measures 

between stages 1 and 2 and similarly, weights related to the intermediate measures between stages 2 and 3 are 

uniform. We adopt wd1

1 , wd2

2  and wd3

3  as the weights of the intermediate measures between stage 1and stage 2. The 

weights of the intermediate measures between stage 2 and stage 3 are denoted by wd4

4 , wd5

5 , wd6

6 ,  wd7

7 , wd8

8  and wd9

9 . 

Finally, we adopt ur7
7 , ur8

8 , ur9
9 and ur10

10  as the weights of the outputs to sub-DMU5j and sub-DMU6j, respectively. 
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Figure 1. Structure of the three-stage system with additional inputs and undesirable outputs 

 
Researchers doing efficiency analysis are likely to use input-oriented models, due to three major reasons. Firstly, 

demand is on the growth and estimating demand is an intricate matter. Secondly, managers have more control over inputs 

than outputs. Thirdly, these models reflect the primary goals of policymakers, based on being responsible in responding 

to the requirements of people and units must reduce costs, or else, limit the use of resources. Thereby, in this research we 

utilize the input-oriented model. In accordance with Korhonen and Luptacik (2004), we signify the undesirable outputs 

in the models with a negative mark. In the first stage, we have one DMU. The efficiency of sub-DMU1o in the first stage 

is defined in model (1) as follows: 
 

θo
1= max  

∑ wd1
1D1

d1=1 zd1o
1 + ∑ wd2

2D2
d2=1 zd2o

2 + ∑ wd3
3D3

d3=1 zd3o
3

∑ vi1
1 xi1o

1I1
i1=1

  

       s.t.     
∑ wd1

1D1
d1=1 zd1j

1 + ∑ wd2
2D2

d2=1 zd2j
2 + ∑ wd3

3D3
d3=1 zd3j

3

∑ vi1
1 xi1j

1I1
i1=1

≤1,     j=1,…,n                                                                                           (1) 

                vi1

1 ,wd1

1 ,wd2

2 ,wd3

3  ≥ 𝜀; i1=1,…,I1; d1=1,…,D1; d2=1,…,D2; d3=1,…,D3. 

The efficiencies of sub-DMU2o, sub-DMU3o and sub-DMU4o in the second stage are defined, respectively, as follows: 
 

θo
2= max  

∑ wd4
4D4

d4=1 zd4o
4 + ∑ wd5

5D5
d5=1 zd5o

5 + ∑ ur1
1 yr1o

1R1
r1=1 - ∑ ur2

2 yr2o
2R2

r2=1

∑ vi2
2 xi2o

2I2
i2=1 + ∑ wd1

1D1
d1=1 zd1o

1
  

        s.t.    
∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5
5D5

d5=1 zd5j
5 + ∑ ur1

1 yr1j
1R1

r1=1 - ∑ ur2
2 yr2j

2R2
r2=1

∑ vi2
2 xi2j

2I2
i2=1 + ∑ wd1

1D1
d1=1 zd1j

1
≤1,   j=1,…,n                   (2) 

                ur1
1 ,ur2

2 ,vi2

2 ,wd1

1 ,wd4

4 ,wd5

5 ≥ 𝜀; r1=1,…, R1; r2=1,…,R2; i2=1,…,I2; d1=1,…,D1; d4 = 1, … , D4;  d5=1,…,D5.  

          
 

θo
3= max  

∑ wd6
6D6

d6=1 zd6o
6 + ∑ wd7

7D7
d7=1 zd7o

7 + ∑ ur3
3 yr3o

3 - ∑ ur4
4 yr4o

4R4
r4=1

R3
r3=1

∑ vi3
3 xi3o

3I3
i3=1 + ∑ wd2

2D2
d2=1 zd2o

2
  

        s.t.   
∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7
7D7

d7=1 zd7j
7 + ∑ ur3

3 yr3j
3 - ∑ ur4

4 yr4j
4R4

r4=1
R3
r3=1

∑ vi3
3 xi3j

3I3
i3=1 + ∑ wd2

2D2
d2=1 zd2j

2
≤1,   j=1,…,n                          (3) 
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                ur3
3 ,ur4

4 ,vi3

3 ,wd2

2 ,wd6

6 ,wd7

7  ≥ 𝜀; r3=1,…, R3; r4=1,…,R4; i3=1,…,I3; d2=1,…,D2; d6=1,…,D6; d7=1,…,D7. 

θo
4= max  

∑ wd8
8D8

d8=1 zd8o
8 + ∑ wd9

9D9
d9=1 zd9o

9 + ∑ ur5
5 yr5o

5 - ∑ ur6
6 yr6o

6R6
r6=1

R5
r5=1

∑ vi4
4 xi4o

4I4
i4=1 + ∑ wd3

3D2
d2=1 zd3o

3
    

      s.t.     
∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9
9D9

d9=1 zd9j
9 + ∑ ur5

5 yr5j
5 - ∑ ur6

6 yr6j
6R6

r6=1

R5
r5=1

∑ vi4
4 xi4j

4I4
i4=1 + ∑ wd3

3D2
d2=1 zd3j

3
≤1,   j=1,…,n                                                                             (4) 

               ur5
5 ,ur6

6 ,vi4

4 ,wd3

3 ,wd8

8 ,wd9

9  ≥ 𝜀; r5=1,2,…,R5; r6=1,2,…,R6; i4=1,2,…,I4; d3=1,2,…,D3; d8=1,2,…,D8;   

               d9=1,2,…,D9.           

Kao (2009) used the additive approach for the overall efficiency of a parallel structure where sub-DMUs are 

independent. In the second stage, we have three sub-DMUs forming a parallel structure and the sub-DMUs are 

independent. We then define the efficiency of the second stage as: θo
234=max (w1.θo

2+w2.θo
3+w3.θo

4), where w1, w2  and  

w3 are weights specified by experts such that, w1 + w2 + w3 = 1. Chen et al. (2009) show that the relative size of the inputs 

of a stage expresses the importance of that stage. Hence, we compute the weights determined by the experts from the 

relative input value of each sub-DMU to obtain the value of inputs in the second stage. Thus, we define w1, w2  and w3 as 

follows:  
      

w1 =
∑ vi2

2 xi2o
2I2

i2=1 + ∑ wd1
1D1

d1=1 zd1o
1

∑ vi2
2 xi2o

2I2
i2=1 + ∑ wd1

1D1
d1=1

zd1o
1 + ∑ vi3

3 xi3o
3I3

i3=1 + ∑ wd2
2D2

d2=1
zd2o

2 + ∑ vi4
4 xi4o

4I4
i4=1 + ∑ wd3

3D3
d3=1

zd3o
3

,                                                         

w2 =
∑ vi3

3 xi3o
3I3

i3=1 + ∑ wd2
2D2

d2=1 zd2o
2

∑ vi2
2 xi2o

2I2
i2=1 + ∑ wd1

1D1
d1=1

zd1o
1 + ∑ vi3

3 xi3o
3I3

i3=1 + ∑ wd2
2D2

d2=1
zd2o

2 + ∑ vi4
4 xi4o

4I4
i4=1 + ∑ wd3

3D3
d3=1

zd3o
3

,                                                           (5) 

w3 =
∑ vi4

4 xi4o
4I4

i4=1 + ∑ wd3
3D3

d3=1 zd3o
3

∑ vi2
2 xi2o

2I2
i2=1 + ∑ wd1

1D1
d1=1

zd1o
1 + ∑ vi3

3 xi3o
3I3

i3=1 + ∑ wd2
2D2

d2=1
zd2o

2 + ∑ vi4
4 xi4o

4I4
i4=1 + ∑ wd3

3D3
d3=1

zd3o
3

  

We defined w1, w2 and w3 the parts of total input resources devoted to the sub-DMU2o, sub-DMU3o and sub-DMU4o, 

respectively. In order to have more convenient models, we define Io
234 and Oo

234, the inputs and outputs to the second 

stage, respectively. Then, with models (2), (3) and (4) and formulas (5), the efficiency of the second stage is defined as 

follows:   

 

θo
234=max  

Oo
234

Io
234            

         s.t.    
∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5
5D5

d5=1 zd5j
5 + ∑ ur1

1 yr1j
1R1

r1=1 - ∑ ur2
2 yr2j

2R2
r2=1

∑ vi2
2 xi2j

2I2
i2=1 + ∑ wd1

1D1
d1=1 zd1j

1
≤1,    j=1,…,n              

                  
∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7
7D7

d7=1 zd7j
7 + ∑ ur3

3 yr3j
3 - ∑ ur4

4 yr4j
4R4

r4=1
R3
r3=1

∑ vi3
3 xi3j

3I3
i3=1 + ∑ wd2

2D2
d2=1 zd2j

2
≤1,     j=1,…,n                                                                          (6) 

                  
∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9
9D9

d9=1 zd9j
9 + ∑ ur5

5 yr5j
5 - ∑ ur6

6 yr6j
6R6

r6=1

R5
r5=1

∑ vi4
4 xi4j

4I4
i4=1 + ∑ wd3

3D3
d3=1 zd3j

3
≤1,     j=1,…,n  

                   ur1
1 ,ur2

2 ,ur3
3 ,ur4

4 ,ur5
5 ,ur6

6 ,vi2

2 ,vi3

3 ,vi4

4 ,wd1

1 ,wd2

2 ,wd3

3 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ 𝜀;   

                   r1=1, …,R1;  r2=1,…,R2;  r3=1,…, R3;  r4=1,…,R4;  r5=1,…, R5;  r6=1,…,R6;  i2=1,…,I2; i3=1,…,I3;   

                   i4=1,…,I4;  d1=1,…,D1; d2=1,…,D2; d3=1,…,D3; d4=1,…,D4;  d5=1,…,D5; d6=1,…,D6;d7=1,…,D7;   

                   D8=1,…,D8; d9=1,…,D9.   

In the third stage, we have two sub-DMUs from a parallel structure. In the same way, we define the efficiency of the 

third stage, as we did in the second stage, as follows: 
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θo
56 = max  

Oo
56

Io
56                                                                                                                                   

          s.t.  
∑ ur7

7R7
r7=1 yr7j

7 - ∑ ur8
8R8

r8=1 yr8j
8

∑ wd4
4D4

d4=1 zd4j
4 + ∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd8
8D8

d8=1 zd8j
8

≤1    ,     j=1,…,n                                                                                  (7) 

                   
∑ ur9

9R9
r9=1 yr9j

9 - ∑ ur10
10R10

r10=1 yr10j
10

∑ wd5
5D5

d5=1 zd5j
5 + ∑ wd7

7D7
d7=1 zd7j

7 + ∑ wd9
9D9

d9=1 zd9j
9

≤1   ,      j=1,…,n  

                   ur7
7 ,ur8

8 ,ur9
9 ,ur10

10 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ 𝜀;   

                   r7=1,…,R7;  r8=1,…,R8;  r9=1,…, R9;  r10=1,…,R10; d4=1,…,D4; d5=1,…,D5; d6=1,…,D6;  

                   d7=1,…,D7;  d8=1,…,D8; d9=1,…,D9.                                 

For the network structure as shown in Fig.1, the first, second and the third stages are linked in series. Kao and Hwang 

(2008) used the multiplicative approach to measure the overall efficiency of a series structure. With models (1), (6) and 

(7), we then define the overall efficiency of an integrated system shown in Fig.1 as θo
overall

=max θo
1
. θo

234
. θo

56
. Thus, 

 

 

θo
overall=max  

∑ wd1
1D1

d1=1 zd1o
1 + ∑ wd2

2D2
d2=1 zd2o

2 + ∑ wd3
3D3

d3=1 zd3o
3

∑ vi1
1 xi1o

1I1
i1=1

. 
Oo

234

Io
234  . 

Oo
56

Io
56                                          

            s.t.     
∑ wd1

1D1
d1=1 zd1j

1 + ∑ wd2
2D2

d2=1 zd2j
2 + ∑ wd3

3D3
d3=1 zd3j

3

∑ vi1
1 xi1j

1I1
i1=1

≤1,       j=1,…,n              

                      
∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5
5D5

d5=1 zd5j
5 + ∑ ur1

1 yr1j
1R1

r1=1 - ∑ ur2
2 yr2j

2R2
r2=1

∑ vi2
2 xi2j

2I2
i2=1 + ∑ wd1

1D1
d1=1 zd1j

1
≤1,    j=1,…,n              

                      
∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7
7D7

d7=1 zd7j
7 + ∑ ur3

3 yr3j
3 - ∑ ur4

4 yr4j
4R4

r4=1
R3
r3=1

∑ vi3
3 xi3j

3I3
i3=1 + ∑ wd2

2D2
d2=1 zd2j

2
≤1,     j=1,…,n                                                                   (8) 

                      
∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9
9D9

d9=1 zd9j
9 + ∑ ur5

5 yr5j
5 - ∑ ur6

6 yr6j
6R6

r6=1

R5
r5=1

∑ vi4
4 xi4j

4I4
i4=1 + ∑ wd3

3D3
d3=1 zd3j

3
≤1,     j=1,…,n  

                     
∑ ur7

7R7
r7=1 yr7j

7 - ∑ ur8
8R8

r8=1 yr8j
8

∑ wd4
4D4

d4=1 zd4j
4 + ∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd8
8D8

d8=1 zd8j
8

≤1    ,     j=1,…,n                                                             

                      
∑ ur9

9R9
r9=1 yr9j

9 - ∑ ur10
10R10

r10=1 yr10j
10

∑ wd5
5D5

d5=1 zd5j
5 + ∑ wd7

7D7
d7=1 zd7j

7 + ∑ wd9
9D9

d9=1 zd9j
9

≤1   ,      j=1,…,n  

                   ur1
1 ,ur2

2 ,ur3
3 ,ur4

4 ,ur5
5 ,ur6

6 ,ur7
7 ,ur8

8 ,ur9
9 ,ur10

10 ,vi1
1 ,vi2

2 ,vi3
3 ,vi4

4 ,wd1

1 ,wd2

2 ,wd3

3 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ ε;   

                         r1=1,…,R1;  r2=1,…,R2;  r3=1,…,R3; r4=1,…,R4;  r5=1,…,R5;  r6=1,…,R6; r7=1,…,R7;  r8=1,…,R8; 

                         r9=1,…,R9; r10=1,…,R10; i1=1,…,I1; i2=1, …,I2;   i3=1,…,I3;   i4=1,…,I4;  d1=1,…,D1; d2=1,…,D2; 

                         d3=1,…, D3; d4=1,…,D4; d5=1,…,D5; d6=1,…,D6; d7=1,…,D7; d8=1,…,D8; d9=1,…,D9.                          
                              

In model (8), we measure the overall efficiency based on the efficiencies of the all sub-DMUs being less than one. 

The efficiency (Fig. 1) can be determined by the model (8) from the optimistic view. Wang et al (2005) measured the 

efficiencies of DMUs from both optimistic and pessimistic views (Azizi, 2014; Jahed et al, 2015). We then define the 

overall efficiency of the structure as shown in Fig. 1 from the pessimistic view based on the model (8) as follows: 

 

φo
overall=min  

∑ wd1
1D1

d1=1 zd1o
1 + ∑ wd2

2D2
d2=1 zd2o

2 + ∑ wd3
3D3

d3=1 zd3o
3

∑ vi1
1 xi1o

1I1
i1=1

. 
Oo

234

Io
234  . 

Oo
56

Io
56                                          
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            s.t.     
∑ wd1

1D1
d1=1 zd1j

1 + ∑ wd2
2D2

d2=1 zd2j
2 + ∑ wd3

3D3
d3=1 zd3j

3

∑ vi1
1 xi1j

1I1
i1=1

≥1,       j=1,…,n              

                      
∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5
5D5

d5=1 zd5j
5 + ∑ ur1

1 yr1j
1R1

r1=1 - ∑ ur2
2 yr2j

2R2
r2=1

∑ vi2
2 xi2j

2I2
i2=1 + ∑ wd1

1D1
d1=1 zd1j

1
≥1,    j=1,…,n              

                      
∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7
7D7

d7=1 zd7j
7 + ∑ ur3

3 yr3j
3 - ∑ ur4

4 yr4j
4R4

r4=1
R3
r3=1

∑ vi3
3 xi3j

3I3
i3=1 + ∑ wd2

2D2
d2=1 zd2j

2
≥1,     j=1,…,n                                                                (9) 

                      
∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9
9D9

d9=1 zd9j
9 + ∑ ur5

5 yr5j
5 - ∑ ur6

6 yr6j
6R6

r6=1

R5
r5=1

∑ vi4
4 xi4j

4I4
i4=1 + ∑ wd3

3D3
d3=1 zd3j

3
≥1,     j=1,…,n  

                     
∑ ur7

7R7
r7=1 yr7j

7 - ∑ ur8
8R8

r8=1 yr8j
8

∑ wd4
4D4

d4=1 zd4j
4 + ∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd8
8D8

d8=1 zd8j
8

≥1    ,     j=1,…,n                                                             

                      
∑ ur9

9R9
r9=1 yr9j

9 - ∑ ur10
10R10

r10=1 yr10j
10

∑ wd5
5D5

d5=1 zd5j
5 + ∑ wd7

7D7
d7=1 zd7j

7 + ∑ wd9
9D9

d9=1 zd9j
9

≥1   ,      j=1,…,n  

                   ur1
1 ,ur2

2 ,ur3
3 ,ur4

4 ,ur5
5 ,ur6

6 ,ur7
7 ,ur8

8 ,ur9
9 ,ur10

10 ,vi1
1 ,vi2

2 ,vi3
3 ,vi4

4 ,wd1

1 ,wd2

2 ,wd3

3 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ ε;   

                          r1=1,…,R1;  r2=1,…,R2;  r3=1,…,R3; r4=1,…,R4;  r5=1,…,R5;  r6=1,…,R6; r7=1,…,R7;  r8=1,…,R8; 

                          r9=1,…,R9; r10=1,…,R10; i1=1,…,I1; i2=1, …,I2;   i3=1,…,I3;   i4=1,…,I4;  d1=1,…,D1; d2=1,…,D2; 

                         d3=1,…, D3; d4=1,…,D4; d5=1,…,D5; d6=1,…,D6; d7=1,…,D7; d8=1,…,D8; d9=1,…,D9.                          

Models (8) and (9) are nonlinear models and in the third section of this paper an innovative approach is used to solve 

them. Wang and Chin (2009) used an approach for ranking DMUs from both optimistic and pessimistic views. We then 

define the overall efficiency according to the double-frontier from the solutions of models (8) and (9) as follows:  

 

 ∅o=√θo
overall

.φ
o
overall                             (10) 

K-means clustering is a simple unsupervised learning algorithm that is used to solve clustering problems. It follows a 

simple procedure of classifying a given data set into a number of clusters, defined by the letter "k," which is fixed 

beforehand. The clusters are then positioned as points and all observations or data points are associated with the nearest 

cluster, computed, adjusted and then the process starts over using the new adjustments until a desired result is reached. 

Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional real vector, k-means clustering 

aims to partition the n observations into k (≤ n) sets S = {s1, s2, …, sk} so as to minimize the within-cluster sum of 

squares (WCSS) (i.e. variance). Formally, the objective is to find arg min
s

∑ ∑ ‖x − μi‖
2

x∈si

k
i=1 = arg min

s
∑ |si|Var si

k
i=1 , 

where μi is the mean of points in si. In this paper, we use the k-means technique to cluster the results of the described 

models (cluster based on the result of the formula (10)) and these results are shown in the case study section. 

 

3. Model solution 

Models (8) and (9) cannot be turned into linear models because of the additional inputs and outputs in the second stage 

in relative to DMU2o, sub-DMU3o and sub-DMU4o, respectively. Thus, we present a heuristic technique to solve models 

(8) and (9), respectively. 

 

 

3.1 A heuristic method from the optimistic view 

First, we measure the maximum efficiencies of second and third stages provided that the efficiency of each sub-DMU in 

stages 1, 2 and 3 is less than one. Therefore, we define θo
234- max and θo

56- max maximum efficiencies from the optimistic 

view for stages 2 and 3, respectively, as follows: 

 



Efficiency Evaluation in Hybrid Three-Stage network Data envelopment analysis from the Double-Frontier Standpoint 

 

 
  

Int J Supply Oper Manage (IJSOM), Vol.7, No.3 229 

 

θo
234- max=max {

Oo
234

Io
234 | θj

1 ≤ 1, θj
2 ≤ 1, θj

3 ≤ 1,  θj
4 ≤ 1, θj

5 ≤ 1, θj
6 ≤ 1,  j=1,…,n }                              (11) 

θo
56- max=max {

Oo
56

Io
56 | θj

1 ≤ 1, θj
2 ≤ 1, θj

3 ≤ 1,  θj
4 ≤ 1, θj

5 ≤ 1, θj
6 ≤ 1,  j=1,…,n }     

In models (11), all variables are non-negative. The objective functions of models (11) are the same as those of models 

(6) and (7), respectively, but for the constraints, we shall consider the efficiency of each sub-DMU in stage 1, stage 2 and 

stage 3 as being less than one. With the Charnes–Cooper (1962) conversion, models (11) can be turned into linear models. 

We can solve models (11) and measure θo
234- max and θo

56- max
, respectively. Then, we convert model (8) to model (12) as 

follows: 

 

θo
overall=max {θo

1. θo
234. θo

56 |
 θj

1 ≤ 1, θj
2 ≤ 1, θj

3 ≤ 1,  θj
4 ≤ 1, θj

5 ≤ 1, θj
6 ≤ 1, θo

234= 
Oo

234

Io
234 ,  θo

56= 
Oo

56

Io
56 ,

 θo
234 ∈[0, θo

234- max ], θo
56 ∈[0, θo

56- max ], j=1,…,n  
}                  (12)                                                                                               

 
 

In models (12), all variables are non-negative. It should be noted that we consider θo
234 and θo

56  as two variables in 

the objective functions of model (12) and add two constraints that specify these two variables, along with their range of 

changes. In fact, model (12) lets us consider stage 2 and stage 3 as two variables θo
234 and θo

56 that change between 

intervals [0, θo
234- max ] and [0, θo

56- max ], respectively. We should fix θo
234 and θo

56 until model (12) becomes a linear 

programing model that we can solve. For this purpose, we define θo
234 and θo

56 as follows: 
 

θo
234 = θo

234- max - k2∆ε,         k2=0,1,…, [
θo

234-max 

∆ε
] +1                   (13) 

θo
56 = θo

56- max - k3∆ε,            k3=0,1,…, [
θo

56-max 

∆ε
] +1 

In formulas (13), ∆𝜀 is a step size and we consider a smaller number as ∆𝜀 =0.01. With the Charnes–Cooper (1962) 

conversion, model (13) can be turned into a linear model as follows:  
 

θo
overall =max θo

234 . θo
56. ( ∑ wd1

1D1
d1=1 zd1o

1 + ∑ wd2

2D2
d2=1 zd2o

2 + ∑ wd3

3D3
d3=1 zd3o

3 )    

             s.t.  ∑ wd1

1D1
d1=1 zd1j

1 + ∑ wd2

2D2
d2=1 zd2j

2 + ∑ wd3

3D3
d3=1 zd3j

3 - ∑ vi1
1 xi1j

1I1
i1=1  ≤ 0                       (14) 

                      ∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5

5D5
d5=1 zd5j

5 + ∑ ur1
1 yr1j

1R1
r1=1 - ∑ ur2

2 yr2j
2R2

r2=1 - ∑ vi2
2 xi2j

2I2
i2=1 - ∑ wd1

1D1
d1=1 zd1j

1  ≤ 0          

                       ∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7

7D7
d7=1 zd7j

7 + ∑ ur3
3 yr3j

3 - ∑ ur4
4 yr4j

4R4
r4=1

R3
r3=1 - ∑ vi3

3 xi3j
3I3

i3=1 - ∑ wd2

2D2
d2=1 zd2j

2  ≤ 0  

                      ∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9

9D9
d9=1 zd9j

9 + ∑ ur5
5 yr5j

5 - ∑ ur6
6 yr6j

6R6
r6=1

R5
r5=1 - ∑ vi4

4 xi4j
4I4

i4=1 - ∑ wd3

3D3
d3=1 zd3j

3  ≤ 0   

                      ∑ ur7
7R7

r7=1 yr7j
7 - ∑ ur8

8R8
r8=1 yr8j

8 - ∑ wd4

4D4
d4=1 zd4j

4 - ∑ wd6

6D6
d6=1 zd6j

6 - ∑ wd8

8D8
d8=1 zd8j

8  ≤ 0   

                      ∑ ur9
9R9

r9=1 yr9j
9 - ∑ ur10

10R10
r10=1 yr10j

10 - ∑ wd5

5D5
d5=1 zd5j

5 - ∑ wd7

7D7
d7=1 zd7j

7 - ∑ wd9

9D9
d9=1 zd9j

9  ≤ 0    

                     ∑ vi1
1 xi1o

1I1
i1=1  =1 

                    Oo
234= θo

234. Io
234   

                      Oo
56= θo

56. Io
56   

                     θo
234 ∈[0, θo

234- max]  

                       θo
56 ∈[0, θo

56- max]  

                       ur1
1 ,ur2

2 ,ur3
3 ,ur4

4 ,ur5
5 ,ur6

6 ,ur7
7 ,ur8

8 ,ur9
9 ,ur10

10 ,vi1
1 ,vi2

2 ,vi3
3 ,vi4

4 ,wd1

1 ,wd2

2 ,wd3

3 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ ε;   

                         r1=1,…,R1;  r2=1,…,R2;  r3=1,…,R3; r4=1,…,R4;  r5=1,…,R5;  r6=1,…,R6; r7=1,…,R7;  r8=1,…,R8; 

                         r9=1,…,R9; r10=1,…,R10; i1=1,…,I1; i2=1, …,I2;   i3=1,…,I3;   i4=1,…,I4;  d1=1,…,D1; d2=1,…,D2; 

                         d3=1,…, D3; d4=1,…,D4; d5=1,…,D5; d6=1,…,D6; d7=1,…,D7; d8=1,…,D8; d9=1,…,D9.  
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In model (14), we increase k2 and k3 from zero to the upper bound of each one, independently, and solve each linear 

model with each k2 and k3 and show the value of the objective function with θo
overall(k2, k3). Comparing all the values of 

the objective function in model (14), we define the maximal overall efficiency from the optimistic view as θo
overall*=max 

θo
overall(k2, k3). At the same time and with the same k2 and k3, the efficiencies of the second stage and third stage from 

the optimistic view based on formulas (13) are defined as θo
234*= θo

234(k2) and θo
56*= θo

56(k3), respectively. The efficiency 

of the first stage can be measured by θo
1*=

θo
overall*

(θo
234*.θo

56*)
. We used a heuristic technique and estimated the overall efficiency 

and the efficiencies of the stages from the optimistic view. For the sub-DMUs in the first stage, we have sub-DMU1, thus 

θo
1=θo

1*. For other sub-DMUs, we can calculate θo
2∗, θo

3∗ and θo
4∗ for sub-DMU2, sub-DMU3 and sub-DMU4 in the second 

stage and θo
5∗ and θo

6∗ for sub-DMU5, sub-DMU6 in the third stage respectively, and by the weights obtained from models 

(22), which are shown (with asterisks) * in formulas (15) as follows: 

 

θo
2*=

∑ wd4
4*D4

d4=1 zd4o
4 + ∑ wd5

5*D5
d5=1 zd5o

5 + ∑ ur1
1*yr1o

1R1
r1=1 - ∑ ur2

2*yr2o
2R2

r2=1

∑ vi2
2*xi2o

2I2
i2=1 + ∑ wd1

1*D1
d1=1 zd1o

1
  

θo
3*=

∑ wd6
6*D6

d6=1 zd6o
6 + ∑ wd7

7*D7
d7=1 zd7o

7 + ∑ ur3
3*yr3o

3 - ∑ ur4
4*yr4o

4R4
r4=1

R3
r3=1

∑ vi3
3*xi3o

3I3
i3=1 + ∑ wd2

2*D2
d2=1 zd2o

2
  

θo
4*=

∑ wd8
8*D8

d8=1 zd8o
8 + ∑ wd9

9*D9
d9=1 zd9o

9 + ∑ ur5
5*yr5o

5 - ∑ ur6
6*yr6o

6R6
r6=1

R5
r5=1

∑ vi4
4*xi4o

4I4
i4=1 - ∑ wd3

3*D23
d3=1 zd3o

3
                     (15) 

 θo
5∗=

∑ ur7
7*R7

r7=1 yr7o
7 - ∑ ur8

8*R8
r8=1 yr8o

8

∑ wd4
4*D4

d4=1 zd4o
4 + ∑ wd6

6*D6
d6=1 zd6o

6 + ∑ wd8
8*D8

d8=1 zd8o
8

 

 θo
6*=

∑ ur9
9*R9

r9=1 yr9o
9 - ∑ ur10

10*R10
r10=1 yr10o

10

∑ wd5
5*D5

d5=1 zd5o
5 + ∑ wd7

7*D7
d7=1 zd7o

7 + ∑ wd9
9*D9

d9=1 zd9o
9

  

We tested our proposed approach in three modes, and each time we considered two stages as variables. It should be 

observed that the optimal efficiency of the network structure, as shown in Fig. 1, shall be unique.  Therefore, the results 

of these three approaches are similar to each other and we considered one of these three modes to describe our approach. 

 

3.2 A heuristic method from pessimistic view 

Primarily, we measure the minimum efficiencies of the second and third stages provided that the efficiency of each sub-

DMU in stage 1, stage 2 and stage 3 is more than one. In Section (2), we explained Wang's approach to measure the 

overall efficiency from the pessimistic view. Therefore, we define φo
234- min and φo

56- min as minimum efficiencies from 

the pessimistic view for the stages 2 and 3, respectively, as follows: 

 

φo
234- min=min {

Oo
234

Io
234 | φj

1 ≥ 1, φj
2 ≥ 1, φj

3 ≥ 1,  φj
4 ≥ 1, φj

5 ≥ 1, φj
6 ≥ 1,  j=1,…,n }                                                        (16) 

 φo
56- min= min {

Oo
56

Io
56 | φj

1 ≥ 1, φj
2 ≥ 1, φj

3 ≥ 1,  φj
4 ≥ 1, φj

5 ≥ 1, φj
6 ≥ 1,  j=1,…,n }     

                            

With the Charnes–Cooper (1962) conversion, we can solve models (16) and measure φo
234- min and φo

56- min, 
respectively. Then, we convert model (9) to model (17) as follows: 

 

φo
overall=min {φo

1. φo
234. φo

56 |
 φj

1 ≥ 1, φj
2 ≥ 1, φj

3 ≥ 1,  φj
4 ≥ 1, φj

5 ≥ 1, φj
6 ≥ 1, φo

234= 
Oo

234

Io
234 ,  φo

56= 
Oo

56

Io
56 ,

 φo
234 ∈[φo

234-min ,M], φo
56 ∈[φo

56-min ,M], j=1,…,n  
}            (17) 

                                          

In models (17) all variables are non-negative. “M” means the upper bound for the interval efficiency from the 

pessimistic view, and based on the experts opinion, we consider a large number as M=3. It should be noted that like the 

optimistic approach, we consider φo
234 and φo

56  as two variables in the objective functions of model (17) and add two 

constraints that specify these two variables, along with their range of changes. We can fix φo
234 and φo

56 with formulas 
(18) as follows: 
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φo
234 = φo

234-min + k2∆ε,         k2=0,1,…, [
M-φo

234-min 

∆ε
] +1                                                                                                (18)   

φo
56 = φo

56-min + k3∆ε,            k3=0,1,…, [
M-φo

56-min 

∆ε
] +1 

With the Charnes–Cooper (1962) conversion, model (17) can be turned into a linear model as follows:  
 

φo
overall =min φo

234 . φo
56. ( ∑ wd1

1D1
d1=1 zd1o

1 + ∑ wd2

2D2
d2=1 zd2o

2 + ∑ wd3

3D3
d3=1 zd3o

3 )    

             s.t.  ∑ wd1

1D1
d1=1 zd1j

1 + ∑ wd2

2D2
d2=1 zd2j

2 + ∑ wd3

3D3
d3=1 zd3j

3 - ∑ vi1
1 xi1j

1I1
i1=1  ≥ 0                (19) 

                      ∑ wd4

4D4
d4=1 zd4j

4 + ∑ wd5

5D5
d5=1 zd5j

5 + ∑ ur1
1 yr1j

1R1
r1=1 - ∑ ur2

2 yr2j
2R2

r2=1 - ∑ vi2
2 xi2j

2I2
i2=1 - ∑ wd1

1D1
d1=1 zd1j

1  ≥ 0          

                       ∑ wd6

6D6
d6=1 zd6j

6 + ∑ wd7

7D7
d7=1 zd7j

7 + ∑ ur3
3 yr3j

3 - ∑ ur4
4 yr4j

4R4
r4=1

R3
r3=1 - ∑ vi3

3 xi3j
3I3

i3=1 - ∑ wd2

2D2
d2=1 zd2j

2  ≥ 0  

                      ∑ wd8

8D8
d8=1 zd8j

8 + ∑ wd9

9D9
d9=1 zd9j

9 + ∑ ur5
5 yr5j

5 - ∑ ur6
6 yr6j

6R6
r6=1

R5
r5=1 - ∑ vi4

4 xi4j
4I4

i4=1 - ∑ wd3

3D3
d3=1 zd3j

3  ≥ 0   

                      ∑ ur7
7R7

r7=1 yr7j
7 - ∑ ur8

8R8
r8=1 yr8j

8 - ∑ wd4

4D4
d4=1 zd4j

4 - ∑ wd6

6D6
d6=1 zd6j

6 - ∑ wd8

8D8
d8=1 zd8j

8  ≥ 0   

                      ∑ ur9
9R9

r9=1 yr9j
9 - ∑ ur10

10R10
r10=1 yr10j

10 - ∑ wd5

5D5
d5=1 zd5j

5 - ∑ wd7

7D7
d7=1 zd7j

7 - ∑ wd9

9D9
d9=1 zd9j

9  ≥ 0    

                     ∑ vi1
1 xi1o

1I1
i1=1  =1 

                    Oo
234= φo

234. Io
234   

                      Oo
56= φo

56. Io
56   

                     φo
234 ∈[φo

234- min,M]  

                      φo
56 ∈[φo

56- min,M]  

                      ur1
1 ,ur2

2 ,ur3
3 ,ur4

4 ,ur5
5 ,ur6

6 ,ur7
7 ,ur8

8 ,ur9
9 ,ur10

10 ,vi1
1 ,vi2

2 ,vi3
3 ,vi4

4 ,wd1

1 ,wd2

2 ,wd3

3 ,wd4

4 ,wd5

5 ,wd6

6 ,wd7

7 ,wd8

8 ,wd9

9  ≥ ε;   

                        r1=1,…,R1;  r2=1,…,R2;  r3=1,…,R3; r4=1,…,R4;  r5=1,…,R5;  r6=1,…,R6; r7=1,…,R7;  r8=1,…,R8; 

                        r9=1,…,R9; r10=1,…,R10; i1=1,…,I1; i2=1, …,I2;   i3=1,…,I3;   i4=1,…,I4;  d1=1,…,D1; d2=1,…,D2; 

                        d3=1,…, D3; d4=1,…,D4; d5=1,…,D5; d6=1,…,D6; d7=1,…,D7; d8=1,…,D8; d9=1,…,D9.  

 

In model (19) we increase k2 and k3 from zero to the upper bound for each one independently and solve each linear 

model with each k2 and k3 and show the value of the objective function with φo
overall(k2, k3). Comparing all the values of 

the objective function in the model (19), we define the minimal overall efficiency from the pessimistic view as 

φo
overall*=min φo

overall(k2, k3). At the same time and with the same k2 and k3, the efficiencies of second stage and third 

stage from  the pessimistic view based on formulas (18) are defined as φo
234*= φo

234(k2) and φo
56*= φo

56(k3), respectively. 

The efficiency of the first stage can be measured by φo
1* =  

φo
overall*

(φo
234*.φo

56*)
. For the sub-DMUs in the first stage we have sub-

DMU1, thus φo
1=φo

1*. For other sub-DMUs, we can use the weights obtained from models (19) and calculate the 

efficiencies of sub-DMUs in formula (20) as follows: 

 

φo
2*=

∑ wd4
4*D4

d4=1 zd4o
4 + ∑ wd5

5*D5
d5=1 zd5o

5 + ∑ ur1
1*yr1o

1R1
r1=1 - ∑ ur2

2*yr2o
2R2

r2=1

∑ vi2
2*xi2o

2I2
i2=1 + ∑ wd1

1*D1
d1=1 zd1o

1
  

φo
3*=

∑ wd6
6*D6

d6=1 zd6o
6 + ∑ wd7

7*D7
d7=1 zd7o

7 + ∑ ur3
3*yr3o

3 - ∑ ur4
4*yr4o

4R4
r4=1

R3
r3=1

∑ vi3
3*xi3o

3I3
i3=1 + ∑ wd2

2*D2
d2=1 zd2o

2
  

φo
4*=

∑ wd8
8*D8

d8=1 zd8o
8 + ∑ wd9

9*D9
d9=1 zd9o

9 + ∑ ur5
5*yr5o

5 - ∑ ur6
6*yr6o

6R6
r6=1

R5
r5=1

∑ vi4
4*xi4o

4I4
i4=1 - ∑ wd3

3*D3
d3=1 zd3o

3
                    (20) 
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 φo
5∗=

∑ ur7
7*R7

r7=1 yr7o
7 - ∑ ur8

8*R8
r8=1 yr8o

8

∑ wd4
4*D4

d4=1 zd4o
4 + ∑ wd6

6*D6
d6=1 zd6o

6 + ∑ wd8
8*D8

d8=1 zd8o
8

 

 φo
6*=

∑ ur9
9*R9

r9=1 yr9o
9 - ∑ ur10

10*R10
r10=1 yr10o

10

∑ wd5
5*D5

d5=1 zd5o
5 + ∑ wd7

7*D7
d7=1 zd7o

7 + ∑ wd9
9*D9

d9=1 zd9o
9

  

 

Like an optimistic approach, we tested our proposed approach in three modes, and each time we considered two stages 

as variables. The results of these three approaches are similar to each other and we considered one of these three modes 

to describe our approach. 

 
 

4.  Case study description 

We consider a factual example of production planning and inventory control in a factory within duration of 24 intervals 

in a year. Therefore, we have a dynamic structure with 24 DMUs, where some of the outputs in the second stage within 

a period t convert to the inputs for the same stage at a period t + 1. The inputs-outputs of each DMU are defined as follows: 

the first stage is the production area and the inputs of the first stage are production cost (x1
1, x2

1, x3
1) and setup cost 

(x4
1, x5

1, x6
1) for three goods 1,2 and 3, separately. The intermediate measures between stage 1 and 2 are the quantity of 

each of the goods produced (z1
1, z1

2, z1
3). In the second stage we have three warehouses and the additional inputs of each 

warehouse, that are costs for reserving storage location (x1
2, x1

3, x1
4), cost of moving goods from the production area to the 

warehouse (x2
2, x2

3, x2
4),  cost of holding goods into warehouse (x3

2, x3
3, x3

4) and the goods remaining in the warehouse from 

the last period (x4
2, x4

3, x4
4). The desirable and undesirable outputs of each warehouse in the second stage are defined by 

the goods remaining in each warehouse for next period (y
1
1, y

1
3, y

1
5), in addition to the costs of moving the goods from the 

warehouse to each delivery point (y
1
2, y

1
4, y

1
6). The intermediate measures between stage 2 and 3 are the quantity of goods 

delivered from each warehouse to each delivery point (z1
4, z1

5, z1
6, z1

7, z1
8, z1

9). Finally, in the third stage the desirable and 

undesirable outputs are profits due to the sale of the goods (y
1
7,y

1
9) and the delay penalty (y

1
8,y

1
10). The inputs-outputs for 

each stage are summarized in Table 1. 
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Table 1. Variables of inputs and outputs 

Stage-SubDMU Input-Output Variable Symbol 

Stage1- sub-DMU1 Input Production cost  

Setup cost  
x1

1, x2
1, x3

1 

x4
1, x5

1, x6
1 

 
Stage1- sub-DMU1 Output Quantity of each of the goods produced z1

1, z1
2, z1

3 
 

Stage2- sub-DMU2 Input Quantity of goods 1 produced 

Cost for reserving storage location 1 

Cost of Transport goods 1 to warehouse 1 

Cost of holding  goods 1 

Goods 1 remaining from the last period 

z1
1 

x1
2 

x2
2 

x3
2 

x4
2 

 
Stage2- sub-DMU2 Output Quantity of goods 1 delivered 

Goods 1 remaining for next period  

Cost of Transport goods 1 to delivery points 

z1
4, z1

5 

y1
1 

y1
2 
 

Stage2- sub-DMU3 Input Quantity of goods 2 produced 

Cost of reserving storage location 2 

Cost of Transport goods 2 to warehouse 2 

Cost of holding goods 2  

Goods 2 remaining from the last period 

z1
2 

x1
3 

x2
3 

x3
3 

x4
3 

Stage2- sub-DMU3 Output Quantity of goods 2 delivered 

Goods 2 remaining for next period  

Cost of Transport goods 2 to delivery points 

z1
6, z1

7 

y1
3 

y1
4 
 

Stage2- sub-DMU4 Input Quantity of goods 3 produced 

Cost of reserving storage location 3 

Cost of Transport goods 3 to warehouse 3 

Cost of holding goods 3  

Goods 3 remaining from the last period 

z1
3 

x1
4 

x2
4 

x3
4 

x4
4 

Stage2- sub-DMU4 Output Quantity of goods 3 delivered 

Goods 3 remaining for next period  

Cost of Transport goods 3 to delivery points 

z1
8, z1

9 

y1
5 

y1
6 
 

Stage3- sub-DMU5 Input Quantity of each of the goods delivered z1
4, z1

6, z1
8 

 
Stage3- sub-DMU5 Output Profit  

Delay Penalty 
y1

7 

y1
8 
 

Stage3- sub-DMU6 Input Quantity of each of the goods delivered 

 
z1

5, z1
7, z1

9 

Stage3- sub-DMU6 Output Profit  

Delay Penalty 
y1

9 

y1
10 

         

We have many variables of inputs and outputs. Therefore, Tables 2 and 3 provide the data for the above-mentioned 

factory for duration of 24 intervals in 2016. The inputs of the factory are shown in Table 2 and the outputs and the 

intermediate measures of the factory are reported in Table 3. We consider each period as a DMU with three stages. 

Thereby, we measure the efficiency of the structure as shown in Fig. 1 as a dynamic network from both the optimistic 

and pessimistic views. 
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Table 2. The inputs of the factory for 24 periods in 2016 
DMU Production cost Setup cost Cost of 

reserving 
storage location 

Cost of Transport 

goods to 
warehouse 

Cost of holding 

goods 

Goods 

remaining 
from last 

period 

x1
1 x2

1 x3
1 x4

1 x5
1 x6

1 x1
2 x1

3 x1
4 x2

2 x2
3 x2

4 x3
2 x3

3 x3
4 x4

2 x4
3 x4

4 

1 2480 3040 4480 432 576 672 65 60 45 64 84 48 50 48 45 0 0 0 

2 4340 5320 6720 756 1008 1008 65 60 45 112 147 72 50 48 45 0 0 0 

3 6820 8360 11200 1188 1584 1680 65 60 45 176 231 120 50 48 45 0 0 0 

4 8680 10640 15680 1512 2016 2352 65 60 45 224 294 168 50 48 45 0 0 0 

5 3720 4560 6720 648 864 1008 65 60 45 96 126 72 50 48 45 0 0 0 

6 4340 5320 8960 756 1008 1344 65 60 45 112 147 96 50 48 45 0 0 0 

7 8060 10640 13440 1404 2016 2016 65 60 45 208 294 144 50 72 45 0 0 0 

8 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 113 144 105 0 2 0 

9 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 92 120 105 6 8 4 

10 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 50 48 75 4 6 4 

11 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 50 48 45 0 0 2 

12 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 50 48 45 0 0 0 

13 7440 8360 11200 1296 1584 1680 65 60 45 192 231 120 50 48 45 0 0 0 

14 4340 5320 6720 756 1008 1008 65 60 45 112 147 72 50 48 45 0 0 0 

15 4340 5320 8960 756 1008 1344 65 60 45 112 147 96 50 48 45 0 0 0 

16 3720 4560 6720 648 864 1008 65 60 45 96 126 72 50 48 45 0 0 0 

17 6820 8360 11200 1188 1584 1680 65 60 45 176 231 120 50 48 45 0 0 0 

18 8060 9880 13440 1404 1872 2016 65 60 45 208 273 144 50 48 45 0 0 0 

19 6200 7600 11200 1080 1440 1680 65 60 45 160 210 120 50 48 45 0 0 0 

20 7440 9120 13440 1296 1728 2016 65 60 45 192 252 144 50 48 45 0 0 0 

21 7440 9120 11200 1296 1728 1680 65 60 45 192 252 120 50 48 45 0 0 0 

22 9300 11400 15680 1620 2160 2352 65 60 45 240 315 168 134 144 105 0 0 0 

23 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 50 48 45 8 8 4 

24 12400 15200 22400 2160 2880 3360 65 60 45 320 420 240 50 48 45 0 0 0 
 

In Table 2, the zero values for each period indicate that the goods from the previous period have not remained in the 

warehouse (the last three columns). The Table 3 also shows zero values indicating that there is no goods lingering  in the 

warehouse for the next period (columns 11 to 13), or  that, we do not have a delay penalty for delivery of goods at that 

period (the last two columns). 

 
Table 3. The outputs and the intermediate measures of the factory for 24 periods in 2016 

DMU Quantity of goods 

produced 

Quantity of goods delivered Goods 

remaining for 

next period 

Cost of Transport goods to 

delivery points 

Profit Delay 

Penalty 

z1
1 z1

2 z1
3 z1

4 z1
5 z1

6 z1
7 z1

8 z1
9 y1

1 y1
3 y1

5  y1
12 y1

4  y1
6  y1

7  y1
9  y1

8 y1
10 

1 8 8 4 4 4 4 4 2 2 0 0 0 132 154 82 1590 1590 0 0 

2 14 14 6 7 7 7 7 3 3 0 0 0 231 269.5 123 2555.5 2555.5 0 0 

3 22 22 10 11 11 11 11 5 5 0 0 0 363 423.5 205 4145.5 4145.5 0 0 

4 28 28 14 14 14 14 14 7 7 0 0 0 462 539 287 5565 5565 0 0 

5 12 12 6 6 6 6 6 3 3 0 0 0 198 231 123 2385 2385 0 0 

6 14 14 8 7 7 7 7 4 4 0 0 0 231 269.5 164 3009.5 3009.5 0 0 

7 26 28 12 13 13 13 13 6 6 0 2 0 429 500.5 246 4940.5 4940.5 0 0 

8 40 40 20 17 17 17 17 8 8 6 8 4 561 654.5 328 6530.5 6530.5 0 0 

9 40 40 20 21 21 21 21 10 10 4 6 4 693 808.5 410 8120.5 8120.5 0 0 

10 40 40 20 23 21 23 23 11 11 0 0 2 719 885.5 451 8915.5 8842.5 0 20 

11 40 40 20 16 24 18 22 11 11 0 0 0 688 783 451 7990 8818 120 0 

12 40 40 20 17 17 27 13 12 8 0 0 0 561 724.5 396 9686.5 5994.5 60 270 

13 24 22 10 18 6 6 16 3 7 0 0 0 354 456 219 2823 5541 0 0 

14 14 14 6 7 7 7 7 3 3 0 0 0 231 269.5 123 2555.5 2555.5 0 0 

15 14 14 8 7 7 7 7 4 4 0 0 0 231 269.5 164 3009.5 3009.5 0 0 

16 12 12 6 6 6 6 6 3 3 0 0 0 198 231 123 2385 2385 0 0 

17 22 22 10 11 11 11 11 5 5 0 0 0 363 423.5 205 4145.5 4145.5 0 0 

18 26 26 12 13 13 13 13 6 6 0 0 0 429 500.5 246 4940.5 4940.5 0 0 

19 20 20 10 10 10 10 10 5 5 0 0 0 330 385 205 3975 3975 0 0 

20 24 24 12 12 12 12 12 6 6 0 0 0 396 462 246 4770 4770 0 0 

21 24 24 10 12 12 12 12 5 5 0 0 0 396 462 205 4316 4316 0 0 

22 30 30 14 11 11 11 11 5 5 8 8 4 363 423.5 205 4145.5 4145.5 0 0 

23 40 40 20 24 24 24 24 12 12 0 0 0 792 924 492 9540 9540 0 0 

24 40 40 20 20 20 20 20 10 10 0 0 0 660 770 410 7950 7950 0 0 
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An inattention or negligence in relative to the control of weights is one of the most crucial problems in DEA models. 

Each DMU can assign the weights to the factors in order to maximize its efficiency. In this case, very few weights may 

be allocated to important factors or high weights to the least important factors. To overcome the problem, we utilized a 

questionnaire that was completed by managers. Table 4 illustrates the importance of weights. The value of ε in models 

was also considered to be 0.001 according to the opinion of managers. 

 
Table 4. Constraints to control weights 

Outputs Intermediate measures Inputs 
u1

7

u1
9

 ≥ 1.03 
w1

8

w1
9

 ≥ 1.03 
v3

4

v3
3

 ≥ 1.20 
v3

1

v2
1

 ≥ 1.09 

u1
9

u1
8

 ≥ 1.03 
w1

9

w1
6

 ≥ 1.12 
v3

3

v3
2

 ≥ 1.08 
v2

1

v1
1

 ≥ 1.12 

u1
8

u1
10

 ≥ 1.04 
w1

6

w1
7

 ≥ 1.04 
v3

2

v2
4

 ≥ 1.01 
v1

1

v6
1

 ≥ 1.02 

u1
10

u1
3

 ≥ 1.17 
w1

7

w1
3

 ≥ 1.15 
v2

4

v2
3

 ≥ 1.08 
v6

1

v5
1

 ≥ 1.04 

u1
3

u1
2

 ≥ 1.10 
w1

3

w1
2

 ≥ 1.05 
v2

3

v2
2

 ≥ 1.30 
v5

1

v4
1

 ≥ 1.02 

u1
2

u1
1

 ≥ 1.16 
w1

2

w1
4

 ≥ 1.05 
v2

2

v1
4

 ≥ 1.06 
v4

1

v4
4

 ≥ 1.02 

u1
1

u1
6

 ≥ 1.38 
w1

4

w1
5

 ≥ 1.06 
v1

4

v1
3

 ≥ 1.07 
v4

4

v4
3

 ≥ 1.04 

u1
6

u1
5

 ≥ 1.08 
w1

5

w1
1

 ≥ 1.21 
v1

3

v1
2

 ≥ 1.16 
v4

3

v4
2

 ≥ 1.16 

u1
5

u1
4

 ≥ 1.33 
  v4

2

v3
4

 ≥ 1.20 

 

Model (11) measure the maximum optimistic performance and model (16) measure the minimum pessimistic 

performance of the second and third stages. These values are shown in Table 5 with the values of k2 and k3 obtained for 

the optimal overall optimistic and pessimistic performance. 

 

Table 5. Results of the maximum and minimum overall efficiencies of the second and third stages 

Pessimistic View  Optimistic View DMU 

k3 k2 φo
56-min φo

234-min  k3 k2 θo
56-max θo

234-max 
3 0  1.00070  1.00000  6 7  1.00000  0.58965 1 

1 10  1.00020  1.11336  8 7  1.00000  0.73641 2 

12 8  1.00099  1.19736  7 8  1.00000  0.86243 3 

2 17  1.00244  1.23606  6 7  1.00000  0.92627 4 

7 5  1.00104  1.09702  6 7  1.00000  0.70994 5 

7 16  1.00096  1.14184  4 7  1.00000  0.77012 6 

5 4  1.00134  1.32023  7 7  1.00000  0.91584 7 

1 5  1.00204  1.15998  7 2  1.00000  0.94502 8 

3 8  1.00273  1.16398  7 2  1.00000  0.80458 9 

6 9  1.00279  1.27057  7 3  0.99978  0.81510 10 

6 19  1.00207  1.23324  20 5  1.00000  0.94861 11 

12 3  1.00000  1.28330  13 5  1.00000  0.99940 12 

2 9  1.00000  1.24592  11 10  1.00000  0.89539 13 

1 10  1.00020  1.11336  8 7  1.00000  0.73641 14 

7 16  1.00096  1.14184  4 7  1.00000  0.77012 15 

7 5  1.00104  1.09702  6 7  1.00000  0.70994 16 

12 8  1.00099  1.19736  7 8  1.00000  0.86243 17 

9 1  1.00134  1.22168  7 8  1.00000  0.90291 18 

7 15  1.00174  1.19021  6 8  1.00000  0.84857 19 

6 5  1.00209  1.21641  6 8  1.00000  0.89220 20 

17 2  1.00000  1.20397  9 8  1.00000  0.87525 21 

1 0  1.00099  1.00000  7 6  1.00000  0.95773 22 

11 17  1.00417  1.17005  6 3  1.00000  0.80183 23 

5 10 1.00348    1.27407     6 6 1.00000    0.99872     24 
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Table 6 gives the overall efficiency and the efficiencies of stages and sub-DMUs from models (14) and (15) based on 

the optimistic view in relevance to considering constraints in order to control weights. 

Table 6. Results based on the optimistic view 

DMU θo
overall* θo

1* θo
234* θo

56* θo
2* θo

3* θo
4* θo

5* θo
6* 

1 0.23663 0.48443 0.51965 0.94 0.512357 0.586409 0.47756 0.978973 0.900973 

2 0.29337 0.478505 0.66641 0.92 0.635742 0.762186 0.608481 0.955317 0.884609 

3 0.35627 0.489611 0.78243 0.93 0.690658 0.839468 0.782225 0.964254 0.895506 

4 0.39901 0.49573 0.85627 0.94 0.72601 0.903115 0.889023 0.978973 0.900973 

5 0.29104 0.483822 0.63994 0.94 0.601413 0.709667 0.60885 0.978973 0.900973 

6 0.32794 0.487922 0.70012 0.96 0.628221 0.739518 0.706541 1 0.919883 

7 0.39071 0.496688 0.84584 0.93 0.71458 0.925034 0.841362 0.966592 0.89339 

8 0.43652 0.507423 0.92502 0.93 0.908467 0.980833 0.879161 0.962447 0.897531 

9 0.37108 0.508566 0.78458 0.93 0.696431 0.847283 0.779707 0.960634 0.899341 

10 0.36524 0.500349 0.7851 0.92978 0.658318 0.842691 0.804549 0.972073 0.886469 

11 0.35395 0.492358 0.89861 0.8 0.74686 0.994601 0.904237 0.689819 0.893642 

12 0.33808 0.409309 0.9494 0.87 0.821087 0.980487 1 0.971958 0.715375 

13 0.3492 0.493292 0.79539 0.89 0.769192 0.843033 0.766934 0.739868 1 

14 0.29337 0.478505 0.66641 0.92 0.635742 0.762186 0.608481 0.955317 0.884609 

15 0.32794 0.487922 0.70012 0.96 0.628221 0.739518 0.706541 1 0.919883 

16 0.29104 0.483822 0.63994 0.94 0.601413 0.709667 0.60885 0.978973 0.900973 

17 0.35627 0.489611 0.78243 0.93 0.690658 0.839468 0.782225 0.964254 0.895506 

18 0.38027 0.496886 0.82291 0.93 0.712499 0.873204 0.841473 0.966592 0.89339 

19 0.35747 0.494798 0.76857 0.94 0.678504 0.808289 0.782341 0.978973 0.900973 

20 0.38016 0.497938 0.8122 0.94 0.700729 0.849319 0.841497 0.978973 0.900973 

21 0.35642 0.492512 0.79525 0.91 0.707493 0.863933 0.782271 0.951083 0.868944 

22 0.42327 0.506978 0.89773 0.93 0.944822 1 0.770276 0.964816 0.895186 

23 0.36081 0.497312 0.77183 0.94 0.588739 0.82617 0.844259 0.978973 0.900973 

24 0.4372 0.495469 0.93872 0.94 0.768295 0.99556 0.990161 0.978973 0.900973 
 

From the second column of Table 6, we note that the efficiency scores of period 24 is highest and the efficiency scores 

of period 1 is lowest from the optimistic view. Table 7 demonstrates the overall efficiency and the efficiencies of stages and 

sub-DMUs from models (19) and (20) based on the pessimistic view in relative to considering constraints on control weights.  

Table 7. Results based on the pessimistic view 

DMU φo
overall* φo

1* φo
234* φo

56* φo
2* φo

3* φo
4* φo

5* φo
6* 

1 1.09539 1.062763 1 1.0307 1 1 1 1.043384 1.018144 

2 1.25799 1.026314 1.21336 1.0102 1.444636 1.255204 1.129217 1.02883 0.991978 

3 1.43191 1.000002 1.27736 1.12099 1.068206 1.192991 1.459057 1.150346 1.091819 

4 1.43761 1 1.40606 1.02244 1.125902 1.271352 1.658689 1.018829 1.026129 

5 1.29446 1.053688 1.14702 1.07104 1.221698 1.144869 1.12809 1.105617 1.036718 

6 1.43789 1.031323 1.30184 1.07096 1.262163 1.207759 1.3891 1.092297 1.049753 

7 1.50029 1.049107 1.36023 1.05134 1.701783 1.239278 1.395674 1.084704 1.018288 

8 1.2883 1.052062 1.20998 1.01204 1.396423 1.146618 1.23735 1.014243 1.009815 

9 1.32689 1.032844 1.24398 1.03273 1.068958 1.240253 1.302052 1.05243 1.013236 

10 1.49841 1.036245 1.36057 1.06279 1.220424 1.395808 1.37457 1.087052 1.038447 

11 1.52662 1.00995 1.42324 1.06207 1.358902 1.395931 1.482932 1 1.114823 

12 1.4709 1.000003 1.3133 1.12 1.172873 1.293982 1.465096 1.218566 1 

13 1.36264 1.000001 1.33592 1.02 1.483196 1.146201 1.4485 1 1.030653 

14 1.25799 1.026314 1.21336 1.0102 1.444636 1.255204 1.129217 1.02883 0.991978 

15 1.43789 1.031323 1.30184 1.07096 1.150021 1.147987 1.304811 1.227224 1.114752 

16 1.29446 1.053688 1.14702 1.07104 1.221698 1.144869 1.12809 1.105617 1.036718 

17 1.43191 1.000002 1.27736 1.12099 1.068206 1.192991 1.459057 1.150346 1.091819 

18 1.34418 0.999999 1.23168 1.09134 1.149171 1.13437 1.343746 1.167193 1.023843 

19 1.51425 1.05423 1.34021 1.07174 1.486785 1.294474 1.338915 1.107239 1.0365 

20 1.34504 1 1.26641 1.06209 0.770898 1.416272 1.466106 1.099244 1.026881 

21 1.43561 1.00249 1.22397 1.17 1.142857 1.151533 1.401944 1.322582 1.01703 

22 1.0483 1.036904 1 1.01099 1 1 1 1.017277 1.004691 

23 1.55034 1.038376 1.34005 1.11417 1.035937 1.335427 1.503392 1.155136 1.073416 

24 1.44756 1.000003 1.37407 1.05348 1.047982 1.415367 1.563872 1.074888 1.036668 
 

From the second column of Table 6, we note that the efficiency scores of period 23 are the highest and the efficiency 

scores of period 22 are the lowest from the pessimistic view.  By comparing the results of Tables 6 and 7, we observe the 

difference in optimistic and pessimistic views in some cases, for example, by looking at the second column of Table 6, 

we find that the efficiency scores of period 24 are higher than period 23 )0.36081  > 0.4372) from the optimistic view.  

But, from the second column of Table 7, it can be noted that period 23 is higher than period 24 (1.44756  > 1.55034) from 
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the pessimistic view. Therefore, for the final ranking of DMUs, Tables 6 and 7 have different results on their own. Finally, 

Table 8 shows the overall efficiency as well as the efficiencies of stages and the sub-DMUs based on the double-frontier, 

or the optimistic and pessimistic views that we have explained in the Section (2) by formula (10). 

Table 8. Results based on the double-frontier view 

DMU ∅o
overall* ∅o

1* ∅o
234* ∅o

56* ∅o
2* ∅o

3* ∅o
4* ∅o

5* ∅o
6* 

1 0.509119 0.71752 0.720868 0.984306 0.715791 0.765773 0.691057 1.010666 0.957768 
2 0.6075 0.700783 0.899219 0.964046 0.95834 0.97811 0.828919 0.991392 0.936756 

3 0.714245 0.699723 0.999722 1.021039 0.858932 1.000739 1.068322 1.053198 0.988803 

4 0.757378 0.704081 1.097254 0.980354 0.904111 1.07153 1.214336 0.998702 0.961517 
5 0.613791 0.714001 0.856752 1.003383 0.857173 0.901374 0.828757 1.04037 0.966465 

6 0.686689 0.70937 0.954696 1.013963 0.890459 0.945071 0.990685 1.04513 0.982675 

7 0.765623 0.721858 1.072631 0.98881 1.102751 1.070689 1.083636 1.023946 0.953797 
8 0.749912 0.730644 1.057949 0.970153 1.126323 1.060491 1.042991 0.988006 0.952019 

9 0.7017 0.724755 0.987928 0.98002 0.862818 1.025107 1.007581 1.005485 0.954591 

10 0.739783 0.720058 1.03353 0.994063 0.896341 1.084544 1.051622 1.027956 0.959454 

11 0.735083 0.705164 1.130901 0.921768 1.007427 1.178301 1.157982 0.830553 0.998125 

12 0.705182 0.639774 1.116623 0.987117 0.981341 1.12638 1.210412 1.088299 0.845798 

13 0.689807 0.702348 1.030814 0.952785 1.068112 0.982998 1.053994 0.860156 1.015211 
14 0.6075 0.700783 0.899219 0.964046 0.95834 0.97811 0.828919 0.991392 0.936756 

15 0.686689 0.70937 0.954696 1.013963 0.849981 0.921389 0.960158 1.107801 1.012641 

16 0.613791 0.714001 0.856752 1.003383 0.857173 0.901374 0.828757 1.04037 0.966465 
17 0.714245 0.699723 0.999722 1.021039 0.858932 1.000739 1.068322 1.053198 0.988803 

18 0.714948 0.704901 1.006758 1.007445 0.904866 0.995257 1.063356 1.062167 0.956395 

19 0.73573 0.72224 1.014911 1.003711 1.004385 1.022893 1.023469 1.041133 0.966364 
20 0.715074 0.705647 1.014188 0.999182 0.734977 1.096753 1.110731 1.037367 0.961869 

21 0.715318 0.702665 0.986591 1.031843 0.899201 0.99742 1.047235 1.121555 0.940076 

22 0.666119 0.725043 0.947486 0.96965 0.97202 1 0.877654 0.990699 0.948359 
23 0.747916 0.718608 1.017001 1.023386 0.780959 1.050376 1.126611 1.063413 0.983422 

24 0.795533 0.703897 1.135723 0.995124 0.897307 1.187048 1.244381 1.02581 0.966442 
 

For ranking the DMUs, we use the second column of Table 8. Therefore, the performance of 24 DMUs is rated as follows: 

DMU24 >  DMU7  >  DMU4 > DMU8 > DMU23 > DMU10 > DMU19 > DMU11 > DMU21 > 

DMU20 > DMU18 > DMU3 = DMU17 > DMU12 > DMU9 > DMU13 > DMU6 = DMU15 > 

DMU22 > DMU5 = DMU16 > DMU2 = DMU14 > DMU1, 

Where symbol “ > ” means that the performance is better than and symbol “= ” means that the performance is equal. 

It should be noted that in some cases, for example, inDMU3 and DMU17, the rank of the DMUs are equal. This is because 

of the demand, the amount of production of each good, the amount of delivery and maintenance of each good and other 

items during periods 3 and 17 were absolutely equivalent and the factory has the same performance. Table 9 demonstrates 

the clustering of the DMUs by k-means method that we have explained in the Section (2). In accordance with the opinions 

of managers, we suggest clustering the DMUs into three groups with similar characteristics as follows:  

Table 9. Clustering results based on the double-frontier view 
K-means label DMU K-means label DMU 

2 13 3 1 

3 14 3 2 

2 15 2 3 

3 16 1 4 

2 17 3 5 

2 18 2 6 

1 19 1 7 

2 20 1 8 

2 21 2 9 

2 22 1 10 

1 23 1 11 

1 24 2 12 
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Figure 2. The three groups’ classification of the DMUs   
 

In Fig. 2, we identified three groups of DMUs based on the double-frontier view. Since there are no important 

differences in the inputs across the three groups, it implies that groups 2 and 3 have all abilities in place, but are poor in 

executing these capabilities and changing them into high level of performance. Thus, these groups must benchmark 

themselves against group 1 and identify ways to execute their abilities better. We have put this research at the managers’ 

disposal, so that the best decisions can be adopted for the abovementioned factory. 

 

5. Conclusions 

Time and the resources involved in both the fundamental considerations, awareness of managers and owners of production 

and services, as well as the necessity of increasing the efficiency and effectiveness of activities related to the missions of 

organizations and the management suite have become extremely prominent and even more evident. The black box 

approach neglects the internal activities of systems and evaluates performance based on the final inputs and outputs. 

According to the belief of many researchers, this causes a lack of confidence in the evaluation results.  In this research, 

we tried to pay attention to the intra-system activities using the proposed model, which was based on our knowledge. It 

has not been performed so far in the area of production planning and inventory control. A hybrid system with a complex 

internal structure is developed by a DEA approach. This system is comprised of three stages, six sub-DMUs, additional 

inputs and undesirable outputs. We utilize the cooperative approach multiplicative model to measure the efficiency of the 

overall system and the performances of DMUs from both optimistic and pessimistic views. The cooperative models from 

these views cannot be converted into linear models due to the additional inputs and outputs in the second stage. Therefore, 

a heuristic method is proposed to convert the nonlinear models into linear models.  

We simulate a factory in a real world that has a production area and three warehouses for goods and two delivery 

points. The factory produces three goods and each good is placed in a warehouse.  The factory is considered as a dynamic 

network and the efficiency of the network is measured from both optimistic and pessimistic views. We use a geometrical 

mean’s approach for ranking the DMUs of the views. In the simulation, all costs are considered, including production 

costs, maintenance costs of the products, warehouse reservation costs, transportation costs from the production yard to 

the warehouses, transportation costs from the warehouses to the product delivery sites, product’s delay penalty and the 

profit obtained from the sale of products. 

The ranking results of the dynamic network under study indicated that the periods (24) and (1) were the best and the 

poorest periods, respectively, in terms of efficiency.  The efficiency results of the other periods show a fluctuating 

situation. Based on the solar calendar in Iran, period 1 includes (the Iranian New Year) or Nowruz vacations and period 

24 relates to the period prior to the holidays. According to the Iranian culture, demand and consumption achieve their 

maximum level before the vacations. Hence, experimental results confirm the results obtained from the model. In this 

paper, we suggest using a k-means technique to cluster the DMUs into three groups with similar characteristics based on 

the double-frontier view. Moreover, this paper presents the modeling method and solution for evaluating the efficiency 

of complex systems. The model allows us to open the structure of the “black box” by considering intermediate measures, 

and can help to obtain important information about efficient and inefficient points of the system. The results of this study 
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show that the heuristic method can be considered as a beneficial technique to find the optimal efficiency in the complex 

internal structure.  The heuristic approach proposed in this research can be used to solve a hybrid three-stage system. The 

model becomes complex for higher-stage systems, due to the presence of additional inputs and outputs, and increases the 

solution time significantly. To overcome the problem, we can change the movement step (∆ε). The findings of this study 

can assist managers to improve the performance of factories. We suggest developing models for imprecise data for tasks 

in the future. 
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