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Abstract 

In this study, we propose a model to minimize the inventory and location costs of a supply chain, including a production 

plant, warehouses and retailers. The production plant distributes a single product to retailers through warehouses. The 

model determines the location of warehouses, allocates retailers to the warehouses and indicates the length of order 

intervals at warehouses and retailers. To ensure the order quantity is lower than the warehouses’ capacity, we consider 

the capacity constraints. Unlike the existing researches, we investigate the limitation on the number of established 

warehouses. We formulize the problem as a nonlinear mixed-integer model and propose two efficient meta-heuristic 

algorithms including a genetic algorithm (GA) and an evolutionary simulated annealing algorithm (ESA) to solve it. To 

improve the proposed algorithms, in generating populations, a new heuristic method which produces feasible solutions 

is designed. The Taquchi method is used for tuning the parameters of the proposed algorithms. The small size numerical 

examples are solved and sensitivity analysis is done to demonstrate the influential theoretical results. We evaluate the 

proposed algorithms by comparing the solutions of them with the optimal solution obtained from the Lingo 11. Further, 

we investigate their efficiency by solving numerical examples in different sizes and depict the percentage gaps between 

the best solution values and the average objective values of them. Results reveal that both the GA and ESA are efficient 

in solving the proposed model, but the ESA outperforms the GA on the optimal solution, computing time and stability. 

Keywords: Location; Inventory; Limited capacity; Genetic algorithm; Evolutionary simulated annealing. 

1. Introduction 

Facility location as a strategic level decision and inventory control as a tactical level decision are two vital considerations 

in supply chain design. These decisions are interrelated because a change in inventory policy of warehouses or retailers 

can have impacts on allocation decisions and the location costs, and also a change in the number or location of 

warehouses can influence lead times and the inventory costs. Hence, analyzing them independently in the design of 

supply chain increases cost because of sub-optimally decisions. (Cavinato 1992; Chopra and Meindl 2006; Gunasekaran 

et al. 2001; Gunasekaran et al. 2004; Silver et al. 1998; Simchi-Levi et al. 2007; Stevens 1993). The pioneering works 

in joint inventory and location problems were done around 2000. Teo et al. (2001) modeled a three echelon supply chain 

including a supplier, warehouses and retailers. They aimed to optimize the total cost of opening warehouses and inventory 

holding at warehouses. Daskin et al. (2002) expanded the work of Teo et al. (2001) by considering shipping costs from 

the supplier to warehouses and from warehouses to retailers. Shen et al. (2003) formulated a joint location-inventory 

problem for a supply chain where some retailers were allowed to serve as warehouses for other retailers. The problem 

was formulated as a nonlinear integer-programming model to determine which retailers should serve as warehouses and 

how to assign the other retailers to the warehouses. They restructured the model into a set-covering integer-programming 

model to solve it. Shen et al. (2007) modeled a location-inventory problem with customers’ random demand. They solved 

large-size numerical examples ranging from 40 to 320 retailers and showed the benefits of optimizing location, inventory, 

and routing decisions jointly. Yao et al. (2010) formulized a three echelon supply chain by considering inventory and 

location decisions. They assumed that retailers could be served by warehouses or production plants. The problem was 

presented as a mixed-integer nonlinear model, with approximation and transformation techniques being utilized to solve 

numerical examples. 
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Jha et al. (2012) proposed a mixed-integer model for a multi-product inventory-location problem with deterministic 

demand, in which some retailers were considered as warehouses. They used an adaptive differential evolution algorithm 

to solve numerical examples. Tsao et al. (2012) investigated the problems of finding the warehouses’ location, assigning 

retailers to warehouses, as well as determining inventory control at warehouses. They proposed a continuous 

approximation model and developed nonlinear programming techniques to solve it. More recently, Wheatly et al. (2015) 

modeled a multi-product inventory-location problem under stochastic demand and time-based service levels. The lead 

time assumed to be fixed and a logic-based Benders decomposition algorithm was proposed. Qu et al. (2015) used a 

genetic algorithm, a hybrid differential evolution algorithm and a hybrid self-adapting differential evolution algorithm 

to optimize the inventory and location costs at a three-level supply chain with customers’ stochastic demand. They 

considered two replenishment policies, joint replenishment, and independent replenishment for formulating the model. 

Sadjadi et al. (2016) proposed a mixed-integer nonlinear programming model to address the location-inventory problem 

where the queueing method was utilized to determine the shortage, mean inventory, amount of annual purchase and 

ordering. A three-level closed-loop supply chain for location-inventory-pricing decisions was modeled by Ahmadzadeh 

(2017). He considered the demand of customers correlated and used periodic review (R, T) inventory control policy, and 

proposed three meta-heuristic algorithms including a genetic algorithm, an imperialist competitive algorithm, and a 

firefly algorithm for solving the model. Li et al. (2018) delt with location-inventory decisions jointly in a closed-loop 

system with Third-party logistics. They formulated the problem as a mixed-integer non-linear programming model and 

proposed a heuristics algorithm based on differential evolution and the genetic algorithm.  

In line with inventory-location studies, some researchers have addressed inventory policy at retailers and warehouses, 

simultaneously. You et al. (2010) proposed an inventory-location model for a multi-echelon supply chain under fixed 

demand. Their model determines location and inventory decisions while guarantees the service time. They proposed a 

decomposition algorithm based on the integration of piecewise linear approximation and the Lagrangean relaxation to 

solve the problem in a case study from chemicals and industrial gas supply chain. A two-echelon supply chain design 

was studied by Romeijn et al. (2007). They formulated the problem as a set covering model to minimize location and 

inventory costs by considering safety stock at warehouses and retailers. A mixed-integer non-linear model for a one-

product inventory problem under deterministic demand was proposed by Diabat et al. (2015). Their model determined 

the location of warehouses and the length of order intervals at warehouses and retailers, simultaneously. It was assumed 

that the inventory holding cost of warehouses is lower than retailers. Puga et al. (2017) used a genetic algorithm to 

minimize warehouses establishing, transportation and inventory costs. The constraint of the problem was on product 

shipment size. Saragih et al. (2019) dealt with a three-echelon location, inventory, and routing problem. They considered 

holding costs at a supplier, warehouses and retailers, simultaneously. A two-phase heuristic was proposed including a 

constructive stage and an improvement stage, and simulated annealing was used to improve the solutions at the 

improvement stage.  

The studies we discussed above all assumed that warehouse' capacity is unlimited, which is not very practical in the real 

world. Miranda et al. (2004) studied a nonlinear mixed-integer inventory-location problem by regarding capacity 

constraints for warehouses. The model not only located warehouses and allocated retailers to them but also determined 

inventory policy at warehouses. A Lagrangian relaxation and subgradient methods were used to solve numerical 

examples. Ozsen et al. (2008, 2009) developed the problem investigated by Daskin et al. (2002) and Shen et al. (2003) 

by considering capacity constraints. They formulated the problem as a nonlinear integer-programming model and 

proposed a Lagrangian relaxation solution algorithm to solve it. A three-level supply chain for location and inventory 

decisions was modeled by Askin (2014) where a predetermined finite set of options was considered for warehouses’ 

capacity. He sought to seek the warehouses' location, assigned retailers to warehouses, and determined order quantity at 

warehouses and retailers. A genetic algorithm was proposed to solve numerical examples. A capacitated location-

allocation model by considering stochastic demands was presented by Alizadeh et al. (2015). They formulated the 

objective function that included fixed costs of establishing facilities, allocation costs and expected values of outsourcing 

and servicing costs as a mixed-integer nonlinear model. A genetic algorithm and a discrete version of the colonial 

competitive algorithm (CCA) were proposed, and at the end it was concluded that the CCA performs better than the 

genetic algorithm. Diabat et al. (2016) addressed a capacitated location and inventory problem where a genetic algorithm 

was used to find optimal solutions. Vahdani et al. (2017) proposed a mixed-integer non-linear model for a joint location-

inventory problem under correlated demand at retailers. They considered the policy of periodic review for inventory 

level at warehouses. In their work, two meta-heuristic algorithms including a genetic algorithm and a simulated annealing 

algorithm were presented.  

Today, a key factor in designing the supply chain is budget constraint. Modeling a supply chain by considering this 

constraint makes the problem more realistic. Adding this constraint, while making the model more practical (Lemmens 

et al. 2016), may increase its complexity. Snyder et al. (2005) formulated a location problem while considering the budget 

constraint as limiting on the number of opened warehouses. They proposed a Lagrangian relaxation algorithm to solve 

it. Mosavi et al. (2013) proposed a mixed binary integer program for a multi-product multi-period inventory problem in 

which the total budget for buying products was limited. Alikar et al. (2017) investigated a multi-product inventory system 

under deterministic demand. In their model, the total available budget and storage space were limited. They used a non-
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dominated sorting genetic algorithm, a multi-objective particle swarm optimization, and a multi-objective harmony 

search to solve numerical examples. Considering budget and storage space constraints, an inventory-location problem 

was improved by Mousavi et al. (2019) where the demand of buyers was satisfied by vendors that stored products in 

their warehouses. Their model determined the optimal placement of vendors among buyers and order quantity of buyers 

to them. A modified genetic algorithm and a particle swarm optimization algorithm were proposed to find optimal 

solutions.  

A review of the literature shows that each researcher has attempted to overcome the usability of inventory -location 

problem by breaking traditional assumptions and proposing a more realistic model. Some researches considered budget 

and storage space constraints and some others addressed inventory policy at retailers and warehouses, simultaneously. 

To the best of our knowledge, there is no inventory–location study that models inventory policy at warehouses and 

retailers simultaneously by regarding budget and storage space constraints. Thus, in this research, we develop a more 

realistic problem by filling this gap. We formulate a three echelon supply chain including one production plant, 

warehouses, and retailers. The production plant provides the demand of retailers through warehouses. The aim is to find 

the warehouses location, allocate retailers to the warehouses, and determine the length of order intervals at warehouses 

and retailers. We consider the budget constraint as the number of warehouses that can be opened and also assume limited 

capacity for warehouses. Since the model is overly NP-hard, two efficient meta-heuristic algorithms, a genetic algorithm 

(GA) and an evolutionary simulated annealing algorithm (ESA), are presented. In generating populations for these 

algorithms, a new heuristic method that produces feasible solutions is designed.  

The remainder of this study is as follows: In Section 2, the problem, notations and the mathematical formulation of the 

model are presented. In Section 3, the solution algorithms are stated. The experimental design to tune the parameters of 

the proposed algorithms is explained in Section 4. In Section 5, the numerical examples are presented. Finally, in Section 

6, the conclusion of the study is presented, and some suggestions for future research are proposed. 

2. Problem description and notations 

We consider a reliable production plant that provides the retailers' demands for a single product through warehouses. It 

is desired to select warehouses in candidate locations to be established, allocate retailers to established warehouses and 

determine the length of order intervals at the warehouses and retailers so that the operating cost of the supply chain will 

be minimized (Figure 1). 

The assumptions, notations and decision variables will be stated as follows. 

2.1 Assumptions 

i. The location of the retailers is fixed and known. 

ii. The demand rate of retailers is known and deterministic. 

iii.  Each retailer has an unlimited capacity for holding inventory. 

iv. The retailer's demand must be satisfied with just one warehouse. 

v. There is not any backlog at warehouses and retailers. 

vi.  The length of order intervals at the warehouses and the retailers is an integer power of two (Roundy 1985). 

vii. The capacity of warehouses is limited ( Vahdani et al. 2017; Diabat et al. 2016; Ozsen et al. 2009; Ozsen et al. 

2008). 

viii. The number of warehouses that can be established is limited (Li et al. 2013; Snyder et al. 2005). 
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Figure 1. A potential solution for the model 
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2.2 Indices 

i(i= 1, . . . , I): Set of retailers 

j(j = 1, . . . , J ): Set of possible warehouse’ locations 

2.3 Input parameters 

di: The demand rate of retailer i 

fj: The establishing cost of a warehouse at location j 

sij: The cost of shipping one unit of the product from warehouse j to retailer i 

�́�j: The cost of shipping one unit of the product from the production plant to warehouse j 

hi: The cost of holding one unit of the product in a unit time at retailer i 

ki: The cost of ordering at retailer i 

ℎ́j: The cost of holding one unit of the product in a unit time at warehouse j 

�́�j: The cost of ordering at warehouse j 

Cj: The capacity of warehouse j 

P: The number of warehouses that can be established 

𝛽𝑡𝑟𝑛: The transportation costs weight  

𝛽𝑖𝑛𝑣: The inventory costs weight  

2.4 Decision variables 

Tj: The length of order interval at warehouse j 

Tij: The length of order interval at retailer i when allocated to warehouse j 

 

Xj= 
 

 

Yij= 

 

The objective function is defined as the total cost, which includes cost of establishing warehouses, cost of ordering for 

the warehouses and retailers, cost of shipping products between warehouses and retailers, cost of shipping products 

between the production plant and warehouses, and cost of holding inventory at the warehouses and retailers.  

𝑚𝑖𝑛(𝑋𝑗 , 𝑌𝑖𝑗 , 𝑇𝑖 , 𝑇𝑖𝑗) = ∑ (𝑓𝑗 +
𝑘𝑗́

𝑇𝑗
𝛽𝑖𝑛𝑣) 𝑋𝑗𝑗∈𝐽 + ∑ ∑ (

𝑘𝑗

𝑇𝑖𝑗
𝛽𝑖𝑛𝑣 + (𝑠𝑖𝑗 + 𝑠�́�)𝑑𝑖𝛽𝑡𝑟𝑛 +

1

2
(ℎ𝑖 − ℎ�́�)𝑑𝑖𝑇𝑖𝑗𝛽𝑖𝑛𝑣 +𝑖∈𝐼𝑗∈𝐽

1

2
ℎ�́�𝑑𝑖𝛽𝑖𝑛𝑣𝑚𝑎𝑥{𝑇𝑗 , 𝑇𝑖𝑗}) 𝑌𝑖𝑗                                                                                                                                          (1) 

s.t 

∑ 𝑌𝑖𝑗 = 1𝑗∈𝐽                                        ∀𝑖 ∈ 𝐼                                               (2) 

 𝑌𝑖𝑗 ≤ 𝑋𝑗                                           ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽                                (3) 
𝑇𝑗

𝑇𝑖𝑗
= 2𝑁𝑖𝑗                                        ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽                            (4) 

𝑁𝑖𝑗 ∈ 𝑍                                             ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽               (5) 

𝑇𝑗 ∑ 𝑑𝑖𝑌𝑖𝑗 ≤ 𝐶𝑗                             ∀𝑗 ∈ 𝐽𝑖∈𝐼                  (6) 

∑ 𝑋𝑗 ≤ 𝑃𝑗∈𝐽                        (7) 

𝑇𝑗 > 0                                            ∀𝑗 ∈ 𝐽               (8) 

𝑇𝑖𝑗 > 0                                           ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽               (9) 

𝑋𝑗 ∈ {0,1}                                    ∀𝑗 ∈ 𝐽                                                (10) 

𝑌𝑖𝑗 ∈ {0,1}                                   ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽                           (11) 

Constraint (2) assures that each retailer is allocated to only one warehouse. Constraint (3) guarantees that retailers will 

not be allocated to closed warehouses. The power-of-two policy is considered at constraint (4), and the integer 

requirement is represented at constraint (5). Constraints (6) and (7) show the warehouse’s capacity and the maximum 

number of warehouses that can be established. The length of order intervals for retailers and warehouses that must be 

strictly positive are represented at constraints (8) and (9). Finally, the decision variables Yij and Xj are binary and are 

expressed by (10) and (11). 

3. Solution approach  

The literature review shows that both the location-allocation and the location-inventory problems are NP-hard (Cooper 

1972; Daskin et al. 2002). Thus, our proposed model belongs to the class of NP-hard problems because it is a combination 

of the above problems. Therefore, exact methods cannot be efficient to solve it. In the litreture, general high-level 

procedures that are mostly used to find good approximate soulutions for NP-hard problems are meta-huristic alghorithms. 

The meta-heuristic algorithms combine simple heuristic algorithms to achieve better solutions than those obtained from 

a simple heuristic. The advantage of meta-heuristics over heuristic algorithms is that heuristics may trap in local optima. 

Also, there is a balance between diversified and intensified searches at meta-heuristic algorithms (Shiripour et al. 2017). 

The genetic algorithm seems to be one of the most used meta-heuristics among meta-heuristics applied in inventory- 

location problems (Qu et al. 2015; Ahmadzadeh 2017; Puga et al. 2017; Askin 2014; Alizadeh et al. 2015; Vahdani et 

1 If a warehouse is established at location j 

0       otherwise 

1    If retailer i is allocated to the warehouse at location j 
0       otherwise 
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al. 2017). So, we use this algorithem in this research. Recent studies have shown that hybrid meta-heuristics are better 

than individual meta-heuristics to solve nonlinear models (Sadeghi et al. 2013; Chen et al. 2013; Sue-Ann et al. 2012). 

This algorithem is a combination of two metaheuristics. So, we also propose a hyrbid of genetic and simulated annealing 

algorithms (ESA). The details of these algorithms are as follows. 

3.1. Genetic algorithm 

GA is an evolutionary procedure for finding an approximately optimal solution. The GA starts with an initial population 

that is a set of solutions. Each member in the initial population is called a chromosome that involves problem variables. 

The chromosomes are improved by applying crossover and mutation for generating a new population. When stopping 

criteria are met, the algorithm terminates. 

For our problem, a chromosome is described as a retailer-warehouse assignment (Yij). The length of the chromosome is 

considered as the number of retailers. Each element of the chromosome is a warehouse allocated to each retailer. For 

example, by considering five retailers and three possible warehouses’ locations, a chromosome is depicted in Figure 2. 

Figure 2 shows that two warehouses should be established in locations 1 and 3 and retailers 1, 3 allocated to warehouse 

1 and retailers 2, 4 and 5 allocated to warehouse 3. After determining Xj and Yij, the model is separated into multiple 

one-warehouse-multi-retailer problems. For each problem, the algorithm described by Roundy (1985) is used to obtain 

the length of order intervals at the warehouses (Tj) and retailers (Tij). 

 
Figure 2. The defined chromosomes Yij 

 

To prevent producing an infeasible solution in the initial population, crossover and mutation, we use a heuristic method 

shown in Figure 5. 

3.1.1 Initial solution 

Generally, one population is generated randomly and the heuristic method (Figure 5) is used to produce a feasible 

solution. 

3.1.2 Crossover 

We use the Roulette wheel selection procedure based on the fitness value of chromosomes for selecting parent 

chromosomes. In this method, the probability of selecting the most appropriate chromosome is greater. In this paper, 

appropriate chromosomes are the ones having small fitness values because of the minimization type of objective function. 

So, we inverse the obtained objective function for each chromosome and name it f. The probability of selecting 

chromosome k is K
K

i

i

f
P

f



. Then a single crossover is applied to generate new chromosomes (offsprings) (Figure 

3).  

 
Figure 3. An example for single crossover 

3.1.3 Mutation 

In this paper, a chromosome (parent chromosome) is chosen randomly from the population. Then, we generate two 

different mutation points uniformly at random and swap the genes of their sub-strings (Figure 4).  
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Figure 4. An example for swap mutation 

 

3.1.4 Termination criterion 

If a pre-specified maximum number of iterations are satisfied, the algorithm will stop.  

 

 
Figure 5. A flowchart of the heuristic method for selecting a feasible solution 

3.2 Evolutionary simulated annealing algorithm 

Kirkpatrick et al. (1983) and Gerny (1985) presented a Simulated Annealing (SA) algorithm. The SA approach works 

by mimicking the process of physical annealing in which a metal slowly cools down and is mostly used to solve NP-hard 

problems. In this algorithm, solutions and the objective values of them are equivalent to states of a physical system and 

the energy of the state, respectively. In this paper, we apply the evolutionary simulated annealing (ESA) algorithm 

proposed by Miandoabchi et al. (2011). ESA is a population-based algorithm in that SA is used as the mutation operator. 

The proposed ESA is described as follows: 

Phase 1:  

 –Generate a initial population, Np, based on the chromosome defined in Figure 2. 

Phase 2: 

– Repeat if the high temperature (T) is lower than a specified value. 

– Select one chromosome from the population randomly 

– Initialize Temperature (Tf and T0) 

 Repeat if r is smaller than R. 

 Repeat if n is smaller than N. 

 Generate a random neighbor by applying perturbation in the allocations.  

 Check the feasibility of the generated neighbor (Figure 5). 

 Compare the current solution and generated neighbor based on SA as follows: 
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If the current solution is better than the offspring, we replace it; otherwise, replace it with the 

probability exp (-ΔE/Tr) (the difference between the objective function of the offspring and the 

current solution is considered as ΔE) 

 Set the Tr as follows 

𝑇𝑟 =
1

2
(𝑇0 −  𝑇𝑓). (1 − 𝑡𝑎𝑛ℎ (

10. 𝑟

𝑅
− 5)) + 𝑇𝑓 

– Return the best solution 

–  If the best solution is not the same to any individual of the population and is better than the worst individual, 

join it to the population and eliminate the worst case; otherwise, reject it. 

Also in this algorithm, to prevent producing an infeasible solution in the initial population and mutation, we use a 

heuristic method described in Figure 5. 

4. Experimental design 

 

The metaheuristics used in this paper are parametric algorithms. Therefore, choosing the best values for their parameters 

have an impressive effect on the performance of them. We use the Taguchi method for tuning the parameters. The 

Taguchi is one of the most widely used methods for tuning the parameters of metaheuristic algorithms (Talbi, 2009 ).  

In the Taghchi as an experimental design method, the factors (process inputs) which affect the efficiency of a process 

output are classified into two types: controllable factors (factors S) and uncontrollable factors (noise factors N). In the 

meta-heuristic algorithm, parameters are controllable factors and fitness function is the process output. Taguchi method 

builds a design by employing an approach to control N based on the number of parameters that need to simultaneously 

tuned and the number of levels for each parameter. 

In this paper, we extract three initial values for each unknown parameters of the GA algorithem from the literature. For 

the GA, the four parameters that are tuned are population size (NP ), maximum number of iterations (Mit), probability of 

mutation (Pm), and probability of crossover (Pc). Employing Minitab software a L9 Taguchi design is used. Table 1 

shows the used values  for each parameter in the GA. 

For the ESA meta-heuristic algorithm, 6 parameters are calibrated. Similar to the case of GA parameter tuning, three 

levels of value for each parameter are obtained from the literature. As a result, a L27 Taguchi design is utilized to tune 

the parameters. The parameters of interest are: population size (NP ), high temperature (T), initial temperature (T0), final 

temperature (Tf), and the number of iteration in inner loops (R and N). The values for these parameters are shown in 

Table (1). We use Relative Percent Deviation (RPD) for scalling the resuts of proposed algorithms in each design.  

Table 1. The parameters levels of the algorithms 

Algorithm Parameter Low (1) Medium (2) High (3) 

GA Np 

Mit 

Pm 

pc 

50 

100 

0.1 

0.5 

100 

200 

0.2 

0.6 

200 

500 

0.3 

0.7 

ESA Np 

T 

T0 

Tf 

R 

N 

50 

100 

50 

1 

15 

10 

100 

200 

100 

2 

20 

15 

200 

300 

200 

3 

25 

20 

 

 The standard approach and the signal to noise ratio (S/N) approach can be utilized to analyze the results of Taguchi. The 

standard approach is employed for experiments with only one replication and signal to noise ratio is used for experiments 

with more than one replication. In the proposed algorithms in this paper, we use the signal to noise ratio (S/N) since we 

need more than one iteration. Based on the signal to noise ratio, a good condition is seen if the signal is more than noise. 

We aim to gain a condition that optimizes the signal to noise ratio. There are three classes of characters in the Taguchi, 

“bigger is better”, for which the objective function is of a maximization type, “smaller is better” where the objective 

function is of a minimization type and “nominal is the best” for which the objective function has modest variance around 

its target. In these three class, the signal to noise ratio is formulated as follows (Roy, 1990): 
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where am is the objective function in the mth iteration, n is the number of iteration, and a is the average of objective 

function. We use “smaller is better” because our problem is minimization. 

The mean S/N ratio plot for different parameter levels of the GA and ESA are displayed in Figures 6 and 7. Figures show 

that the best parameter values of the GA are Np= 200, Mit= 200, Pm=0.2 and Pc= 0.5, the best parameters of ESA are Np= 

100, T=200, T0= 50, Tf=2, R=25 and N=10. We employ these values for solving numerical examples and algorithms 

comparison. 

 

Figure 6. The mean S/N ratio plot for different levels of the parameters of the GA 

 

 
Figure 7. The mean S/N ratio plot for different levels of the parameters of the ESA 

5. Computational results  
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In this section, to investigate the application of the two proposed algorithms to solve our model, first, the accuracy of the 

algorithms are tested by comparing their solutions to those obtained from Lingo 11 software. Then, the sensitivity 

analysis with respect to cost parameters is done. Finally, we apply algorithms to large-size numerical examples of the 

problem to compare their efficiency. 

5.1. Testing the accuracy of algorithms 

We use the parameters of Diabat et al. (2016) that are shown in Tables 2, 3 and 4. There are two possible warehouses’ 

location and three retailers. We set 𝛽𝑖𝑛𝑣 and 𝛽𝑡𝑟𝑛 to 1.5 and consider one warehouse that can be opened (P=1). 

Table 2. Parameters of warehouses 

parameters Warehouse1 Warehouse2 

�́�j 200 400 

�́�j 7 9 

ℎ́j 4 5 

𝑓𝑗  6000 5100 

Cj 700 600 

Table 3. Parameters of retailers 

parameters Retailer 1 Retailer 2 Retailer 3 

ki 24 34 20 

hi 14 12 15 

Table 4. Unit shipping cost between warehouses and retailers 

sij Warehouse 1 Warehouse 2 

Retailer 1 34 43 

Retailer 2 55 51 

Retailer 3 39 30 

 

Under the given values of the parameters and according to five demand scenarios displayed in Table 5, numerical 

examples are solved by Lingo, GA and ESA. Table 5 shows that the results of the proposed algorithms are the same as 

the solution obtained via exact method using Lingo11. 
Table 5. Comparing GA and ESA algorithms with Lingo 

scenario Demand of 

retailers 

Lingo objective 

function 

GA objective 

function 

ESA objective 

function 

 1      2        3 

S-1 61    89      69 24958 24958 24958 

S-2 52    48       50 18929 18929 18929 

S-3 77     17      71 19405.47 19405.47 19405.47 

S-4 60      12      45 15690.97 15690.97 15690.97 

 

5.2. Sensitivity analysis 

To get a deeper insight into the proposed model and algorithms, we do the sensitivity analysis with respect to cost 

parameters of the model by changing the value of one parameter by +50% and -50% at a time and keeping the other 

parameter values unchanged (Tables 6 and 7). On the basis of the results of Tables 6 and 7, the following observations 

can be made. 

 If the values of parameters ℎ𝑗
′ and ℎ𝑖 enhance, the optimal length of order intervals of warehouse and retailers 

will decrease. It is reasonable that by increasing the holding cost, warehouses and retailers keep lower inventory. 

 In the case in which the values of parameters 𝑘𝑗
′ and ki increase, the optimal length of order intervals of 

warehouse and retailers will increase. This means that the retailers and the warehouses will order more quantity 

when the order cost is high. 

 If the value of the parameter 𝑠𝑗
′ increases, the nearest warehouse to production plant is chosen. By increasing 

sij, the optimal length of order intervals doesn’t change. The corresponding managerial insight is that we 

consider the unit-shipping cost as a function of demand.   

 When the values of cost parameters increase, the optimal total cost will increase. This indicates that increases 

in costs adversely affect the total cost. 
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Table 6. Sensitivity analysis with respect to warehouses’ parameters 

Parameter % Change Decision variables Objective function 

𝑆𝑗
′ +50 X1=1 X2= 0 Y11= 1 Y12=0 Lingo=  26841.21 

Y21=1 Y22=0 Y31=1 Y32= 0 GA=26841.21 

T1=0.61 T2= 2.103 T11=0.305 T21=0.305 ESA=26841.21 

T12=2.103 T22=2.103 T31=0.305 T32=0.526 

0 X1=0 X2=1 Y11= 0 Y12= 1 Lingo= 24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24134.09 

T1=3.343 T2=0.803 T11=0.418 T21=3.343 ESA= 24134.09 

T12=0.400 T22=0.401 T31=1.672 T32=0.201 

-50 X1= 0 X2=1 Y11=0 Y12=1 Lingo = 22655.84 

Y21=0 Y22=1 Y31=0 Y32=1 GA = 22655.84 

T1=2.498 T2=0.804 T11=2.498 T21=1.249 ESA = 22655.84 

T12=0.401 T22=0.401 T31=1.249 T32=0.205 

ℎ𝑗
′ 

 

+50 X1=0 X2=1 Y11=0 Y12=1 Lingo=24402.51 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24402.51 

T1=1.285 T2=0.598 T11=1.285 T21=1.285 ESA=24402.51 

T12=0.598 T22=0.598 T13=0.643 T23=0.299 

0 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24134.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA=24134.09 

T12=0.401 T22=0.401 T31=1.672 T32=0.201 

-50 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=23823.93 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=23823.93 

T1=3.632 T2=1.113 T11=0.908 T21=3.632 ESA=23823.93 

T12=0.278 T22=0.278 T31=1.816 T32=0.278 

𝐾𝑗
′ 

 

+50 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=24698.91 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24698.91 

T1=2.037 T2=1.194 T11=1.019 T21=0.509 ESA=24698.91 

T12=0.298 T22=0.298 T31=0.509 T32=0.298 

0 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24134.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA=24134.09 

T12=0.401 T22=0.401 T13=1.672 T23=0.201 

-50 X1=0 X2=1 Y11= 0 Y12= 1 Lingo=23706.07 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=23706.07 

T1=1.314 T2=0.593 T11=0.657 T21=1.314 ESA=23706.07 

T12=0.296 T22=0.296 T13=1.314 T23=0.296 

 

 

5.3. Comparison of the two algorithms 

After verifying the algorithms’ solutions, they can now be used to solve the large-size problems. We test the performance 

of the solution algorithms on one dataset containing 30 nodes (LiQ et al. 2011). Demands (di) are taken from Snyder et 

al. (2005). For I and J greater than 30, we generate data randomly. The Euclidean distance among nodes i and j is defined 

as the cost of shipping one unit (sij). The other parameters are randomly generated.  

We consider the objective function and CPU time (t) to compare the performance of the algorithms. The results of these 

two measures are presented in Table 8. The optimal solutions are not known in large-size problems. So, it is necessary 

to achieve good lower bounds to evaluate the quality of the solutions obtained from the GA and ESA in these scales. We 

consider the minimum of the objective function obtained from the GA and ESA at ten runs as the best function value, f 

best. The main finding based on Table 8 is that the best objective function obtained belongs to ESA. To analyze the 

variation of the obtained objective function values of the GA and ESA over ten runs, we compute the relative differences 

between the best objective function value and the average objective function values for all the instances as follows: 
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Table 7. Sensitivity analysis with respect to retailers’ parameters 

Parameter % Change Decision variables Objective function 

𝑆𝑖𝑗 +50 X1=0 X2=1 Y11= 0 Y12= 1 Lingo=  37982.09 

Y21=0 Y22=1 Y31=0 Y32= 1 GA=37982.09 

T1=3.234 T2= 0.802 T11=0.808 T21=1.617 ESA=37982.09 

T12=0.401 T22=0.401 T31=1.617 T32=0.201 

0 X1=0 X2=1 Y11= 0 Y12= 1 Lingo= 24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA= 24134.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA= 24134.09 

T12=0.401 T22=0.401 T31=1.672 T32=0.201 

-50 X1= 0 X2= 1 Y11= 0 Y12= 1 Lingo = 17210.09 

Y21= 0 Y22=1 Y31=0 Y32= 1 GA = 17210.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA = 17210.09 

T12=0.401 T22=0.401 T31=1.672 T32=0.201 

ℎ𝑖 +50 X1=0 X2=1 Y11=0 Y12=1 Lingo=24618.98 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24618.98 

T1=2.201 T2=0.787 T11=0.550 T21=0.550 ESA=24618.98 

T12=0.197 T22=0.197 T13=2.201 T23=0.197 

0 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24134.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA=24134.09 

T12=0.401 T22=0.401 T13=1.672 T23=0.201 

-50 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=23670.86 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=23670.86 

T1=0.586 T2=0.846 T11=0.586 T21=0.586 ESA=23670.86 

T12=0.846 T22=0.846 T31=0.293 T32=0.423 

𝐾𝑖 +50 X1=0 X2=1 Y11= 0 Y12= 1 Lingo=24452.30 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24452.30 

T1=1.487 T2=0.838 T11=0.743 T21=1.487 ESA=24452.30 

T12=0.419 T22=0.419 T31=0.743 T32=0.419 

0 X1= 0 X2=1 Y11= 0 Y12= 1 Lingo=24134.09 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=24134.09 

T1=3.343 T2=0.802 T11=0.418 T21=3.343 ESA=24134.09 

T12=0.401 T22=0.401 T13=1.672 T23=0.201 

-50 X1=0 X2=1 Y11= 0 Y12= 1 Lingo=23880.45 

Y21= 0 Y22= 1 Y31= 0 Y32= 1 GA=23880.45 

T1=1.658 T2=0.844 T11=0.414 T21=0.414 ESA=23880.45 

T12=0.211 T22=0.211 T13=0.414 T23=0.211 

Table 8. Results for the large-size problems 

Instance Algorithms 

GA ESA 

I J P fbest flow fave tave(s) Gap flow fave tave(s) Gap 

4 4 2 25185.45 25185.45 25185.45 12.99 0 25185.45 25185.45 9.52 0 

5 5 2 27466 27466 27466 15.91 0 27466 27466 11.9 0 

7 7 3 25940.07 27197 27883.2 22.36 7.49 25940.07 26225.06 17.29 1.10 

10 5 3 30647 30842 31187 21.08 1.76 30647 30874.6 22.84 0.74 

10 7 3 31300.95 31329 31954 34.49 2.09 31300.95 31758 31.06 1.46 

10 10 3 30764 31694.71 32649 28.94 6.13 30764 32894 26.91 6.92 

12 10 3 31720 35581 36217 82.33 14.18 31720 32362 76.83 2.02 

12 12 3 33925 36409.06 37556.7 99.06 10.71 33925 34938.6 101.24 2.99 

15 10 4 35837 38493 39426 68.24 10.01 35837 36167.2 53.92 0.92 

15 15 4 39400 40042.19 42371 86.29 7.54 39400 40297 72.5 2.28 

17 12 5 40378 41124 41635 110.37 3.11 40378 40421.2 92.53 0.11 

17 17 5 40801 41480.87 42617 162.44 4.45 40801 40998 142.5 0.48 

20 12 7 41954.75 44055 45751 139.5 9.05 41954.75 42218.8 136.82 0.63 

20 15 7 41920.52 43475 43994 148.02 4.95 41920.52 43267 139.21 3.21 

20 17 10 41638 45764 46138 179.47 10.81 41638 42191 154.52 1.33 

20 20 10 41726.26 44132 45246 138.52 8.43 41726.26 42364 139.33 1.53 
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Table 8. Continued 

Instance     Algorithms 

GA ESA 

I J P fbest flow fave tave(s) Gap flow fave tave(s) Gap 

25 20 13 42641 52185.45 53568 194.72 25.62 42641 43291 182.66 1.52 

25 25 13 42252.01 52204 54021 253.04 27.85 42252.01 43563.06 229.48 3.10 

30 25 15 45132.75 56252.5 57596 194.2 27.61 45132.75 47720.69 189.64 5.73 

30 30 15 42212.8 57837 58324 204.14 38.17 42212.8 44052 202.61 4.36 

35 30 17 45431 59340 60454 210.29 33.07 45431 48032 206.22 5.72 

35 35 17 45768 60441.2 61988 256.54 35.44 45768 48329 241.37 5.59 

40 35 20 48246 62627 63375 198.97 31.36 48246 50564 204.97 4.80 

40 40 20 50533 61284 63087 252.76 24.84 50533 52921 234.19 4.73 

45 40 23 51954 63465 65212 241.75 25.52 51954 53264 240.45 2.52 

45 45 23 53076 65824 66945 257.03 26.13 53076 55824 251.52 5.18 

50 45 25 52148 69322 72625 276 39.27 52148 54968 268.01 18.69 

50 50 25 54766 70999 72843 282.5 33 54766 58920 276.94 20.20 

 

Based on Table 8 and Figure 8, the relative differences between the best objective function values and the average 

objective function values over ten runs of the ESA are smaller than the ones for GA. Therefore the ESA is more robust 

than the GA. It is noticeable that by increasing the number of I and J, the difference between the values of percentage 

gaps of the ESA and GA increases. This may confirm that the ESA is more efficient than the GA in large-size numerical 

examples. Moreover, according to Table 8 and Figure 9, it can be said that by increasing the size of the problem, the 

CPU time increases too. This possibly confirms that by increasing the number of warehouses and retailers, the 

computational effort to indicate the best locations of warehouses, allocate retailers to them by considering constraints, 

and determine inventory policy of warehouses and retailers is much more; the algorithms also need more time to solve 

them. The result shows that the proposed ESA works faster than the GA algorithm except for two instances. 

 

 
Figure 8. The percentage gaps between the best function value (f best) and average function value (f ave ) obtained from the GA and 

ESA for large-size numerical examples 

 

 

Figure 9. The average time for running the GA and ESA for large-size numerical examples 
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6. Conclusion 

We propose a multi-echelon joint inventory-location model for a three-level supply chain. This supply chain includes 

one production plant that distributes products to retailers through warehouses. The proposed model decides on the 

optimal location of warehouses, allocates retailers to warehouses, and determines inventory policies at the warehouses 

and retailers, simultaneously. Here, the number of warehouses that can be opened and their capacity are limited. We 

propose two efficient algorithms: a genetic algorithm (GA) and an evolutionary simulated annealing algorithm (ESA). 

We use the Taguchi method for tuning the parameters of the proposed algorithms. The small size problems are solved 

by Lingo11 software package, the GA and ESA. Then numerical examples verify the accuracy of our algorithms. Also, 

the sensitivity analysis with respect to the main parameters of the model is carried out. The large-size numerical examples 

are provided to investigate the efficiency of the proposed solution algorithms. The average of computing time and the 

percentage gaps between the best solution values and the average objective values of the GA and ESA are calculated for 

comparing the algorithms. The results indicate that the two algorithms are efficient in solving the proposed model but 

the ESA outperforms the GA on the optimal solution, computing time, and stability. Broad scopes can expand this 

research. For instance, we consider the demand of retailers deterministic; even though there is a certain population in 

each retailer location for the product, all of them may not intend to buy the product. So, considering stochastic demand 

makes the problem more practical. In this research, we model a single product with unlimited shelf-life, another possible 

extension to the problem would be to develop this problem toward considering multi products and perishable products. 

Also, investigation of other meta-heuristics or hybrid meta-heuristics such as particle swarm optimization algorithm may 

be useful in a future research. 
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