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Abstract 

We described the two-stage maximum flow network interdiction problem under endogenous stochastic interdiction. Our 

model consists of two adversary agent playing a Stackelberg game. A smuggler who wishes to maximize the expected 

flow of some illicit commodities (same as drugs), can be transmitted between a source node and a sink node without 

being detected. On the other hand, an attacker tries to minimize the objective of the smugglers by installing some 

detectors or adding some security controls on critical arcs to increase the probability of detection. Most previous 

stochastic network interdiction problems in the literature deal with exogenous uncertainty, while we consider stochastic 

programs under endogenous uncertainty in which the interdictor’s decisions can alter the probability measures. The 

problem can be formulated as a bi-level program, at the top level the attacker by a limited budget, choosing critical arcs 

to install detectors and enhance the interdiction probability of those arcs endogenously. The bottom level problem is a 

two-stage problem which is solved to find the maximum flow in the network by smugglers. In the first stage, he chooses 

some links to transmit the flow. In the second stage an indicator variable is used to show if he would be detected under 

each scenario. The bi-level decomposition algorithm has been applied to solve the problem by adding some Benders’ 

cuts iteratively. We applied a successive method, to deal with non-linearity rise in the probability measure of each path.  

A case study of drug trafficking network is applied to recognize which countries have the most significant effect in 

interdicting the drug trafficking network. The police can concentrate on those areas to decline the amount of drug flow. 

Our results demonstrate that if the critical arcs are chosen wisely and the probability of drug seizers decreases slightly, 

a significant decrease in the expected total flow of drugs can be achieved.  

Keywords: Network Interdiction; Maximum Flow; Endogenous Uncertainty; Benders’ Decomposition; Stackelberg 

Game.  

1. Introduction 

In the defense context, interdiction refers to actions that serve to block or otherwise inhibit an adversary’s operations 

and often regards attacks against supply chain operations or communications (Smith and Song 2019). A network 

interdiction problem usually is formulated as Stackelberg games (von Stackelberg 1952) involving two opponent players 

who compete in a min-max or max-min game. One player, defender, wishes to optimize its objective over the network, 

for example, maximum flow (Wollmer 1964),(Altner and Uhan 2009), the shortest path (Israeli and Wood 2002), or 

maximum coverage of the demand in a facility interdiction problem (Church, Scaparra, and Middleton 2004, Akbari-

Jafarabadi et al. 2017). The opponent, the interdictor, uses a limited budget to alter the network by attacking some links 

or nodes to maximally impair the defender’s objective. 

In this study, we tried to investigate interdiction problems when the objective is maximum flow. In maximum flow 

network interdiction, the defender seeks to maximize the flow from a specified origin to a given destination on a directed 

and capacitated network, while the attacker’s goal is to minimize his opponent’s maximum flow by interdicting some 

arcs. 
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In some situations, an unfavorable or illegal flow of material is transmitted via a network, and then an intervention plan 

is needed to interrupt the flow in the network. These problems are studied in the literature, for example, drug trafficking 

(Malaviya, Rainwater, and Sharkey 2012a), hospital infection (Assimakopoulos 1987), nuclear smuggling (Morton, Pan, 

and Saeger 2007), illegal immigrants(Zhang, Zhuang, and Behlendorf 2018) or flood control (Soleimani-Alyar, Ghaffari-

Hadigheh).  

Wollmer (1964) proposed the first interdiction problem and modeled a min-max flow in a network by removing a given 

number of arcs. The network interdiction problem in general case is NP-complete (Wood 1993) and a polynomial time 

algorithm for interdiction problem over planar graphs was presented in (Pan and Schild 2016). The network interdiction 

problem has received some attention in recent decades because of the wide range of applications varying across supply 

chains (Liberatore, Scaparra, and Daskin 2011), military planning (Scaparra and Church 2008), toll control (Borndörfer, 

Sagnol, and Schwartz 2016), nuclear smuggling (Michalopoulos, Barnes, and Morton 2014), drug enforcement 

(Malaviya, Rainwater, and Sharkey 2012a), water resource management (Qiao et al. 2007) and (Soleimani-Alyar, 

Ghaffari-Hadigheh, and Sadeghi 2016), and electrical grid analysis    (Salmeron, Wood, and Baldick 2004). 

Recently, some researchers extended the basic form of network interdiction problem and studied different forms of these 

problems including path-based interdiction  (Granata, Steeger, and Rebennack 2013); interdiction with asymmetric 

information (Bayrak and Bailey 2008); the bi-objective and tri-objective interdiction (Rocco S. and Ramirez-Marquez 

2010), (Chen, Guo, and Yu 2019) and (Ramirez-marquez, A, and S 2010); the multi-commodity networks (Lim and 

Smith 2007); the tri-level network interdiction with fortification (Sadeghi, Seifi, and Azizi 2017); dynamic network 

interdiction (Rad and Kakhki 2013,Jabbarzare, Zolfagharinia, and Najafi 2019); and stochastic network interdiction 

(Ramirez-Marquez and Rocco S. 2009),(Cormican, Morton, and Wood 1998) and (Morton, Pan, and Saeger 2007). Two 

comprehensive surveys about network interdiction models and algorithms are provided in (Smith and Song 2019 , Smith, 

Prince, and Geunes 2013).  

From the certainty point of view, the network interdiction optimization problem is divided into two classes; including 

deterministic optimization and stochastic programming. Wood  (1991) studied the deterministic network interdiction 

with binary interdiction. The stochastic variants of network interdiction problems have received more attention recently. 

The first stochastic network interdiction problem with uncertain and binary interdiction success was formulated by 

Cormican et al. (1996). the objective of the problem was to minimize the expected maximum flow (Cormican, Morton, 

and Wood 1998). The presence of uncertainty in both traveling cost and interdiction impacts is studied in Song, Yongjia 

(2016) where a solution method based on branch and cut algorithm is applied. A stochastic shortest path network 

interdiction with a fixed probability of detection is addressed in Zhang, Zhuang, and Behlendorf (2018). The stochastic 

form of network flow interdiction with Stochastic under heterogeneous risk preferences is studied by Lei, Shen, and 

Song (2018). The other uncertain element which is considered for network interdiction problems is the number of attacks 

(Liberatore, Scaparra, and Daskin 2011), origin-destination pair(Morton, Pan, and Saeger 2007)and the mass and type 

of shipping material (Nehme 2009).    

 

In some real applications, uncertainty is endogenous, meaning that the decisions can influence and change the probability 

measures related to different scenarios. Most stochastic interdiction models assume exogenous uncertainty in which the 

probability of events is fixed and given. Our model is concerned with the maximum flow interdiction problem under 

endogenous uncertainty with decision dependent probabilities. We studied a bi-level programming problem. In the first 

level, the interdictor chooses some critical links to enhance interdiction ability by installing some detection sensors.  The 

choice of links will change the associated probability of detection scenarios. In the second level, the defender will decide 

how to flow an illicit material (for example drugs) in the network via a two-stage stochastic program. In a “here and now 

situation”, he has to find a maximum flow in the network without any information on the occurring scenarios. Then, in 

the second stage, a control variable is used to indicate whether or not he is detected under various scenarios. We assumed 

a prior probability of detection associated with each link and this probability will change with the decision on installing 

the detection sensor. In the sequel, we arrived at a stochastic interdiction model of maximum flow network with 

endogenous probabilities. A Benders’ decomposition approach is then used to solve the proposed bi-level programming 

model. A real-world case study of worldwide drug trafficking network is presented herein. 
 

The rest of this paper is structured as follows. Section 2 introduces the notation and presents the basic formulation of a 

bi-level maximum flow network interdiction problem. Then, the proposed stochastic interdiction problem is described. 

The linearization method is applied in Section 3. The solution method is applied in Section 4. Computational results on 

a real-world case study are presented in Section 5. Finally, we draw some concluding remarks in Section 6.  

2. Problem description and formulations 

In this section, we describe a bi-level programming formulation of maximum flow network interdiction problem, then 

the developed stochastic version of the problem with endogenous uncertainty will be introduced.  
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2.1. Bi-level Maximum Flow Network Interdiction 

The maximum flow network interdiction problem is defined in a directed graph 𝐺(𝑁, 𝐴), with nodes set 𝑁 and arcs set 

𝐴. The interdiction problem is a leader-follower, Stackelberg game. The problem is between two parties known as 

defender and attacker (or interdictor). The defender (follower) seeks to maximize the flow from origin node 𝑂 to 

destination node 𝐷. The interdictor (leader) goal is to discover some critical arcs and attack the network due to limited 

budget 𝐵 to minimize the defender’s maximum flow. Let 𝑢𝑘 denote the capacity of arc 𝑘 ∈ 𝐴 and dummy arc (𝐷, 𝑂) 

with capacity 𝑢𝐷𝑂 = ∞. The bi-level maximum flow network interdiction is formulated as follows: 
 

min
𝑥∈𝑋

max
𝑦
   𝑦𝐷𝑂  DMFI1 Model  

k k

k FS(i) k RS(i)

s.t. y y o i N ,( i, j) k
 

       
 

𝑦𝑘 ≤ 𝑢𝑘(1 − 𝑥𝑘)       ∀𝑘\{𝐹𝑆(𝑂), 𝑅𝑆(𝐷)} 
 

Variable set 𝑥 ∈ {0,1}|𝐴|  represents the attack vector and 𝑦 ≥ 0 is the flow vector. The feasible set 𝑋 is defined as 𝑋 =

{𝑥 ∈ {0,1}|𝐴| | 𝑐𝑇𝑥 ≤ 𝐵} where 𝑐𝑘 is the cost of interdicting, arc k ∈ 𝐴. 𝐹𝑆(𝑖) = {𝑗 ∈ 𝑁 | (𝑖, 𝑗) ∈ 𝐴} is the forward star 

(set of arcs going out of node 𝑖) and 𝑅𝑆(𝑖) = {𝑗 ∈ 𝑁 | (𝑗, 𝑖) ∈ 𝐴} is the reverse star (set of arcs going into node 𝑖 ) of each 

node 𝑖 ∈ 𝑁.     

2.2. Uncertain maximum flow network interdiction 
It is clear that interdiction problems are further complicated in the presence of uncertainty. However, in some real 

applications, two players of the game (defender and attacker) are not fully cognizant of their opponent and should decide 

under uncertainty. In this study, we consider the situation that the probability of a successful attack is decision dependent 

and changes endogenously in the model. 

For the uncertain version of the interdiction problem, suppose that the interdiction action for any arc 𝑘 ∈ 𝐴 may be 

successful with the given probability measure 𝑝𝑘  (0 ≤ 𝑝𝑘 ≤ 1) initially and the interdictor can increase this probability 

measure to 𝑞𝑘 (0 ≤ 𝑞𝑘 ≤ 1 and 𝑞𝑘 ≥ 𝑝𝑘) by enhancing the interdiction ability. This enhancement may be achieved by 

adding some sensors or security controls according to the interdictor’s limited budget. Due to the limited interdiction 

budget𝐵, the interdictor tries to find the best possible arcs of the network to enhance the interdiction ability, in order to 

maximize the defender’s traversing cost.   

The problem can be formulated as a bi-level program which involves two nested optimization models in which the upper 

agent optimizes its own objective function subject to the reaction of the agent in a subsequent level.  At the top level, the 

attacker tries to identify critical arcs and enhance the interdiction probability of those arcs from 𝑝𝑘 to 𝑞𝑘 for damaging 

the network and increasing the cost of traversing. The bottom level is a two-stage stochastic problem by itself. The first 

stage is solved to find the maximum flow in the damaged network and in the second stage and after scenario realization, 

the follower recognizes if the flow is detected by the leader or not.  

Problem notations:  

Network components 

𝐺(𝑁, 𝐴) Weighted and directed network with nodes set 𝑁 and arcs set 𝐴 

𝐹𝑆(𝑖) Set of arcs going out of node 𝑖 
𝑅𝑆(𝑖) Set of arcs going into node 𝑖 
Input parameter 

𝐵 The total interdiction budget  

𝑐𝑘 The cost of interdicting arc 𝑘 ∈ 𝐴 

𝐶𝑚𝑎𝑥 The penalty which is imposed when no allowed flow exists 

𝑝𝑘 The probability of successful detection on arc 𝑘 ∈ 𝐴 with no interdiction action on that arc 

𝑞𝑘 The probability of successful detection on arc 𝑘 ∈ 𝐴 with interdiction action on that arc 

Random elements 

𝒮 ∈ {0,1}|𝐴| Sample space  

𝑠 = (𝑏1 , … , 𝑏|𝐴|) ∈ 𝒮 A scenario where 𝑏𝑘
𝑠 is a binary parameter that is 1 if the defender being interdicted while 

transmitting flow in the arc 𝑘 and 0 otherwise 

𝒫𝑥
𝑠 The probability measure related to scenario 𝑠 ∈ 𝒮 depends on variable 𝑥 

𝜋𝑛
𝑠  The probability measures induced by decision vector 𝑥 under scenario 𝑠 ∈ 𝒮. 

 

                                                                 
1 Deterministic Maximum Flow Interdiction 



Stochastic Maximum Flow Network Interdiction with ... 

 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.3 203 

 

variables 

𝑥𝑘 Interdictor’s decision variable. 𝑥𝑘 = 1 if arc 𝑘 ∈ 𝐴 is interdicted and 𝑥𝑘 = 0 otherwise 

𝑦𝑘 Evaders’ decision variable. 𝑦𝑘 = 1  if  arc 𝑘 ∈ 𝐴 is traversed and 𝑦𝑘 = 0 otherwise 

𝑦𝐷𝑂 The total flow from origin node 𝑂 to destination node 𝐷 

𝛾𝑠 The indicator variable which is 1 if the evader traverse arc 𝑘 ∈ 𝐴 where 𝑏𝑘
𝑠 = 1 

 

Now, we outline the stochastic model. For each arc, 𝑘 ∈ 𝐴 defines a binary decision variable  
𝑥𝑘 which is 1 if the defender enhances the interdiction ability and 0 otherwise.  
𝑦𝑘   is defined as a bottom level variable which indicates the flow of arc 𝑘 ∈ 𝐴. The total flow is 𝑦𝐷𝑂 if an O-D flow 

exists due to scenario 𝑠 ∈ 𝒮 where 𝒮 is the set of all possible scenarios. If an O-D flow is not possible, it means the flow 

is blocked by an interdicted arc, and the defender is penalized with a fixed number 𝐶𝑚𝑎𝑥 . A binary indicator variable  

𝛾𝑠 is defined to indicate if there is a successful O-D flow or not. The 𝛾𝑠 is 1 if the defender flows the material in an 

interdicted arc in scenario 𝑠 ∈ 𝒮 and 0 otherwise.   

The objective function of the problem is formulated as, ∑ 𝒫𝑠𝑠 ∑ [(1 − 𝛾𝑠)𝑦𝐷𝑂𝑘∈𝐴 − 𝛾𝑠𝐶𝑚𝑎𝑥], where 𝒫𝑥
𝑠 is the probability 

measure related to scenario 𝑠 ∈ 𝒮 depending on decision 𝑥. The maximum flow network interdiction model with the 

above objective function and related constraints are presented as follows:  

(1) min
𝑥
  ∑ 𝒫𝑥

𝑠
𝑠 ∑ [(1 − 𝛾𝑠)𝑦𝐷𝑂𝑘∈𝐴 − 𝛾𝑠𝐶𝑚𝑎𝑥]                                               

 

(2) 

𝑠. 𝑡.                                                                                                               

       ∑ 𝑐𝑘𝑥𝑘 ≤ 𝐵𝑘∈𝐴     

       𝑥𝑘 ∈ {0,1}     ∀𝑘 ∈ 𝐴 

(3)        max
𝑦,𝛾

 ∑ 𝒫𝑥
𝑠

𝑠 ∑ [(1 − 𝛾𝑠)𝑦𝐷𝑂𝑘∈𝐴 − 𝛾𝑠𝐶𝑚𝑎𝑥]                                                 

(4)                  𝑠. 𝑡.                                                                                                               

              ∑ 𝑦𝑘
𝑘∈𝐹𝑆(𝑖)

− ∑ 𝑦𝑘
𝑘∈𝑅𝑆(𝑖)

= 𝑜   ∀𝑖 ∈ 𝑉\ {s, t} 

(5)                 𝑦𝑘 ≤ 𝑢𝑘                            ∀𝑘 ∈ 𝐴                                                                               

(6)                 𝛾𝑠 ≥
1

𝑛
∑ 𝑦𝑘(𝑘∈𝐴):𝑏𝑘

𝑠=1       ∀𝑠 ∈ 𝑆                                                                 

                𝛾𝑠 ≤ ∑ 𝑦𝑘
(𝑘∈𝐴):𝑏𝑘

𝑠=1

        ∀𝑠 ∈ 𝑆 

(7) 𝑦𝑘 ∈ {0,1}         ∀𝑘 ∈ 𝐴     , 𝛾𝑠 ∈ {0,1}          ∀𝑠 ∈ S                                                                           

Constraint (2) shows budget limitation, constraint set (4) and (5) stand for flow conservation and capacity limitations. 

The constraint set (6) linearized the subsequent phrase:   

if  ∃𝑘 ∈ 𝐴 ∶ (𝑦𝑘 = 1 and 𝑏𝑘
𝑠 = 1)  then  𝛾𝑠 = 1  and vice versa 

The equation 𝛾𝑠 ≥
1

𝑛
∑ 𝑦𝑘(𝑘∈𝐴):𝑏𝑘

𝑠=1 , guarantees that if there is at least one arc 𝑘 in which 𝑦𝑘 = 1 while 𝑏𝑘 = 1 then 𝛾𝑠 

is forced to be 1, otherwise it takes the value zero, where 𝑏𝑘
𝑠 is a binary parameter that is 1 if the defender interdicted the 

arc 𝑘 and 0 otherwise. The upper-level player prefers 𝛾𝑠 = 1, because in this situation the bottom level player is 

interdicted and should pay the penalty 𝐶𝑚𝑎𝑥 and the upper-level objective function is max
𝑥
  ∑ 𝒫𝑥

𝑠
𝑠 𝛾𝑠𝐶𝑚𝑎𝑥 . On the other 

hand, 𝛾𝑠 = 0 is favorable for the defender (bottom level player) and he achieves the objective max
𝑦,𝛾
 ∑ 𝒫𝑠𝑠 ∑ (1 −𝑘∈𝐴

𝛾𝑠)𝑑𝑘𝑦𝑘 in this condition.  

Here we explain the bi-level and two-stage programming definition to distinguish them. Bi-level programs are 

mathematical programs with embedded optimization problems in their constraints. The main problem is called the upper-

level problem or the leader and the nested problem is called the lower-level problem or the follower. A famous example 

in economics is the Stackelberg game. Two-stage programming is a stochastic program. In the first stage or “here and 

know” stage, a decision maker should decide before the realization of the uncertain data. After fixing the optimal solution 

of the first stage and when uncertain parameters take their values, decision maker decides on recourse action in the 

second stage and the optimal solution is determined.  
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Figure 1. The decision process for model 1. 

3) Dealing with Non-linear Probability Measures 

As discussed in section 2, the uncertain interdiction problem is modeled as a bi-level and two-stage stochastic program. 

In the upper level, the attacker decides which arcs to use to enhance interdiction ability by setting 𝑥𝑘 = 1. In the bottom 

level, first, the defender tries to find the maximum flow in the survived network and then an indicator variable reveals 

whether he flows the material to terminal node successfully or if he is detected.  

In the objective function, the expected amount of flow should be computed over all scenarios. 𝒫𝑥
𝑠 , the probability 

measure related to scenario 𝑠 ∈ 𝒮 can be expressed as a function of the upper-level decision vector 𝑥𝑘. 

𝒫𝑥({𝑏𝑘 = �̃�𝑘}) =  {
(𝑝𝑘(1 − 𝑥𝑘) + 𝑞𝑘𝑥𝑘) 𝑏𝑘

𝑠 = 1

[((1 − 𝑝𝑘)(1 − 𝑥𝑘) + (1 − 𝑞𝑘)𝑥𝑘)] 𝑏𝑘
𝑠 = 0

} 

Then it can be represented as: 

𝒫𝑥({𝑏𝑘 = �̃�𝑘}) =∏[𝑏𝑘
𝑠(𝑝𝑘(1 − 𝑥𝑘) + 𝑞𝑘𝑥𝑘)]

𝑘∈𝐴

+ [(1 − 𝑏𝑘
𝑠)((1 − 𝑝𝑘)(1 − 𝑥𝑘) + (1 − 𝑞𝑘)𝑥𝑘)] 

Since the interdictor decisions (𝑥𝑘 = 1 𝑜𝑟 0) affect the probability measures, the problem has endogenous uncertainty.  

As you see, the above phrase includes the product of decision variables, then using such products results in non-linearity. 

The most common approaches to deal with this nonlinearity are linearizations or convex approximations. Laumanns et 

al. (Laumanns, Prestwich, and Kawas 2014) developed a novel and useful method based on Bayse’ rule to find the simple 

linear relationship between resulting probability measures, called “neighboring measures”.  

Let|𝐴| = 𝑛. Suppose that all arcs are sorted by an ordinal relation, then the set of arcs can be shown by𝐴 = {1,2, … , 𝑛}. 

Two decision vectors 𝑥0, 𝑥1 ∈ {0,1}|𝐸| of the arcs set𝐴, are just different in one component corresponding to arc 𝑘 

therefore 𝑥1 − 𝑥0 = 𝕖𝑘 where 𝕖𝑘 is the 𝑘 − 𝑡ℎ unit vector. So that two probability measures 𝑥0 and 𝑥1 are interrelated 

as:  

 𝒫𝑥1({𝑏𝑘 = �̃�𝑘}) =

{
 

 (𝒫𝑥0).
𝑞𝑘
𝑝𝑘
        𝑓𝑜𝑟  𝑏𝑘

𝑠 = 1 

(𝒫𝑥0).
1 − 𝑞𝑘
1 − 𝑝𝑘

𝑓𝑜𝑟  𝑏𝑘
𝑠 = 0

}
 

 
 

First level (leader level) 

The interdictor chooses some critical arc to 

interdict by specifying variable  𝑥𝑘 and 

installing some sensor. this action increases the 

detection probability 𝑝𝑘 of interdicted arcs to  

𝑞𝑘 

Second level (follower level) 

 

First stage 

The smuggler chooses the best flow plan the 

network by specifying  𝑦𝑘  

Second stage 

The smuggler recognizes whether he is 

detected by the interdictor or not (𝛾𝑠 =

0 𝑜𝑟 1).  

 

Scenario realization 

𝛾𝑠 = 0, not detected 

and reached node D 
𝛾𝑠 = 1, detected 

and penalized 
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𝒫𝑥1 is the probability measure of scenario 𝑠 associated with decision vector 𝑥1. The term,  𝑥1 − 𝑥0 = 𝕖𝑘 means that 𝑥1
𝑘 

=1 while 𝑥0
𝑘 = 0 assumes that𝑏𝑘

𝑠 = 1, the arc𝑘 ∈ 𝐴, is not interdicted in 𝑥0 , then the detection probability of this arc is 

𝑝𝑘. on the other hand, this arc is interdicted in decision vector 𝑥1  then the associate probability should change to 𝑞𝑘 , 

multiplying 𝒫𝑥0  to 
𝑞𝑘

𝑝𝑘
  substituting  𝑞𝑘 to 𝑥1

𝑘.  

𝒫𝑥0 = (… , 𝑝𝑘 , … )
×
𝑞𝑘
𝑝𝑘

⇒  (… , 𝑞𝑘 , … ) = 𝒫𝑥1  

The following example can clarify the method. Consider the simple complete graph.1 with 3 arcs (|𝐴| = 3) and 3 nodes. 

The decision vector 𝑥0 = (0,0,0) means the interdictor does not have any enhancement plan for arcs and the decision 

vector 𝑥1 = (1,0,0) displays an enhancement plan established in the second arc by the interdictor.  

 

 

                                                    

                                                                                                                   

 

                                                                                                             3 
 

Graph 1. A simple graph with |𝐴| = |𝑁| = 3 

 

Arc 𝑘 interdicts successfully with probability 𝑝𝑘 = 0.6 if 𝑥𝑘 = 0 (no enhancement plan in arc 𝑘) and with probability 

𝑞𝑘 = 0.8 if arc 𝑘 selects to enhance, so that 𝑥𝑘 = 1. 

Assuming 𝑝𝑘 = 0.6 and𝑞𝑘 = 0.8, the probability measures of different scenarios under two decision vectors 𝑥0 =

(0,0,0) and 𝑥1 = (1,0,0) are presented in Table.1.  

Table1. Probability measures for neighboring decision vectors 𝑥0 and 𝑥1 

 𝑃𝑥{𝜉 = 𝜉} 𝑏𝑘
𝑠  

𝑥1 = (0,0,1)  𝑥0 = (0,0,0) 3 2 1 

0.032 *0.2/0.4 0.064 0 0 0 

0.128 *0.8/0.6 0.096 1 0 0 

0.048 *0.2/0.4 0.096 0 1 0 

0.192 *0.8/0.6 0.144 1 1 0 

0.048 *0.2/0.4 0.096 0 0 1 

0.192 *0.8/0.6 0.144 1 0 1 

0.072 *0.2/0.4 0.144 0 1 1 

0.288 *0.8/0.6 0.216 1 1 1 

In the last row of the table, the probability of𝑥0 = (0,0,0), 𝒫𝑥0, is  𝑝𝑘 × 𝑝𝑘 × 𝑝𝑘 = 0.6 × 0.6 × 0.6 = 0.216. On the 

other hand, 𝒫𝑥1 = 𝑝𝑘 × 𝑝𝑘 × 𝑝𝑘 . (
𝑞𝑘

𝑝𝑘
) = 𝑝𝑘 × 𝑝𝑘 × 𝑞𝑘 = 0.6 × 0.6 × 0.8 = 0.288. 

The mentioned method can be applied to our optimization model. In other words, instead of decision vector 𝑥 which is 

determined in the model, defining successive vectors �̂�𝑘 for a fixed 𝑥 and all𝑘 ∈ {1,2, … , 𝑛}, such that:   

�̌�𝑖
𝑘 = {

𝑥𝑖         𝑖𝑓 𝑖 ≤ 𝑘
0 𝑒𝑙𝑠𝑒

}         𝑘 ∈ 1, … , 𝑛 

Then, we have �̂�𝑛 = 𝑥 . Defining the probability measure induced by �̂�𝑘 as   𝜋𝑘
𝑠 = 𝒫𝑥𝑘 which is an auxiliary variable, 

for any 𝑘 ≤ 𝑛, two neighbored probability measures 𝜋𝑘
𝑠 and 𝜋𝑘−1

𝑠  must satisfy the following linear inequalities: 

1 3 

2 
1 

2 
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{
 

 𝜋𝑘
𝑠 ≤

𝑞𝑘
𝑝𝑘
. 𝜋𝑘−1
𝑠 + 1 − 𝑥𝑘        ∀𝑠 ∶  𝑏𝑘

𝑠 = 1

𝜋𝑘
𝑠 ≤

1 − 𝑞𝑘
1 − 𝑝𝑘

. 𝜋𝑘−1
𝑠 + 1 − 𝑥𝑘 ∀𝑠 ∶  𝑏𝑘

𝑠 = 0
}
 

 
             

{𝜋𝑘
𝑠 ≤ 𝜋𝑘−1

𝑠 + 𝑥𝑘 ∀𝑠}                                                         

∑𝜋𝑘
𝑠 = 1                                                                                   

𝑠

 

For the initial vector �̂�0 = (0,… ,0), the associated probability measure is a function of 𝑝𝑘 and is defined as   𝜋0
𝑠 =

∏ (1 − 𝑝𝑘)𝑘: 𝑏𝑘
𝑠=0 . ∏ 𝑝𝑘𝑘: 𝑏𝑘

𝑠=1  , besides the final vector 𝜋𝑛
𝑠  , is the probability measure induced by decision vector 𝑥 under 

scenario 𝑠 ∈ 𝒮. 

Now we replace the probability measure 𝒫𝑥
𝑠 by the variable 𝜋𝑛

𝑠  and add the corresponding successive constraint to model 

(1)-(7) and construct model (8)-(14). Briefly,  𝜋𝑛
𝑠  is the probability of an evader being detected under scenario𝑠 ∈ 𝒮.  It 

is a probability measure that is induced by the decision vector𝑥, which shows whether or not a sensor is installed on a 

link. 

(8) min
𝑥,𝜋
 max
𝑦,𝛾
∑𝜋𝑛

𝑠

𝑠

∑[(1 − 𝛾𝑠)𝑦𝐷𝑂
𝑘∈𝐴

+ 𝛾𝑠𝐶𝑚𝑎𝑥]    

(9) 𝑠. 𝑡. 

∑ 𝑐𝑘𝑥𝑘 ≤ 𝐵𝑘∈𝐴       

   𝑥𝑘 ∈ {0,1}     ∀𝑘 ∈ 𝐴  

(10) 𝜋𝑘
𝑠 ≤

𝑞𝑘

𝑝𝑘
× 𝜋𝑘−1

𝑠 + 1 − 𝑥𝑘                 ∀𝑘 ∈ 𝐴, ∀𝑠: 𝑏𝑘
𝑠 = 1      

𝜋𝑘
𝑠 ≤

1−𝑞𝑘

1−𝑝𝑘
× 𝜋𝑘−1

𝑠 + 1 − 𝑥𝑘             ∀𝑘 ∈ 𝐴, ∀𝑠: 𝑏𝑘
𝑠 = 0             

𝜋𝑘
𝑠 ≤ 𝜋𝑘−1

𝑠 + 𝑥𝑘                                  ∀𝑘 ∈ 𝐴, ∀𝑠 ∈ 𝑆          

∑ 𝜋𝑘
𝑠 = 1𝑠                                            ∀𝑘 ∈ 𝐴       

𝜋𝑘
𝑠 ≥ 0                                                 ∀𝑘 ∈ 𝐴, ∀𝑠 ∈ 𝑆          

(11) 

 
∑ 𝑦𝑘

𝑘∈𝐹𝑆(𝑖)

− ∑ 𝑦𝑘
𝑘∈𝑅𝑆(𝑖)

= 0   ∀𝑖 ∈ 𝑉\ {s, t} 

(12) 𝑦𝑘 ≤ 𝑢𝑘                             ∀𝑘 ∈ 𝐴                                                                               

(13) 
𝛾𝑠 ≥

1

𝑛
∑ 𝑦𝑘

(𝑘∈𝐴):𝑏𝑘
𝑠=1

      ∀𝑠 ∈ 𝑆 

 𝛾𝑠 ≤ ∑ 𝑦𝑘
(𝑘∈𝐴):𝑏𝑘

𝑠=1

        ∀𝑠 ∈ 𝑆 

(14) 𝑦𝑘 ∈ {0,1}         ∀𝑘 ∈ 𝐴 

𝛾𝑠 ∈ {0,1}          ∀𝑠 ∈ 𝑆 

 

Model (8)-(14) is a max-min problem with objective function (8) and constraint set (9) to (14). (9) Shows the budget 

limitation; (10) presents the set of inequality to linearize the product caused by probability measures; (11) and (12) are 

the constraint of flow conservation and capacity limitation; (13) is constraint related to indicator variable; and lastly (14) 

display the binary form of variables. Although, the term 𝛾𝑠𝑦𝑘 causes nonlinearity in Model 2, we can simply linearize it 

as a product of two binary variables. 

4) Solution method 

Model (8)-(14) is a bi-level programming model and there are three main approaches to solve such models, including 

decomposition, duality, and reformulation. In this section, we show how the problem displayed in Model 2 can be solved 

using Benders’ based bi-level decomposition. 

The decomposition approach is established on solving a smaller nested bi-level programming problem sequentially. This 

method lets one exploit the interaction between the attacker and the defender in each of these sub-problems. A given 
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initial solution for the top-level problem is needed to start, then an equilibrium for the bottom level problems is found 

iteratively and a Benders’ cut is generated by the obtained solution. The new cut should be added to the top-level problem 

in the next iteration and solves the upper level considering the set of all generated cuts. Model (15)-(16) is the 

reformulation of Model (8)-(14) to apply the decomposition method. (16) is the Benders’ cut generated using the fixed 

value 𝛾𝑠 and �̂�𝑘.  

 

(15) min
𝛼,𝜋,𝑥

𝛼 

 𝑠. 𝑡. 

     Constraints (9) and (10)  

     α ≥   ∑𝜋𝑛
𝑠

𝑠

∑[(1 − 𝛾 𝑠)�̂�𝐷𝑂
𝑘∈𝐴

+ 𝛾𝑠𝐶𝑚𝑎𝑥] 

(16)      𝛼(�̃�, �̃�) = max
𝑦,𝛾
∑�̃�𝑛

𝑠

𝑠

∑[(1 − 𝛾𝑠)𝑦𝐷𝑂
𝑘∈𝐴

+ 𝛾𝑠𝐶𝑚𝑎𝑥] 

       𝑠. 𝑡. 

          Constraints (11) to (14) 

 

Let 𝑆(�̃�, �̃�) denotes the set of pairs (�̃�, �̃�) found as the optimal solutions of the lower level problem. Algorithm 1 to solve 

Model (15)-(16) is stated as: 

 

Algorithm 1: 

Initialization phase: Given an O-D network and a tolerable optimality gap ; set �̃�(𝟏) ← 𝟎 , 𝑺(�̃�, �̃�) = ∅. 

Iterative phase:  

For 1i ,..,N , 

      Begin 

       1.1) Solve (16) to find �̃�𝒊, �̃�𝒊 and objective value �̃�𝒊. Set 𝑺(�̃�, �̃�) = 𝑺(�̃�, �̃�) ∪ {�̃�𝒊, �̃�𝒊} 
       1.2) Solve (15) to find 𝒙𝒊, �̃�𝒊  and �̃�𝒊. 

       1.3) (Convergence Check) If  |�̃�𝒊 − �̃�𝒊| < 𝜺 then  (𝒙∗, 𝝅∗, 𝒚∗, 𝜸∗) ← (𝒙𝒊, �̃�𝒊, �̃�𝒊, �̃�𝒊) and break.  

                                       else go to 1.1.  

      End. 

Return 𝒙∗, 𝝅∗, 𝒚∗, 𝜸∗. 
 

5. Computational Results of the Case Study 

To illustrate the importance and applicability of the proposed uncertain maximum flow network interdiction a real-world 

case study is presented in the following.  

5.1. Case study: Drug Trafficking Network 

In October 2009, UNODC2 published a survey on the transnational threat of Afghan drug (opium) and revealed the 

dramatic negative effect of Afghan drugs not only in neighboring states but also all over the world. The report emphasizes 

the importance of seizing the drug flow between different countries. Figure 1 illustrated the global drug trafficking graph.  

Now, to apply our model to cope with the drug trafficking problem, each country may consider a node of graph 𝐺 and a 

link between two countries if there is drug transportation.  

To simplify, we just study some weighty and critical links and consider Afghanistan for the origin of graph 𝐺 as the main 

producer of opium in the world. Europe with the largest share of opiate market value is regarded as a single destination. 

A directed and weighted graph 𝐺 = (𝑁, 𝐴) with 10 arcs 𝐴 and 7 nodes 𝑁 is presented in figure 2, which depicts the 

selected opium flow network. 

 

                                                                 
2 United Nations Office of Drug and Crime 
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Figure1. Estimated opium flows from Asia to the world (in tons) 

 

Figure 2. Summarized graph derived from figure1  

Table 2 clarifies the drug flows (tons) after 2002 for 7 selected countries with a drastic role in worldwide flow. The 

percentage of estimated flow intercepted in each country is also shown.  

Table 2. Percentage of seizers and estimated flows of selected graph 
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1 Afghanistan 2%  150 95 105    

2 Pakistan 17%    35   5 

3 Central Asia 5%     77   

4 Iran 20%   2   95  

5 Russia 2%       4 

6 Turkey 9%       85 

7 Europe 9%        

                                                                 
 source: UNODC 
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5.2. Numerical results and discussion 

We implement Algorithm 1 using a simplified instance derived from UNODC report 2009. The algorithm is implemented 

in GAMS software installed on a PC with an Intel Core i7m 4 GHz processor and 16 GB of RAM. The commercial 

solver CPLEX, version 11, was used to solve the MIP problems at each node of the enumeration tree. 

We executed the model using Algorithm 1, for 𝑝 as a percentage of seizers (shown in table 3) or probability of successful 

detection before interdiction, and 𝑞 = 1 (problem #1) 𝑞 = 𝑝 + 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1 − 𝑝) (problem #2), 𝑞 = 0.5 (problem #3) 

and 𝑞 = 𝑝 + 0.3 (problem #4). 𝑞 is the probability of successful detection which is enhanced after interdiction. This 

enhancement may be achieved by adding some sensors or security enhancing. 

Table 3 represents the results. 𝑥 is the master problem binary variable associated with interdicted arcs and 𝑦 is the binary 

variables demonstrating the chosen path traversed by the smugglers. The optimal value of the min-max problem is shown 

under column𝑍. 
 

Table 3. Optimal results and computational time of different problem instances for Budget 𝐵 = 1 𝑡𝑜 4 

Problem 

No. 

𝑩 𝒙 𝒚 𝒛 TIME (s) 

#1 1 8 1-2-5-6-9 3.60 28.38 

 2 6,8 1-5 2.38 93.25 

 3 1,2,3 1-2-3-4-5-6 -6 91.01 

 4 1,2,3 7-8-9-10 -6 92.37 

      

#2 1 1 3-8-10 20.06 4.03 

 2 1,8 2-6-9 2.47 24.05 

 3 1,6,8 1-5 0.88 145.24 

 4 1,2,5,8 3-6-7-9 -0.58 397.15 

#3      

 1 8 3-8-10 8.32 14.17 

 2 8,10 1-2-5-6-9 3.60 89.38 

 3 6,8,10 1-5 2.31 392.48 

 4 5,6,8,10 3-8-10 1.88 476.38 

#4      

 1 3 1-4-8-10 11.05 20.97 

 2 3,8 1-4-8-10 0.25 37.43 

 3 3,8,10 3-8-10 5.89 86.07 

 4 3,6,8,10 3-8-10 5.89 86.07 
 

 

To analyze the number of the table, consider the optimal value of problem instance #4 (numbers in the grey rectangle). 

If the network protector enhances the prior detection probability measure 𝑝  to 𝑝 + 0.3  just for a single link (𝐵 = 1) , 

the optimal value ( the expected flow that the smugglers may pass through the network) is 11.05, but if there is enough 

budget to amplify the detection probability of 2 arcs, the optimal value decreases 10.80 units and reaches to 0.25. In 

addition, our model finds critical links to invest. Here, link 3, 8 are recognized as critical links that need to enhance the 

detection probability. Link 8 which is associated with Iran-Turkey arc appeared frequently in different solutions and 

show the critical role of this connection in the flow control.   

The optimal value of different problem instances #1 to #4 for associated budget 𝐵 = 1 to 𝐵 = 4 is illustrated in figure 

3.  
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Figure 3. Optimal values of different problems instances for 𝐵 = 1 𝑡𝑜 4 

 

As expected, the optimal value of the min-max interdiction problem decrease by having more budget 𝐵. This decline 

standstill for extra budget and stop decreasing after a threshold. Figure 2 shows this optimal value trend for problem 

instances  #2 and #3.  

 

 
Figure 4. Optimal values of problem #2 for 𝐵 = 1 𝑡𝑜 6 

6. Conclusions 

We have studied two-stage maximum flow network interdiction problem with decision-dependent probabilities which 

change endogenously in the model. In this problem, endogenous uncertainty arises in this way. Considering that the 

interdiction action for any arc 𝑘 ∈ 𝐴 may be successful with the given probability 𝑝𝑘  (0 ≤ 𝑝𝑘 ≤ 1) initially, the 

interdictor can increase this probability to 𝑞𝑘 (0 ≤ 𝑞𝑘 ≤ 1 and 𝑞𝑘 ≥ 𝑝𝑘) by enhancing the interdiction ability. This 

enhancement may be achieved by adding some sensors or security controls according to the interdictor's limited budget.  

The proposed model is a nested bi-level programming model in which the leader chooses some arcs to enhance the 

probability of detection and probability of each scenario as a consequent at the upper level. At the bottom level, the 

follower tries to choose the best possible flow plan having just the probability of each scenario. On the other hand, the 

problem is a two-stage stochastic problem. In the first stage, the follower selects a flow plan while he does not know 

which scenario may occur. In the second stage, a control value reveals if the follower is detected finally or there is a 

successful flow of commodity from origin to destination.   

We proposed a new formulation and solution method for a bi-level maximum flow problem with endogenous uncertainty. 

The problem is formulated with a bi-level min-max structure, which could not be solved via standard optimization 

algorithms. In this paper, bi-level decomposition algorithm has been applied to solve the problem by adding some 

Benders’ cuts iteratively. We applied a method, called distribution shaping, to deal with non-linearity arise in the 

probability measure of each flow plan. The model is implemented for a real case study of selected sub-graph derived 

from opium trafficking network. The network topology and data are extracted from the UNODC report (2009).  
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Numerical results show that a small increase in the probability of opium seizers leads to a significant change in the 

expected total cost of smugglers. In addition, our model determines the most important countries in the case study to 

watch for controlling the world flow of opium.  

The two-stage problem consists of an exponential number of scenarios where solving the model in a larger size is difficult 

or even impossible. Using a scenario reduction method that is consistent with endogenous uncertainty may be interesting 

for future work.   
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