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Abstract 

This paper shows that cooperative grey game theory can help us to establish a fair cost share between private 

organizations for supporting the temporary housing problem by using facility location games under uncertainty. 

Temporary accommodation might be a method that ought to get started before a tragedy happens, as a preventative pre-

planning. In spite of being temporary constructions, the housing buildings are one of the most essential parts to produce 

in emergency situations, to contribute to the reconstruction and to recover better. Our study is based on a default 

earthquake in Izmir of western Turkey. A number of tents are being built in three cities near Izmir. Two companies are 

selected to distribute the tents in a fair way between the three cities. For this purpose, we use cooperative grey game 

theory to help us define a fair cost allocation between private organizations for supporting the housing problem by using 

facility location games under uncertainty. 

Keywords: Temporary housing; Earthquake; Cooperative grey games; Grey numbers; Facility location situations. 

1. Introduction 

Izmir is one of the largest cities in Turkey's with a population of around 4 million, which has the second biggest seaport 

after Istanbul. Izmir is a vibrant city where half of its population is below the age of thirty. The town hosts tens of 

thousands of university students, scientist, artists, business leaders and lecturers. It's an apace growing town on the 

Central Aegean coast of Turkey. Izmir survived as a giant town throughout its history of 5000 years and has been 

oftentimes restored beneath political science and earth science influences. The city has been greatly littered with some 

disasters like earthquakes, fires, epidemics, etc. Therefore, several edifices that might reflect historical background of 

the town did not survive until these days, present remains are generally few and known only by experts and neighboring 

people (Report of Radius Project August 2001). 

The map in Figure 1, shows seismic zones in Turkey and Izmir city. It divided into five zones according to the magnitude 

of earthquakes, ranging from the most dangerous to the least dangerous. According to statistics, about 44% of the 

population of Turkey lives in the most dangerous zones (Kilci et al., 2015). Communities suffer after the disasters, and 

their impact are tragic. From the destruction of infrastructure to the unfolding of sickness, natural disasters will devastate 

entire countries long. Tsunamis, earthquakes and typhoons do not just make a disturbance on land; they additionally 

disrupt people's lives in both densely inhabited cities and remote villages. In this study, we try to help those people who 

have lost their houses and became homeless. Uncertainty in the likelihood of disasters arises from a number of sources. 

These uncertainties, we can deal into it by cooperative interval game and interval solutions which solutions are interval 

Centre-of gravity of the Imputation-Set value, shortly denoted by ICIS-value, Interval Egalitarian Non-Separable 

Contribution's value, shortly denoted by IENSC-value and therefore the interval equal division solution, shortly denoted 

by IED-solution (Usta et al., 2018). Our main goal is to extend of these solutions by using grey uncertainty. 
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Figure 1. Seismic zones map of Turkey and Izmir and Cities of tents 

(https://www.deprem.afad.gov.tr/deprem-bolgeleri-haritasi?lang=en) 

 

In this paper, we focus on an application on a facility location situation and related games with grey data. Each facility 

is made to please the players during a facility location situation of affairs. Here, the matter is to attenuate the overall cost. 

This cost consists of each of the player's distance and also the construction of every facility (Usta et al., 2018). The paper 

is organized as follows: We provide some basic notions and resolution concepts from grey numbers and cooperative grey 

games in Section 2. Our cooperative facility location game based on the cooperative grey game model created after an 

earthquake as a natural disaster is given in Section 3. In Section 4, we tend to give some interpretations relating to our 

solutions. Finally, Section 5 ends this paper with a conclusion and an outlook to future studies. 

 

2. Basic Concepts 

In this section, in order to supply the readers with all the required background to follow this paper, we formally provide 

some basics from cooperative grey games and connected grey solution ideas. A facility location scenario that is critical 

to construct our model is additionally given. 

 

2.1. Grey numbers system 

Grey theory (Deng, 1982), originally developed by Professor Deng in 1982, has become a very effective method of 

solving uncertainty problems under discrete data and incomplete information. Grey theory has now been applied to 

various areas such as forecasting, system control, computer graphics and decision-making. Here, we give some basic 

definitions regarding relevant mathematical background of grey numbers in grey theory:  

A grey number takes an unknown distribution between fixed lower and upper bounds, denoted as ⊗∈ [𝑎, 𝑎], where 𝑎 

and 𝑎 are respectively, the lower and upper bounds for ⊗.  

Let ⊗1∈ [𝑎, 𝑎],  ⊗2∈ [𝑏, 𝑏] and 𝛼 is a positive real number, then 

1. ⊗1∈ [𝑎, 𝑎] + ⊗2∈ [𝑏, 𝑏]
 

⇔⊗1+  ⊗2∈ [𝑎 + 𝑏, 𝑎 + 𝑏] 

2. The scalar multiplication of 𝛼 and ⊗ is defined as follows: 

𝛼 ⊗∈ [𝛼𝑎, 𝛼𝑎] 

              We denote by 𝒢(ℝ) the set of interval grey numbers in R. Let ⊗1,⊗2∈ 𝒢(ℝ) with ⊗1∈ [𝑎, 𝑎],  ⊗2 ∈

                [𝑏, 𝑏], |⊗1| = 𝑎 − 𝑎  and 𝛼 ∈ ℝ+. Then by parts 1 and 2 we see that 𝒢(ℝ)  has a cone structure. 

3. In general, the difference of ⊗1 and ⊗2 is defined as follows: 

⊗1⊖⊗2=⊗1+ (− ⊗2) ∈ [𝑎 − 𝑏, 𝑎 − 𝑏] 
             Different from the above subtraction we use a partial subtraction operator. 

We define ⊗1⊖⊗2, only if |𝑎 − 𝑎| ≥ |𝑏 − 𝑏|, by ⊗1−⊗2= [𝑎 − 𝑏, 𝑎 − 𝑏]. (Alparslan Gok et al., 2009). 

 

2.2. Cooperative Grey Games 

In this section, we introduce the notion of cooperative grey games. A cooperative grey game is an ordered pair 〈𝑁, 𝑤′〉 
with the player set 𝑁 = {1, … , 𝑛} in which 𝑤′ =⊗: 2𝑁 → 𝒢(ℝ) is the grey payoff characteristic function such that  

𝑤′(∅) =⊗∅∈ [0,0], grey payoff function 𝑤′(𝑆) =⊗𝑆∈ [𝐴𝑆, 𝐴𝑆] refers to the valuing area of the grey expectation benefit 

which is belonged to a coalition 𝑆 ∈ 2𝑁, where 𝐴𝑆 and 𝐴𝑆 represent the maximum and minimum possible profits of the 

coalition 𝑆. So, a cooperative grey game can be considered as a classical cooperative game with grey profits⊗. Grey 

solutions are useful to solve reward/cost sharing problems with grey data using cooperative grey games as a tool. Building 

blocks for grey solutions are grey payoff vectors, i.e. vectors whose components belong to 𝒢(ℝ). We denote by 𝒢(ℝ)𝑁 

the set of all such grey payoff vectors. We denote by 𝒢𝐺𝑁 the family of all cooperative grey games. 

The following example illustrates a grey game. 
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Example 2.1. (Grey glove game) Let 𝑁 = {1, … , 𝑛} be the set of players consisting of two disjoint subsets 𝐿 and 𝑅. The 

members of 𝐿 possess each one left-hand glove, the members of 𝑅 one right-hand glove. A single glove is worth nothing, 

a right-left pair of gloves is worth between 10 and 20 Euros. In case 𝐿 = {1, 2} and 𝑅 = {3}, this situation can be 

modelled as a three-person grey game, where the coalitions formed by players 1 and 3, players 2 and 3, and the grand 

coalition obtain an element of the worth [10, 20]. The worth gained in other cases is [0, 0], i.e. ⊗13= 𝑤′(1, 3) =⊗23=
𝑤′(2, 3) =⊗𝑁= 𝑤′(𝑁) ∈ [10, 20] and ⊗𝑆= 𝑤′(𝑆) ∈ [0, 0], otherwise (Palanci et al., 2015b, Alparslan Gök et al. 

2014). 

 

Example 2.2. Consider a production situation with 3 departments involved in the working process of a raw material. 

Each department assures one stage of processing and there is a hierarchy between them: the material is processed at stage 

𝑖 only after its processes in stages 1, … , 𝑖 − 1. At any stage 𝑖, 𝑖 = 1, 2, 3, there is a fixed cost necessary to process the 

material. However, the cost at stage 2 may increase with an additional amount, for example due to a machinery accident 

and related maintenance. Suppose that the cost at stages 1 and 3 are 7 and 12, respectively, whereas the cost of stage 2 

is in between 5 and 10. The uncertainty due to department 2 affects the departments that are not its superiors. This 

situation is modelled as the cooperative grey 〈𝑁, 𝑤′〉 with 𝑁 =  {1, … , 𝑛} and ⊗1= 𝑤′(1) =⊗13= 𝑤′(1, 3) ∈
[7 + 5, 7 + 10] = [12, 17], ⊗123= 𝑤′(1, 2, 3) ∈ [7 + 5 + 12, 7 + 10 + 12] = [24, 29] and ⊗𝑆= 𝑤′(𝑆) ∈ [0, 0] in 

any other case (Palanci et al., 2015b). 

 

2.3. Grey solutions 

Let us recall the definition of the grey solution that is critical during this study (Yilmaz et al., 2018, Palanci et al., 2015a, 

Palanci et al., 2017b). 

 

2.3.1. Grey Shapley value 

Now, we introduce some theoretical notions from the theory of cooperative grey games. For 𝑤, 𝑤1, 𝑤2 ∈ 𝐼𝐺𝑁 and 

𝑤′, 𝑤1
′ , 𝑤2

′ ∈ 𝒢𝐺𝑁 we say that 𝑤1
′ ∈ 𝑤1 ≤ 𝑤2

′ ∈ 𝑤2 if 𝑤1
′(𝑆) ≤  𝑤2(𝑆), where 𝑤1

′(𝑆) ∈ 𝑤1(𝑆) and 𝑤2
′ (𝑆) ∈ 𝑤2(𝑆), for 

each 𝑆 ∈ 2𝑁. For 𝑤1
′ , 𝑤2

′ ∈ 𝒢𝐺𝑁 and 𝛼 ∈ ℝ+ we define 〈𝑁, 𝑤1
′ + 𝑤2

′ 〉 and 〈𝑁, 𝛼𝑤′〉 by (𝑤1
′ + 𝑤2

′ )(𝑆) = 𝑤1
′(𝑆) + 𝑤2

′ (𝑆) 

and (𝛼𝑤′)(𝑆) = 𝛼𝑤′(𝑆) for each 𝑆 ∈ 2𝑁. So, we conclude that 𝒢𝐺𝑁 endowed with "≤" has a cone structure with 

respect to addition and multiplication with non-negative scalars above. For 𝑤1
′ , 𝑤2

′ ∈ 𝒢𝐺𝑁  where 𝑤1
′ ∈ 𝑤1 , 𝑤2

′ ∈ 𝑤2 with 

|𝑤1(𝑆)| ≥ |𝑤2(𝑆)| for each 𝑆 ∈ 2𝑁, 〈𝑁, 𝑤1
′ − 𝑤2

′ 〉 is defined by (𝑤1
′ − 𝑤2

′ )(𝑆) = 𝑤1
′(𝑆) − 𝑤2

′ (𝑆) ∈ 𝑤1(𝑆) − 𝑤2(𝑆). We 

call a game 〈𝑁, 𝑤′〉 grey size monotonic if 〈𝑁, |𝑤|〉 is monotonic, i.e. |𝑤|(𝑆) ≤ |𝑤|(𝑇) for all 𝑆, 𝑇 ∈ 2𝑁 with 𝑆 ⊂ 𝑇. For 

further use we denote by 𝑆𝑀𝒢𝐺𝑵 the class of grey size monotonic games with player set 𝑁. The grey marginal operators 

and the grey Shapley value are defined on 𝑆𝑀𝒢𝐺𝑵. Denote by ∏(𝑁) the set of permutations 𝜎 ∶ 𝑁 → 𝑁 of 𝑁. The grey 

marginal operator 𝑚𝜎: 𝑆𝑀𝒢𝐺𝑵 → 𝒢(ℝ)𝑵 corresponding to 𝜎, associates with each 𝑤′ ∈ 𝑆𝑀𝒢𝐺𝑵 the grey marginal 

vector 𝑚𝜎(𝑤′) of 𝑤′ with respect to 𝜎 defined by  

𝑚𝑖
𝜎(𝑤′) ≔ 𝑤′(𝑃𝜎(𝑖) ∪ {𝑖}) − 𝑤′(𝑃𝜎(𝑖)) ∈ [𝐴𝑃𝜎(𝑖)∪{𝑖} − 𝐴𝑃𝜎(𝑖), 𝐴𝑃𝜎(𝑖)∪{𝑖} − 𝐴𝑃𝜎(𝑖)

 
], for each 𝑖 ∈ 𝑁,  

where 𝑃𝜎(𝑖) = {𝑟 ∈ 𝑁| 𝜎−1(𝑟) <  𝜎−1(𝑖)}, and  𝜎−1(𝑖) denotes the entrance number of player 𝑖. For grey size 

monotonic games 〈𝑁, 𝑤′〉, 𝑤′(𝑇) − 𝑤′(𝑆) ∈ 𝑤(𝑇) − 𝑤(𝑆) is defined for all 𝑆, 𝑇 ∈ 2𝑁 with 𝑆 ⊂ 𝑇 since |𝑤(𝑇)| =
|𝑤|(𝑇) ≥ |𝑤|(𝑆) = |𝑤(𝑆)|. We notice that for each 𝑤′ ∈ 𝑆𝑀𝓖𝐺𝑵 the grey marginal vectors 𝑚𝜎(𝑤′) are defined for 

each 𝜎 ∈ ∏(𝑁), because the monotonicity of |𝑤| implies 𝐴𝑆∪{𝑖} − 𝐴𝑆∪{𝑖} ≥  𝐴𝑆 − 𝐴𝑆
 
, which can be rewritten as 𝐴𝑆∪{𝑖} −

𝐴𝑆  ≥  𝐴𝑆∪{𝑖} − 𝐴𝑆
 
. So, 𝑤′(𝑆 ∪ {𝑖}) − 𝑤′(𝑆) ∈ 𝑤(𝑆 ∪ {𝑖}) − 𝑤(𝑆) is defined for each 𝑆 ⊂ 𝑁 and 𝑖 ∉ 𝑆. Next, we notice 

that all the grey marginal vectors of a grey size monotonic game are efficient grey payoff vectors. The grey Shapley 

value Փ′: 𝑆𝑀𝒢𝐺𝑁 → 𝒢(ℝ)𝑁 is defined by  

Փ′(𝑤′) ≔
1

𝑛!
∑ 𝑚𝜎(𝑤′)𝜎∈∏(𝑁) ∈ [

1

𝑛!
∑ 𝑚𝜎(𝐴)𝜎∈∏(𝑁) ,

1

𝑛!
∑ 𝑚𝜎(𝐴)𝜎∈∏(𝑁) ], for each 𝑤′ ∈ 𝑆𝑀𝒢𝐺𝑁.                                (1) 

We can write the last equation as follows: 

Փ𝑖
′(𝑤′) ≔

1

𝑛!
∑  𝜎∈∏(𝑁)

 
[𝑤′(𝑃𝜎(𝑖) ∪ {𝑖}) − 𝑤′(𝑃𝜎(𝑖))

 
] ∈ [

1

𝑛!
∑  𝜎∈∏(𝑁) 𝐴𝑃𝜎(𝑖)∪{𝑖} − 𝐴𝑃𝜎(𝑖),

1

𝑛!
∑  𝜎∈∏(𝑁)  𝐴𝑃𝜎(𝑖)∪{𝑖} −

𝐴𝑃𝜎(𝑖) 
]       

          (2)  

The following example illustrates the calculation of the grey Shapley value. 

 

Example 2.3. (Palanci et al., 2015b) Let 〈𝑁, 𝑤′〉, be a cooperative grey game with 𝑁 = {1, … , 𝑛} and ⊗1= 𝑤′(1) =
⊗13= 𝑤′(1, 3) ∈ [7, 7],⊗12= 𝑤′(12) ∈ [12, 17], ⊗𝑁= 𝑤′(123) ∈ [24,29] and ⊗𝑆= 𝑤′(𝑆) ∈ [0, 0] otherwise. Then 

the grey marginal vectors are given in the following table, where 𝜎 ∶ 𝑁 → 𝑁 is identified with (𝜎 (1), 𝜎 (2), 𝜎 (3)). 

Firstly, for 𝜎1 = (1,2,3), we calculate the grey marginal vectors. Then, 

𝑚1
𝜎1(𝑤′) = 𝑤′(1) ∈ [7, 7], 

𝑚2
𝜎1(𝑤′) = 𝑤′(12) − 𝑤′(1) ∈ [12, 17] − [7, 7] = [5, 10], 
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𝑚3
𝜎1(𝑤′) = 𝑤′(123) − 𝑤′(12) ∈ [24, 29] − [12, 17] = [12, 12]. 

The others can be calculated similarly, which is shown in Table 1. 

 
Table 1. Grey marginal vectors of the cooperative grey game 

𝜎 𝑚1
𝜎(𝑤′) 𝑚2

𝜎(𝑤′) 𝑚3
𝜎(𝑤′) 

𝜎1 = (1,2,3) 𝑚1
𝜎1(𝑤′) ∈ [7, 7] 𝑚2

𝜎1(𝑤′) ∈ [5, 10] 𝑚3
𝜎1(𝑤′) ∈ [12, 12] 

𝜎2 = (1,3, 2) 𝑚1
𝜎2(𝑤′) ∈ [7, 7] 𝑚2

𝜎2(𝑤′) ∈ [17, 22] 𝑚3
𝜎2(𝑤′) ∈ [0, 0] 

𝜎3 = (2,1,3) 𝑚1
𝜎3(𝑤′) ∈ [12, 17] 𝑚2

𝜎3(𝑤′) ∈ [0, 0] 𝑚3
𝜎3(𝑤′) ∈ [12, 12] 

𝜎4 = (2,3,1) 𝑚1
𝜎4(𝑤′) ∈ [24, 29] 𝑚2

𝜎4(𝑤′) ∈ [0, 0] 𝑚3
𝜎4(𝑤′) ∈ [0, 0] 

𝜎5 = (3,1,2) 𝑚1
𝜎5(𝑤′) ∈ [7, 7] 𝑚2

𝜎5(𝑤′) ∈ [17, 22] 𝑚3
𝜎5(𝑤′) ∈ [0, 0] 

𝜎6 = (3,2,1) 𝑚1
𝜎6(𝑤′) ∈ [24, 29] 𝑚2

𝜎6(𝑤′) ∈ [0, 0] 𝑚3
𝜎6(𝑤′) ∈ [0, 0] 

 

The average of the six grey marginal vectors is the grey Shapley value of this game which can be shown as: 

Փ𝒊
′(𝑤′) ∈ ([

27

2
, 16] , [

13

2
, 9] , [4, 4]) 

 

2.3.2. The grey Banzhaf value 

The grey Banzhaf value  𝛽: 𝑆𝑀𝒢𝐺𝑁 → 𝒢(ℝ)𝑁, ∀ 𝑤′ ∈ 𝑆𝑀𝒢𝐺𝑁 is defined as   

𝛽(𝑤′) =
1

2|𝑁|−1
∑ [𝑤′(𝑆) − 𝑤′(𝑆\{𝑖})]𝑖∈𝑆                                                                                                                         (3) 

 

2.3.3. The 𝒢𝐶𝐼𝑆 -value 

The 𝐶𝐼𝑆-value (Driessen and Funaki, 1991) assigns to every player its individual worth, and distributes the remainder of 

the worth of the grand coalition 𝑁 equally among all players (van den Brink and Funaki, 2009). 

The grey 𝐶𝐼𝑆-value assings every player to its individual grey worth, and distributes the remainder of the grey worth of 

the grand coalition 𝑁 equally among all players (Yilmaz et al, 2018). The 𝒢𝐶𝐼𝑆-value 𝒢𝐶𝐼𝑆: 𝑆𝑀𝒢𝐺𝑵 → 𝒢(ℝ)𝑵 is defined 

by 

𝒢𝐶𝐼𝑆𝑖(𝑤′) = 𝑤′({𝑖}) +
1

|𝑁|
[𝑤′(𝑁) − ∑ 𝑤′({𝑗})𝑗∈𝑁 ]                                                                                                       (4) 

 

2.3.4. The 𝒢𝐸𝑁𝑆𝐶-value 

The grey 𝐸𝑁𝑆𝐶-value (𝒢𝐸𝑁𝑆𝐶 -value) assigns to every game 𝑤′ the 𝒢𝐶𝐼𝑆-value of its dual game, i.e. 

𝒢𝐸𝑁𝑆𝐶𝑖(𝑤′) = 𝒢𝐶𝐼𝑆𝑖(𝑤′∗) =
1

|𝑁|
[𝑤′(𝑁) − ∑ 𝑤′(𝑁{𝑗})𝑗∈𝑁 ] − 𝑤′(𝑁\{𝑖})                                                                   (5) 

The 𝒢𝐸𝑁𝑆𝐶-value assigns to every player in a game its grey marginal contribution to the "grand coalition" and distributes 

the remainder equally among the players (Yilmaz et al, 2018; van den Brink and Funaki, 2009). 

2.3.5. The 𝒢𝐸𝐷-solution 

The grey 𝐸𝐷-solution (𝒢𝐸𝐷 -solution) 𝒢𝐸𝐷: 𝒢𝐺𝑁 → 𝒢(ℝ)𝑁 is given by  

𝒢𝐸𝐷𝑖(𝑤′) =
𝑤′(𝑁)

|𝑁|
, for all 𝑖 ∈ 𝑁                                                                                                                                          (6) 

For further details see Yilmaz et al, 2018 and van den Brink and Funaki, 2009.                                                                                                                                      

 

3. Facility Location Situations 

In this section, we inspired from cite the facility paper (Usta et al., 2018). In a facility location game, a set 𝒜 of agents 

(also known as cities, clients, or demand points), a set ℱ of facilities, a facility opening cost 𝑓𝑖  for every facility 𝑖 ∈ ℱ, 

and a distance 𝑑𝑖𝑗  between every pair (𝑖, 𝑗) of points in 𝒜 ∪ ℱ indicating the cost of connecting 𝑗 to 𝑖 are given. We 

assume that the distances come from a metric space; i.e., they are symmetric and obey the triangle inequality. For a set 

𝑆 ⊆ 𝒜 of agents, the cost of this set is defined as the minimum cost of opening a set of facilities and connecting every 

agent in 𝑆 to an open facility. More precisely, the cost function 𝑐 is defined by Mallozzi (2011) as follows: 

𝑐(𝑆)  = min
ℱ∗⊆ℱ

{∑ 𝑓𝑖 + ∑ min
𝑖∈ℱ∗

𝑑𝑖𝑗𝑗∈𝑆𝑖∈ℱ∗ }                                                                                                                           (7) 

Facility location games are studied by Nisan et al. (2007) in the literature. Further, facility location interval games are 

introduced by Palanci et al. (2017a). In this study, we introduce the facility location grey games. In a facility location 

grey game, a set 𝒜 of agents (also known as cities, clients, or demand points), a set ℱ of facilities, a grey facility opening 

cost 𝑓𝑖
′
 for every facility 𝑖 ∈ ℱ and a distance 𝑑𝑖𝑗  between every pair (𝑖, 𝑗) of points in 𝒜 ∪ ℱ indicating the rey cost of 

connecting 𝑗 to 𝑖 are given. Here, 𝑓𝑖
′ ∈ [𝑓𝑖

′, 𝑓𝑖
′], 𝑑𝑖𝑗

′ ∈ [𝑑𝑖𝑗
′ , 𝑑𝑖𝑗

′ ] ∈ 𝒢(ℝ). The distances are supposed to come from a 

metric space. So, these distances are symmetric and satisfy the triangle inequality. For a set 𝑆 ⊆ 𝒜 of agents, the grey 
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cost of this set is defined as the minimum grey cost of opening a set of facilities and connecting every agent in 𝑆 to an 

open facility. More precisely, the grey cost function 𝑤′ is defined by 

𝑤′(𝑆) ∈ [min
ℱ∗⊆ℱ

{∑ 𝑓𝑖 + ∑ min
𝑖∈ℱ∗

𝑑𝑖𝑗𝑗∈𝑆𝑖∈ℱ∗ } , min
ℱ∗⊆ℱ

{∑ 𝑓𝑖 + ∑ min
𝑖∈ℱ∗

𝑑𝑖𝑗𝑗∈𝑆𝑖∈ℱ∗ }] ∈ 𝒢(ℝ)                                                      (8) 

A facility location game has two aims: the primary one is to outline a applicable position for the ability consistent with 

some given facility location rule; the second one deals instead with the problem of how to deal out the total cost among 

the members of the coalition, where the dispersion of total cost is worked with cooperative game theoretic solution ideas, 

corresponding to grey solutions. Now, we present an application from a facility location situation and related game with 

grey data, where we inspired by Palanci et al. (2017a). 

 

Example 3.1. Figure 2 shows a facility location game with 3 cities Player 1 (City 1), Player 2 (City 2), Player 3 (City 3) 

in Turkey and 2 hospitals{𝑓1, 𝑓2}. 

The costs of each coalitions are calculated by using (8) as follows: 

 

 
Figure 2. An application of a facility location game with grey data. 

 

𝑤′({1}) ∈ [5, 7];  𝑤′({2}) ∈ [4, 6];  𝑤′({3}) ∈ [4, 6];  
𝑤′({1, 2}) ∈ [7, 10];  𝑤′({2, 3}) ∈ [5, 8];  𝑤′({1, 3}) ∈ [9, 13];  
𝑤′({1, 2, 3}) ∈ [10, 15]. 

The grey marginal vectors are given in the following table: 
Table 2. Grey marginal vectors 

𝜎  𝑚1
𝜎(𝑤′)  𝑚2

𝜎(𝑤′)  𝑚3
𝜎(𝑤′)  

𝜎1 = (1,2,3)  𝑚1
𝜎1(𝑤′) ∈ [5, 7]  𝑚2

𝜎1(𝑤′) ∈ [2, 3]  𝑚3
𝜎1(𝑤′) ∈ [3, 5]  

𝜎2 = (1,3, 2)  𝑚1
𝜎2(𝑤′) ∈ [5, 7]  𝑚2

𝜎2(𝑤′) ∈ [1, 2]  𝑚3
𝜎2(𝑤′) ∈ [4, 6]  

𝜎3 = (2,1,3)  𝑚1
𝜎3(𝑤′) ∈ [3, 4]  𝑚2

𝜎3(𝑤′) ∈ [4, 6]  𝑚3
𝜎3(𝑤′) ∈ [3, 5]  

𝜎4 = (2,3,1)  𝑚1
𝜎4(𝑤′) ∈ [5, 7]  𝑚2

𝜎4(𝑤′) ∈ [4, 6]  𝑚3
𝜎4(𝑤′) ∈ [1, 2]  

𝜎5 = (3,1,2)  𝑚1
𝜎5(𝑤′) ∈ [5, 7]  𝑚2

𝜎5(𝑤′) ∈ [1, 2]  𝑚3
𝜎5(𝑤′) ∈ [4, 6]  

𝜎6 = (3,2,1)  𝑚1
𝜎6(𝑤′) ∈ [5, 7]  𝑚2

𝜎6(𝑤′) ∈ [1, 2]  𝑚3
𝜎6(𝑤′) ∈ [4, 6]  

 

The average of the six grey marginal vectors is the grey Shapley value of this game which can be shown as: 

Փ 
′(𝑤′) ∈ ([

14

3
,

13

2
] , [

13

6
,

7

2
] , [

19

6
, 5]). 

Now, Let us look at how the grey Banzhaf value for this game. For player 1, we have: 

𝛽1(𝑤′) ∈
1

22
∑ [𝑤′(𝑆) − 𝑤′(𝑆\{1})]1∈𝑆   

∈
1

4
[𝑤′({1}) + 𝑤′({1, 2}) + 𝑤′({1, 2, 3})+𝑤′({1, 3}) − 𝑤′({2}) − 𝑤′({3}) − 𝑤′({2, 3})] ∈ [

9

2
,
25

4
]. 

The grey Banzhaf values of other players can be examined similarly as follows: 
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𝛽2(𝑤′) ∈ [2,
13

4
] , 𝛽3(𝑤′) ∈ [3,

19

4
]. 

At that rate, the grey Banzhaf value is 

𝛽(𝑤′) ∈ ([
9

2
,
25

4
] , [2,

13

4
] , [3,

19

4
]) 

Now, we want to calculate 𝒢𝐶𝐼𝑆-value, 𝒢𝐸𝑁𝑆𝐶-value and 𝒢𝐸𝐷-solution. We calculate the 𝒢𝐶𝐼𝑆-value of our game as 

follows: 

𝒢𝐶𝐼𝑆1(𝑤′) ∈  𝑤′({1}) +
1

3
[𝑤′({1, 2, 3}) − ∑ 𝑤′({𝑗})𝑗∈𝑁 ]  

𝒢𝐶𝐼𝑆1(𝑤′) ∈  𝑤′({1}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [4,

17

3
].  

𝒢𝐶𝐼𝑆2(𝑤′) ∈  𝑤′({2}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [3,

14

3
].  

𝒢𝐶𝐼𝑆3(𝑤′) ∈  𝑤′({3}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [3,

14

3
].  

Then, the 𝒢𝐶𝐼𝑆-value is obtained by 

𝒢𝐶𝐼𝑆(𝑤′) ∈ ([4,
17

3
] , [3,

14

3
] , [3,

14

3
]).  

We calculate the 𝒢𝐸𝑁𝑆𝐶-value of our game as follows: 

𝒢𝐸𝑁𝑆𝐶1(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + ∑ 𝑤′(𝑁\{𝑗})𝑗∈𝑁 ] − 𝑤′(𝑁\{1})  

𝒢𝐸𝑁𝑆𝐶1(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({2, 3}) = [

16

3
,

22

3
].  

𝒢𝐸𝑁𝑆𝐶2(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({1, 3}) = [

4

3
,

7

3
].  

𝒢𝐸𝑁𝑆𝐶3(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({1, 2}) = [

10

3
,

16

3
].  

Then, the 𝒢𝐸𝑁𝑆𝐶-value is obtained by 

𝒢𝐸𝑁𝑆𝐶(𝑤′) ∈ ([
16

3
,

22

3
] , [

4

3
,

7

3
] , [

10

3
,

16

3
]).  

Finally, we calculate the 𝒢𝐸𝐷-solution of our game as follows: 

𝒢𝐸𝐷1(𝑤′) = 𝒢𝐸𝐷2(𝑤′) = 𝒢𝐸𝐷3(𝑤′) ∈
𝑤′({1,2,3})

3
= [

10

3
,

15

3
].  

 

So, we have 

𝒢𝐸𝐷(𝑤′) ∈ ([
10

3
,

15

3
] , [

10

3
,

15

3
] , [

10

3
,

15

3
]).  

Table 3 illustrates the results of this application. 

 
Table 3. The grey solutions of our model 

Grey Solutions Player 1 Player 2 Player 3 

Grey Shapley value ∈ [
14

3
,

13

2
]  ∈ [

13

6
,

7

2
]  ∈ [

19

6
, 5]  

Grey Banzhaf 

value 
∈ [

9

2
,

25

4
]  ∈ [2,

13

4
]  ∈ [3,

19

4
]  

𝒢𝐶𝐼𝑆-value ∈ [4,
17

3
]  ∈ [3,

13

3
]  ∈ [3,

14

3
]  

𝒢𝐸𝑁𝑆𝐶-value ∈ [
16

3
,

22

3
]  ∈ [

4

3
,

7

3
]  ∈ [

10

3
,

16

3
]  

𝒢𝐸𝐷-value ∈ [
10

3
,

15

3
]  ∈ [

10

3
,

15

3
]  ∈ [

10

3
,

15

3
]  

 

4. Case Study: Tent City Development After The earthquake In Izmir 

The application in this section is inspired by Usta et al. (2018). After the severe Earthquake, a large emergency sheltering 

and temporary sheltering demand occurred, since the results are very huge. If the disaster is huge, the requirement for 

housing may be the same that thousands of dwellings were required urgently. In this period the Turkish government 

began to evaluate the rehabilitation of the districts and to make post-disaster housing (permanent housing). However, it 

had been clear that everyone could not be met in a single region as requested, therefore the government began a study 

for finding suitable districts for building post-disaster housing settlements. It took some time to resolve of these problems 

(Ozden, 2005). 
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Our case study relies on attainable facility location after an earthquake in Izmir, Turkey. Take into account that there is 

an earthquake in Izmir and after the earthquake, nearly 14000 tents are distributed. Three tent cities are established in 

Aydin, Usak and Balikesir which are near Izmir. There are nearly 8000 tents in the hands of the Kizilay that is the 

beneficiary of Turkey. The distribution of the approximately remaining 6000 tents is undertaken by one local and one 

foreign company. The cost of bringing services to the people living in the tent cities belongs to these companies. Almost 

50 percent of the 6000 tents are built in Aydin, almost 35 percent of the 6000 tents are built in Usak, and the 

approximately rest of the tents are built in Balikesir. Three kinds of tent types are distributed (Table 4). In Aydin, one 

tent is between 500 and 700 Turkish Liras (TL) and is for 8 or 10 persons. In Usak, one tent is between 850 and 1050 

TL and is for 15 or 17 persons. In Balikesir, one tent is between 650 and 850 TL and is for 10 or 12 persons. 

 
Table 4. The costs of building tent cities and some properties. 

Tent city 

no 

Tent city 

name 

Property of tent Number of tents 

established by companies 

Total 

1 Aydin 1 tent=[500,700] TL 

and for [8,10] 

persons 

[3000,3200] 

(by local company) 

[1500000,2240000] TL 

for [24000,32000] persons 

2 Usak 1 tent=[850,1050] 

TL 

and for [15,17] 

persons 

[500,700] 

(by local company) 

 

 

[1600,1800] 

(by foreign company) 

[6375000,22495000] TL 

for [7500,11900] persons 

(by local company) 

 

[20400000,32130000] TL 

for [24000,30600] persons 

(by foreign company) 

3 Balikesir 1 tent=[650,850] TL 

and for [10,12] 

persons 

[900,1100] 

(by foreign company) 

[585000,935000] TL 

for [9000,13200] persons 

(by foreign company) 

 

Additionally, the delivery services for facility location problems should be given, as well. In our case study, the service 

cost per person is between 50 and 70 TL. In Table 5, the costs of delivery services of companies are given. 

Table 5. The costs of bringing services of companies 

Tent city 

no 

Tent city 

name 

The costs of bringing 

services of local company 

The costs of bringing 

services of foreign company 

1 Aydin [1200000,2240000] TL 

for [3000,3200] tents 

- 

2 Usak [375000,833000] TL 

for [500,700] tents 

[1200000,2142000] TL 

for [1600,1800] tents 

3 Balikesir - [450000,924000] TL 

for [900,1100] tents 

 

Figure 3 shows a facility location game with 3 cities (Aydin (Player 1), Usak (Player 2) and Balikesir (Player 3)) in 

Turkey and 2 companies. 

 

 
Figure 3. The illustration of our case study. 
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The costs for each coalition are calculated by using (8) as follows: 

𝑤′({1}) ∈ [3200000, 4440000], 
𝑤′({2}) ∈ [2375000, 3033000], 
𝑤′({3}) ∈ [2650000, 3324000], 
𝑤′({1, 2}) ∈ [3575000, 5273000], 
𝑤′({1, 3}) ∈ [5850000, 7764000], 
𝑤′({2, 3}) ∈ [3850000, 5466000], 
𝑤′({1, 2, 3}) ∈ [6225000, 8597000]. 

Table 6 shows the marginal vectors of our model, where 𝜎 ∶ 𝑁 → 𝑁 consists of three components with the order 

(𝜎 (1), 𝜎 (2), 𝜎 (3)). 

 
Table 6. The marginal vectors of our model 

𝜎 𝑚1
𝜎(𝑤′) 𝑚2

𝜎(𝑤′) 𝑚3
𝜎(𝑤′) 

𝜎1 = (1,2,3) 𝑚1
𝜎1(𝑤′)

∈ [3200000,4440000] 
𝑚2

𝜎1(𝑤′) ∈ [375000,833000] 𝑚3
𝜎1(𝑤′)

∈ [2650000,3324000] 
𝜎2 = (1,3, 2) 𝑚1

𝜎2(𝑤′)

∈ [3200000.4440000] 
𝑚2

𝜎2(𝑤′) ∈ [375000,833000] 𝑚3
𝜎2(𝑤′)

∈ [2650000,7320000] 
𝜎3 = (2,1,3) 𝑚1

𝜎3(𝑤′)

∈ [1200000,2240000] 
𝑚2

𝜎3(𝑤′)

∈ [2375000,3033000] 
𝑚3

𝜎3(𝑤′)

∈ [2650000,3324000] 
𝜎4 = (2,3,1) 𝑚1

𝜎4(𝑤′)

∈ [2375000,3131000] 
𝑚2

𝜎4(𝑤′)

∈ [2375000,3033000] 
𝑚3

𝜎4(𝑤′)

∈ [1475000,2433000] 
𝜎5 = (3,1,2) 𝑚1

𝜎5(𝑤′)

∈ [3200000,4440000] 

𝑚2
𝜎5(𝑤′) ∈ [375000,833000] 𝑚3

𝜎5(𝑤′)

∈ [2650000,3324000] 
𝜎6 = (3,2,1) 𝑚1

𝜎6(𝑤′)

∈ [2375000,2298000] 

𝑚2
𝜎6(𝑤′) ∈ [1200,2142000] 𝑚3

𝜎6(𝑤′)

∈ [2650000,3324000] 
 

The average of the six marginal vectors is the grey Shapley value of this game which can be calculated as: 

Փ 
′(𝑤′) ∈ ([2591666.67, 3498166.67], [1179166.67, 1784500], [2454166.67, 3841500]) 

Now, Let us look at how the grey Banzhaf value for this game. For player 1, we have: 

𝛽1(𝑤′) ∈
1

22
∑[𝑤′(𝑆) − 𝑤′(𝑆\{1})]

1∈𝑆

 

∈
1

4
[𝑤′({1}) + 𝑤′({1, 2}) + 𝑤′({1, 2, 3})+𝑤′({1, 3}) − 𝑤′({2}) − 𝑤′({3}) − 𝑤′({2, 3})] ∈ [2493750, 3562750]. 

The grey Banzhaf values of other players can be examined similarly as follows: 

𝛽2(𝑤′) ∈ [1081250, 1710250], 𝛽3(𝑤′) ∈ [2356250, 3101250]. 

At that rate, the grey Banzhaf value is 

𝛽(𝑤′) ∈ ([2493750, 3562750], [1081250, 1710250], [2356250, 3101250]) 

Now, we want to calculate 𝒢𝐶𝐼𝑆-value, 𝒢𝐸𝑁𝑆𝐶-value and 𝒢𝐸𝐷-solution. We calculate the 𝒢𝐶𝐼𝑆-value of our game as 

follows: 

𝒢𝐶𝐼𝑆1(𝑤′) ∈  𝑤′({1}) +
1

3
[𝑤′({1, 2, 3}) − ∑ 𝑤′({𝑗})

𝑗∈𝑁

] 

𝒢𝐶𝐼𝑆1(𝑤′) ∈  𝑤′({1}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [2533330, 3720000]. 

𝒢𝐶𝐼𝑆2(𝑤′) ∈  𝑤′({2}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [1708330, 2313000]. 

𝒢𝐶𝐼𝑆3(𝑤′) ∈  𝑤′({3}) +
1

3
[𝑤′({1, 2, 3}) − (𝑤′({1}) + 𝑤′({2}) + 𝑤′({3}))] = [1983330, 2604000]. 

Then, the 𝒢𝐶𝐼𝑆-value is obtained by 

𝒢𝐶𝐼𝑆(𝑤′) ∈ ([2533330, 3720000], [1708330, 2313000], [1983330, 2604000]). 

We calculate the 𝒢𝐸𝑁𝑆𝐶-value of our game as follows: 
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𝒢𝐸𝑁𝑆𝐶1(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + ∑ 𝑤′(𝑁\{𝑗})

𝑗∈𝑁

] − 𝑤′(𝑁\{1}) 

𝒢𝐸𝑁𝑆𝐶1(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({2, 3}) = [2650000, 3567333]. 

𝒢𝐸𝑁𝑆𝐶2(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({1, 3}) = [650000, 1269333]. 

𝒢𝐸𝑁𝑆𝐶3(𝑤′) ∈
1

3
[𝑤′({1, 2, 3}) + (𝑤′({1, 2}) + 𝑤′({1, 3}) + 𝑤′({2, 3}))] − 𝑤′({1, 2}) = [2925000, 3760333]. 

Then, the 𝒢𝐸𝑁𝑆𝐶-value is obtained by 

𝒢𝐸𝑁𝑆𝐶(𝑤′) ∈ ([2650000, 3567333], [650000, 1269333], [2925000, 3760333]). 

Finally, we calculate the 𝒢𝐸𝐷-solution of our game as follows: 

𝒢𝐸𝐷1(𝑤′) = 𝒢𝐸𝐷2(𝑤′) = 𝒢𝐸𝐷3(𝑤′) ∈
𝑤′({1, 2, 3})

3
= [2075000, 2865666.66]. 

So, we have 

𝒢𝐸𝐷(𝑤′) ∈ ([2075000, 2865666.66], [2075000, 2865666.66], [2075000, 2865666.66]). 

Table 7 illustrates the results of this application. 
Table 7. The grey solutions of our model. 

Grey Solutions Player 1 Player 2 Player 3 

Grey Shapley value ∈ [2591666.67,3498166.67] ∈ [1179166.67,1784500] ∈ [2454166.67,3841500] 

Grey Banzhaf value ∈ [2493750,3562750] ∈ [1081250,1710250] ∈ [2356250,3101250] 
𝒢𝐶𝐼𝑆-value ∈ [2533330,3720000] ∈ [1708330,2313000] ∈ [1983330,2604000] 

𝒢𝐸𝑁𝑆𝐶-value ∈ [2650000,3567333] ∈ [650000,1269333] ∈ [2925000,3760333] 
𝒢𝐸𝐷-value ∈ [2075000,2865666.66] ∈ [2075000,2865666.66] ∈ [2075000,2865666.66] 

 

These values will be utilized in completely different application areas corresponding to Operations Research, economic 

and management situations. 

 

5. Research Literature 

 

In this section, some literature leading to grey system theory and the theory of cooperative games is provided in historical 

order. Shapley (1953) introduced the Shapley value which is one of the common solution concepts in cooperative game 

theory. Deng (1982) studied the stability and stabilization of a grey system whose state matrix is triangular. Alparslan 

Gök et al. (2009) introduced the class of convex interval games and extended classical results regarding the 

characterizations of convex games and the properties of solution concepts to the interval setting. Branzei et al. (2010) 

briefly presented the state-of-the-art of the cooperative interval games. They discussed how the model of cooperative 

interval games extends the cooperative game theory literature, and reviewed its existing and potential applications in 

economic and Operations Research situations with interval data. Palanci et al. (2015b) characterized the Shapley value 

by using the grey numbers. Palanci et al. (2017b) introduced some set-valued solution concepts using grey payoffs, 

namely, the grey core, the grey dominance core and the grey stable sets for cooperative grey games. Yılmaz et al. (2018) 

considered some grey division rules, called the grey equal surplus sharing solutions.  

 

6. Conclusion and Outlook 

The catastrophic events have expanded dramatically, especially in Turkey, creating outstanding harms to the various  
infrastructures within the country.  Many buildings have suffered damage and became uninhabitable, triggering a high 

range of vagrants who inhabitants became homeless. Re-housing of homeless is one of the main jobs of reconstruction 

programs after disasters. Reconstruction works often last long, and through that time, it is essential to provide affected 

individuals with the minimum conditions to live with self-esteem, privacy, and protection. The rapid pace of change and 

a paucity of information after disasters make it inherently difficult to specify action items. Under these conditions of 

uncertainty, we use the cooperative grey games. The basic aim of the theory is to study ways to sustain cooperation 

between players under these conditions. The recommendations of this paper identify several key questions and 

challenges, including the need for efforts to improve the quality and quantity of data in facility location situations, the 

need to continue efforts to develop models of post-earthquake relief of addressing the temporary housing issues after a 

disaster, how the total costs can be allocated among players in a fair way. Through this study, we handle with a housing 

problem after the earthquake in Izmir. Structured on the situation study, we constructed the cooperative facility location 

game with three cities of the camping. We have shown some concepts of grey solutions like grey Shapley value, grey 

Banzhaf value, 𝒢𝐶𝑆𝐼-value, 𝒢𝐸𝑁𝑆𝐶-value and 𝒢𝐸𝐷-value. If we compare our results obtained from grey numbers with 
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the results obtained from other methods, we see that our results give insight for interval solutions too. Because to obtain 

a grey solution, we have to calculate the interval solutions too. Since real world models include uncertainty, it is 

interesting to work with grey numbers instead of crisp solutions. Focused suggestions can be developed for future work 

of catastrophe management to solve problems such as minimization, preparedness, recovery, health issues and re-housing 

of homeless people it allows victims to have a private and secure place to return to their normal life, to until reconstruction 

of permanent housing. 
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