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Abstract 

In this paper, we develop an integrated bi-objective model of a two-stage supply chain composed of a vendor and a buyer 

under an imperfect production process. In the stochastic inflationary condition the first objective is to minimize the 

expected costs of the proposed supply chain model and the second objective is to minimize buyer’s shortage variance. 

We assume lead time and ordering cost are controllable parameters and lead time crashing cost is considered as a function 

of both order quantity and reduced lead time. An effective solution procedure is developed to determine the optimal 

policy of the proposed model. Finally, a numerical example and sensitivity analysis are proposed to show the 

performance of the model.       

Keywords: Supply chain; Integrated vendor-buyer inventory model; Lead time; Inflation; Stochastic; Multi-

objective programming. 

 1. Introduction 

Considering both classical economic order quantity (EOQ) and economic production quantity (EPQ) models, the vendor 

and buyer minimize their own inventory costs individually. This independent decision making for inventory problem 

usually cannot satisfy the optimal policy for both the vendor and buyer. However, the recent inventory control literature 

has shown that integrating the EOQ model of buyer and the EPQ model of vendor may lead to lower inventory total 

costs for the supply chain system rather than obtaining optimal policies for chain members separately.          

The first paper on an integrated model of the vendor and buyer was written by Goyal (1976). Subsequently, many 

researchers have investigated this important issue considering various assumptions. For instance, Banerjee (1986) 

expanded the model of Goyal (1976) by assuming a finite vendor’s production rate. Goyal (1988) assumed that the 

vendor’s production quantity is a multiple of the order size of the buyer. Ha and Kim (1997) further extended Goyal 

(1988)’s model and proposed an integrated lot-slitting model for facilitating multiple shipments in small lots. Yang and 

Wee (2000) developed an integrated inventory model for deteriorating items. A novel method was proposed by Hans et 

al. (2006) wherein the joint economic lot size for the distribution system with multiple shipment policies is obtained. 

Hariga and Al-Ahmari (2013) constructed a two-layer supply chain model with hybrid vendor-managed inventory and 

consignment stock policy and stock dependent demand at retailer’s shelf space. In the majority of the mentioned studies 

on integrated inventory models of vendor and buyer, researchers concentrated on the deterministic demand of the system.  
 

However, when demand is considered as a stochastic variable, the lead time becomes an important issue and shortening 

it reduces safety stock as well as the stock-out loss and improves the customer service level so as to gain competitive 

advantages in business. If it is assumed that lead time can be decomposed into several components, such as setup time, 

process time, and queue time, it can be considered that each component might be reduced to its minimum duration with 
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an extra crashing cost. Liao and Shyu (1991) were first who proposed a deterministic variable lead time inventory model. 

The authors assumed that lead time can be decomposed into its elements which in turn can be reduced to their minimum 

duration. Under the assumption that the demand is normally distributed, they calculated the optimal decision variable 

lead time and showed that reducing lead time may result in lower expected inventory costs. In another study, Pan and 

Yang (2002) considered lead time to be a decision variable and obtained a lower joint total expected cost and shorter 

lead time for a supply chain. Ouyang et al. (2004) extended Pan and Yang (2002)’s model considering an allowable 

shortage model where the reorder point is treated as a decision variable. Later, Pan and Hsiao (2005) proposed an 

integrated inventory model with backorder price discount and controllable lead time wherein lead time crashing cost is 

a function of both ordering quantities and reduced lead time. Yedes et al. (2012) studied a joint vendor-buyer inventory 

model wherein the production unit is assumed to randomly shift from an in-control to an out-of-control situation. They 

considered production, inventory, and maintenance policies simultaneously. On the other hand, almost all of the 

mentioned papers on the supply chain models did not investigate ordering/setup cost reduction. However, studies on 

ordering/setup cost reduction have shown that investment in ordering/setup cost can lower system’s cost meaningfully. 

Porteus (1985) was first to present a mathematical model with setup cost reduction without backorders. Lin (2009) 

presented a model with backorder price discount and ordering cost reduction conditions. Glock (2012) considered a 

single-vendor single-buyer inventory model with lot-size-dependent lead time and lead time reduction and assumed 

vendor’s set up cost can be decreased with an extra crash cost with a piece-wise linear function. Giri and Sharma (2017) 

studied a mathematical model with an imperfect production process wherein ordering cost can be reduced with extra 

investment.  

Inflationary condition has been observed in many countries, especially in developing countries and considering the effect 

of this phenomenon in inventory/production models improves the performance of the models. Reviewing the literature 

on inflationary condition, it is observed that two methods have been applied to consider inflationary condition in 

inventory/production models. The first method computes optimal variables by minimizing the average annual cost and 

the second approach calculates optimal variables by optimizing the discounted future costs. Hadley (1964) showed that 

there is a negligible difference between the average annual cost and the discounted cost methods. Mirzazadeh (2011) 

studied an inventory model considering shortages and deterioration in uncertain environments. Sarkar et al. (2000) 

developed a supply chain model to determine an optimal ordering policy for deteriorating items under inflation, 

permissible delay in payment and allowable shortage. Lo et al. (2007) studied an integrated inflationary production-

inventory model in which the deterioration rate follows the Weibull distribution. They used the discounted cash flow 

(DCF) approach and a classical optimization technique to determine the optimal production and replenishment policy. 

Mirzazadeh et al. (2009) considered an inventory model with shortage and finite time horizon and replenishment in 

which inflation is a random variable. Gholami-Qadikolaei et al. (2013) studied a stochastic (Q, r) inventory model under 

inflationary condition using an average annual cost method for buyer facility and proposed different inspection scenarios 

for the model. Ghoreishi et al. (2014) proposed an inventory system for deteriorating items and allowable shortage and 

considered inflationary conditions in the model. More recently, Kumar and Kumar (2016) built an economic order 

quantity model for a two-warehouse system with deterioration, inflation, and stock dependent demand. Nasrabadi and 

Mirzazadeh (2016) provided an inventory model with shortage and deterioration considering markovian inflationary 

conditions. Wan and Chen (2017) developed a supply chain model with perishable product under inflationary conditions. 

One of assumptions of the studies is related to the quality of the product in a lot which is imperfect. In real environments, 

usually an arrived lot may contain some imperfect items. Therefore, if there are imperfect items in a lot, the firm may 

order a larger amount than the originally planned amount to meet the customer demand. Salameh and Jabber (2000) 

developed an EOQ model where imperfect quality items are salvaged at a discount price. The received raw material 

which includes imperfect quality items is a probabilistic variable. Huang (2002) extended the model in Salameh and 

Jaber (2000) and proposed a single-buyer single-vendor model for imperfect items. In the aforementioned study, it is 

considered that the defective rate is independent of lot-size. However, in some other research, it is assumed that defective 

unites is dependent on lot-size and follows beta-binomial random variables (for instance see Gholami-Qadikolaei et al 

(2012), Gholami-Qadikaolei et al. (2015), Ho et al. (2009)).  

As stated before, often in practice, we observe inflationary conditions when making decisions about ordering policy of 

an inventory/production system; ignoring this important issue in modeling of systems in such areas might result in 

incorrect optimizations of decision variables and could cause great financial loss for the inventory/production systems. 

Hence, in this regard, proposing a mathematical model which considers inflationary conditions in order to simulate a 

real environment regarding an inventory/production system is very important. Also, integrating ordering decisions on 

supply chain different parties to diminish the total cost of inventories is of growing interest to inventory managers. 

Therefore, based on the above-mentioned conditions, we extend the previous research by proposing an inflationary bi-

objective integrated vendor-buyer inventory model with stochastic demand and controllable lead time and ordering cost 

in which allowable shortage is a mixture of backorder and lost sale. Lead time crashing cost is considered a function of 

both lead time and order quantity. We also utilize the quadratic approximation for mathematically formulizing defective 

units in the proposed inflationary inventory system. We first minimize the joint expected annual cost as a main objective 

when ordering cost, ordering quantity, reorder point, number of shipment and lead time are the decision variables, and 



Gholami and Mirzazadeh 

  

Int J Supply Oper Manage (IJSOM), Vol.5, No.2 164 

 

then reduce shortage variance as a second objective. We also propose a numerical example with sensitivity analysis to 

illustrate and validate the results of the proposed model.                         

2. Terminology  

 The following terminology is used throughout the paper:  

 

𝑄 Buyer’s order quantity (decision variable)  

𝑟 Buyer’s Reorder point (decision variable)   

𝑘 Safety factor (decision variable) 

𝐿 Lead time (decision variable) 

𝑝 Defective rate in an order lot,  𝑝𝜖[0,1) (random variable) 

𝑔(𝑝) Probability density function (p.d.f.) of p 

𝐷        Annual demand for buyer (random variable)   

𝑛𝑉       Vendor’s number of cycle (random variable) 

𝑛𝑏 Buyer’s number of cycle (random variable) 

𝑇𝑏        Buyer’s cycle time (random variable) 

𝑇𝑏
𝑟 Reorder point time (random variable) 

𝜋 Buyer’s stock out cost per unit short at the time zero 

𝜋° Buyer’s Marginal profit per unit at the time zero 

𝛽 Backorder rate, 𝛽𝜖[0,1] 

𝐶𝑝𝑟      Vendor’s production cost per unit at the time zero 

𝐶𝑝𝑢      Buyer’s purchasing cost per unit at the time zero 

𝐼 Inflation rate per unit time (random variable) 

𝑀      The number of lots in which the product is delivered from the vendor to the buyer in one production cycle, a   

positive integer, as a decision variable             

ℎ𝑉       Buyer’s holding cost per year per unit at the time zero 

ℎ𝑏 Buyer’s holding cost per year per unit at the time zero 

𝑆         Vendor’s set up cost per set up at the time zero 

𝐼(𝐴)    Buyer’s capital investment required to achieve ordering cost 𝐴, 0 < 𝐴 ≤ 𝐴0 

𝑏         Percentage decrease in ordering cost A per dollar increase in investment 𝐼(𝐴) 

휃         Fractional opportunity cost of capital investment per year 

𝐴 Buyer’s ordering cost per order at the time zero, as a decision variable 

𝐶(𝐿) Total lead time crashing cost per order at the time zero 

Y      Number of imperfect items in an order lot (random variable) 

𝑋 Lead time demand (random variable) 

𝑋+ Maximum value of x and 0 

𝐸(∙) Mathematical expectation 

 

3. The mathematical model  

This investigation concentrates on a cooperative two-layer inventory model including a single vendor who provides one 

type of product to a single buyer. The buyer orders a lot of size 𝑄 and the vendor manufactures an order of size 𝑀𝑄 with 

a finite production rate, 𝑃, at one set-up but ship in quantity 𝑄 to the buyer over 𝑀 times. The vendor incurs a set-up 

cost, 𝑆, for each production run and the buyer incurs an ordering cost, 𝐴, for each order of quantity 𝑄. This study assumes 

vendor’s manufacturing system is imperfect and the number of defective items in an arriving lot, 𝑌, is a beta-binomial 

random variable, where 𝑝 (0 ≤ 𝑝 ≤ 1) shows the defective rate (see the appendix). Once an order quantity is reached, 

all items are inspected by the buyer and all of the defective ones are given back to the vendor at the same time. Thus, 

once the vendor produces the first 𝑄 units, he or she will deliver them to the buyer. After the buyers’ inspection, the 

vendor plan deliveries every 
𝑄−𝑦

𝐷
 units of time until the inventory level falls to zero. Therefore, the length of each 

production cycle for the vendor is equal to 𝑇𝑉 =
𝑀(𝑄−𝑦)

𝐷
  and the length of each ordering cycle is equal to 𝑇𝑏 =

𝑄−𝑦

𝐷
  (see 

Fig. 1). Also, it is mentioned that inspection is error free and the inspection time is negligible. The cost of transportation 

from the vendor to the buyer and the buyer’s inspection cost are constant and thus independent of the ordering quantity. 

So, we relinquish the total transportation and inspection costs of the model. 
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Figure 1. Inventory level for vendor 

 

Buyer’s lead time demand (LTD) follows a normal distribution, so that lead time demand, 𝑋, has a pdf, 𝑓𝑥(𝑋), with mean 

𝐷𝐿 and standard deviation 𝜎𝐷√𝐿. Buyer’s inventory is continuously reviewed and a lot-size is ordered whenever the 

inventory level hits the reorder point. Also, the replenishment rate is infinite. Reorder point,  𝑟 , is equal to the sum of 

buyer’s expected demand during lead time, 𝐷𝐿, and safety stock, 𝑘𝜎𝐷√𝐿, where 𝑘 is safety factor. A partial backorder 

system is considered for unsatisfied demand and the expected number of backordered per cycle is equal 

to (1 − 𝛽)𝐸(𝑥 − 𝑟)+.  The backordering rate is dependent on the expected shortage quantity with a negative exponential 

function, 𝛽 = 𝜈𝑒−𝜗𝐸(𝑥−𝑟)+ ,   wherein, 0 ≤ 𝜈 ≤ 1, 𝜗 ≥ 0, are backorder parameters. Ordering cost is controllable and 

capital investment, 𝐼(𝐴) = 𝑏𝑙𝑛 (
𝐴0

𝐴
) , is a logarithmic function of ordering cost for 𝐴 ∈ (0, 𝐴0]. under the assumptions 

that: 

1. The lead time 𝐿 consists of 𝑛 mutually independent components. The zth component has a normal duration 𝑇𝑧 and 

minimum duration 𝑡𝑧, 𝑧 = 1, 2, … , 𝑛. 

2. For the zth component of lead time, the crashing cost per unit time 𝑐𝑧, depends on the ordering lot size 𝑄 and is 

described by 𝑐𝑧 = 𝑎𝑧 + 𝑏𝑧𝑄, where 𝑎𝑧 > 0 is the fixed cost, and 𝑏𝑧 > 0 is the unit variable cost, for 𝑧 = 1, 2, … , 𝑛.    

3. For any two crash cost lines 𝑐𝑧 = 𝑎𝑧 + 𝑏𝑧𝑄 and 𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗𝑄, where 𝑎𝑧 > 𝑎𝑗, 𝑏𝑧 < 𝑏𝑗 , for 𝑧 ≠ 𝑗 and 𝑧, 𝑗 = 1,2, … , 𝑛, 

there is an intersection point 𝑄𝑆 such that 𝑐𝑧 = 𝑐𝑗. These intersection points are arranged in ascending order so that 𝑄0
𝑆 <

𝑄1
𝑆 < ⋯ < 𝑄𝑤

𝑆 < 𝑄𝑤+1
𝑆 , where 𝑄0

𝑆 = 0,𝑄𝑤+1
𝑆 = ∞ and 𝑤 ≤ 𝑛(𝑛 − 1) 2⁄ . For any order quantity range (𝑄𝑧

𝑆 , 𝑄𝑧+1
𝑆 ), 𝑐𝑧𝑠 

are arranged such that 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛, and the lead time components are crashed one at a time starting with the 

component of least 𝑐𝑧, and so on. 

4. Let 𝐿0 ≡ ∑ 𝑇𝑗
𝑛
𝑗=1  and 𝐿𝑧 be the length of lead time with components 1,2, … , 𝑧 crashed to their minimum duration, then 

𝐿𝑧 can be expressed as 𝐿𝑧 = 𝐿0 − ∑ (𝑇𝑗 − 𝑡𝑧)
𝑧
𝑗=1 , 𝑧 = 1,2, … , 𝑛 and the lead time crashing cost per cycle 𝐶(𝐿) is given 

by 𝐶(𝐿) = 𝑐𝑧(𝐿𝑧−1 − 𝐿) + ∑ 𝑐𝑗(𝑇𝑗 − 𝑡𝑗)
𝑧−1
𝑗=1 , where 𝐿𝜖[𝐿𝑧, 𝐿𝑧−1], and 𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗𝑄 for 𝑗 = 1,2, … , 𝑧. 

This investigation considers that the lead time crashing cost is a function of both order quantity and reduced lead time. 
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3.1. Vendor’s expected annual cost 

As mentioned before, this paper aims to optimize decision variables of an integrated vendor-buyer inventory system in 

order to minimize the joint expected annual cost with inflation (JEACWI). Therefore, the calculation of vendor’s yearly 

expected inventory cost with inflation is needed. The total inventory for the vendor is a random variable and can be 

expressed as follows: 

[𝑀𝑄 (
𝑄

𝑃
+ (𝑀 − 1)

𝑄 − 𝑦

𝐷
) −

𝑀2𝑄2

2𝑃
] − [

𝑄(𝑄 − 𝑦)

𝐷
(1 + 2 + ⋯+ (𝑀 − 1))]  

=
𝑀𝑄2

𝑃
+ [𝑀(𝑀 − 1)

𝑄(𝑄 − 𝑦)

𝐷
] −

𝑀2𝑄2

2𝑃
− [

𝑄(𝑄 − 𝑦)

2𝐷
𝑀(𝑀 − 1)] 

 

 

(1) 

 

Hence, dividing the total inventory per cycle into vendor’s cycle time, 
𝑀(𝑄−𝑦)

𝐷
, the average inventory level can be 

calculated as follows: 

{
𝑀𝑄2

𝑃
+ [𝑀(𝑀 − 1)

𝑄(𝑄 − 𝑦)

𝐷
] −

𝑀2𝑄2

2𝑃
− [

𝑄(𝑄 − 𝑦)

2𝐷
𝑀(𝑀 − 1)]}

𝑀(𝑄 − 𝑦)

𝐷
⁄

=
𝑄2𝐷

𝑃(𝑄 − 𝑦)
−

𝑀𝑄2𝐷

2𝑃(𝑄 − 𝑦)
+

(𝑀 − 1)𝑄

2
 

 

 

(2) 

 

After taking the expected value, the expected average inventory level for the vendor is obtained as follows: 

 

𝑄2𝐷

𝑃
𝐸 (

1

𝑄 − 𝑦
) −

𝑀𝑄2𝐷

2𝑃
𝐸 (

1

𝑄 − 𝑦
) +

(𝑀 − 1)𝑄

2
= [(

𝑄2𝐷

𝑃
𝐸 (

1

𝑄 − 𝑦
) (1 −

𝑀

2
)) +

(𝑀 − 1)𝑄

2
] (3) 

The vendor’s total holding cost per year in the average annual cost method is dependent on the average inventory level. 

Thus, the buyer’s total holding cost per year with inflation can be computed as follows  ( 𝑇𝑉 =
1

𝑛𝑉
=

𝑀(𝑄−𝑦)

𝐷
): 

[∫ ℎ𝑉 [(
𝑄2𝐷

𝑃
(

1

𝑄 − 𝑦
) (1 −

𝑀

2
)) +

(𝑀 − 1)𝑄

2
] (1 + 𝑖𝑡)𝑑𝑡

𝑛𝑉𝑇𝑉

0

]

= ℎ𝑉 (1 +
𝑖

2
) [(

𝑄2𝐷

𝑃
(

1

𝑄 − 𝑦
) (1 −

𝑀

2
)) +

(𝑀 − 1)𝑄

2
] 

 

 

(4) 

 

Considering that the probabilistic variables, (𝐼, 𝑌), are independent, the expected value of the holding cost per year with 

inflation (EHCWIV) is computed by: 

 

𝐸𝐻𝐶𝑊𝐼𝑉 = ℎ𝑉 (1 +
𝐸(𝑖)

2
) [(

𝑄2𝐷

𝑃
𝐸 (

1

𝑄 − 𝑦
) (1 −

𝑀

2
)) +

(𝑀 − 1)𝑄

2
] 

 

(5) 

According to the computation of the vendor’s inventory costs with inflation, this study assumes the set-up cost for the 

vendor is paid at the beginning of the cycle. So, the total set-up cost can be calculated as follows  ( 𝑇𝑉 =
1

𝑛𝑉
=

𝑀(𝑄−𝑦)

𝐷
): 

[𝑆 + 𝑆(1 + 𝑇𝑉𝑖) + 𝑆(1 + 2𝑇𝑉𝑖) + ⋯+ 𝑆(1 + (𝑛𝑉 − 1)𝑇𝑉𝑖)]

= 𝑆 ∑ (1 + 𝑇𝑉𝑖𝑗) =

𝑛𝑉−1

𝑗=0

𝑆 [𝑛 +
𝑀(𝑄 − 𝑦)

𝐷
𝑖 ×

𝑛𝑉(𝑛𝑉 − 1)

2
] 

 

 

(6) 

Considering that the probabilistic variables, (𝐼, 𝑌), are independent, the expected value of the set-up cost per year for 

vendor (ESUCWIV) is reduced to: 

𝐸𝑆𝑈𝐶𝑊𝐼𝑉 = 𝑆 [
𝐷

𝑀
𝐸 (

1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) −

𝐸(𝑖)

2
] 

(7) 

Also, this study assumes that the production cost is paid at the beginning of the vendor’s cycle. Hence, the average 

production cost per unit is calculated as follows   ( 𝑇𝑉 =
1

𝑛𝑉
=

𝑀(𝑄−𝑦)

𝐷
): 
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(𝐶𝑝𝑟 + 𝐶𝑝𝑟(1 + 𝑇𝑉𝑖) + 𝐶𝑝𝑟(1 + 2𝑇𝑉𝑖) + ⋯+ 𝐶𝑝𝑟(1 + (𝑛𝑉 − 1)𝑇𝑉𝑖))

𝑛𝑉

=
𝐶𝑝𝑟

𝑛𝑉

∑ (1 + 𝑇𝑉𝑖𝑗) =

𝑛𝑉−1

𝑗=0

𝐶𝑝𝑟 [1 +
𝑖

2
(1 −

𝑀(𝑄 − 𝑦)

𝐷
)] 

 

 

(8) 

Considering that the probabilistic variables are independent, the vendor’s expected production cost per year with inflation 

(EPCWIV) is as follows: 

𝐸𝑃𝐶𝑊𝐼𝑉 =
𝐶𝑝𝑟𝐷

1 − 𝐸(𝑝)
[1 +

𝐸(𝑖)

2
(1 −

𝑀𝑄(1 − 𝐸(𝑝))

𝐷
)] 

 

(9) 

Then, the expected annual cost for buyer with inflation is the sum of Eqs (5), (7) and (9) as follows: 

 

𝐸𝐴𝐶𝑊𝐼𝑉(𝑄,𝑀) = 𝐸𝑆𝑈𝐶𝑊𝐼𝑉 + 𝐸𝐻𝐶𝑊𝐼𝑏 + 𝐸𝑃𝐶𝑊𝐼𝑉 

 

 

(10) 

3.2. Buyer’s expected annual cost 

In this subsection, the continuous review inventory model for the buyer is considered. The inventory level of an item for 

the buyer will be diminished due to the random demand and a partial backorder system is assumed for the model. The 

buyer places an order with the amount of 𝑄 and 𝑄𝑌 items are defective. The shortage quantity per cycle is probabilistic, 

because X (lead time demand) is probabilistic which is as follows. 

(𝑥 − 𝑟)+ = 𝑀𝑎𝑥(𝑥 − 𝑟, 0) = {
𝑥 − 𝑟, 𝑥 ≥ 𝑟
0     , 𝑥 ≤ 𝑟

 (11) 

 We assume that the buyer’s shortage cost is calculated at the end of cycle. Hence, the average shortage cost per unit 

with inflation is calculated by ( 𝑇𝑏 =
1

𝑛𝑏
=

𝑄−𝑦

𝐷
):   

((𝜋 + 𝜋°(1 − 𝛽))(𝑥 − 𝑟)+(1 + 𝑇𝑏𝑖) + (𝜋 + 𝜋°(1 − 𝛽))(𝑥 − 𝑟)+(1 + 2𝑇𝑏𝑖) + ⋯

+ (𝜋 + 𝜋°(1 − 𝛽))(𝑥 − 𝑟)+(1 + 𝑛𝑏𝑇𝑏𝑖)) = (𝜋 + 𝜋°(1 − 𝛽))(𝑥 − 𝑟)+ ∑(1 + 𝑇𝑏𝑗𝑖)

𝑛𝑏

𝑗=1

= (𝜋 + 𝜋°(1 − 𝛽))(𝑥 − 𝑟)+ [
𝐷

𝑄 − 𝑦
(1 +

𝑖

2
) +

𝑖

2
] 

                                                                                                                                                                                  (12) 

Considering that the probabilistic variables, (𝐼, 𝑋, 𝑌), are independent, ESCWI is transformed as: 

 

𝐸𝑆𝐶𝑊𝐼𝑏 = (𝜋 + 𝜋°(1 − 𝛽)) [𝐷𝐸 (
1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) +

𝐸(𝑖)

2
]𝐸(𝑥 − 𝑟)`+ (13) 

This investigation assumes that the buyer’s ordering cost will be paid at the time of replenishment. Hence,  𝑇𝑟𝑏
 is the 

reorder point time and can be expressed by: 

𝑇𝑏
𝑟 =

𝐼𝑚𝑎𝑥 − 𝑟

𝐷
   ,   𝐼𝑚𝑎𝑥 = 𝑄 − 𝑦 + 𝑟 − 𝑥 + (1 − 𝛽)(𝑥 − 𝑟)+ →  𝑇𝑟𝑏

=
𝑄 − 𝑦 − 𝑥 + (1 − 𝛽)(𝑥 − 𝑟)+

𝐷
 

 

 

(14) 

 

The buyer’s total ordering cost per year paid at the time of order placing is computed as follows  ( 𝑇𝑏 =
1

𝑛𝑏
=

𝑄−𝑦

𝐷
):  

[(𝐴 + 𝐶(𝐿))(1 + 𝑇𝑏
𝑟𝑖) + (𝐴 + 𝐶(𝐿))(1 + (𝑇𝑏

𝑟 + 𝑇𝑏)𝑖) + ⋯+ (𝐴 + 𝐶(𝐿))(1 + (𝑇𝑏
𝑟 + (𝑛𝑏 − 1)𝑇𝑏)𝑖)]

= [(𝐴 + 𝐶(𝐿)) ∑ (1 + 𝑇𝑏
𝑟𝑖 + 𝑇𝑏𝑖𝑗)

𝑛𝑏−1

𝑗=0

] = [(𝐴 + 𝐶(𝐿)) (𝑛𝑏 + 𝑛𝑏𝑇𝑏
𝑟𝑖 + 𝑇𝑖

𝑛𝑏(𝑛𝑏 − 1)

2
)] 

(15) 

Considering (𝐼, 𝑋, 𝑌) as independent variables, the expected ordering cost per year with inflation for buyer (EOCWIb) 

can be expressed by: 
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𝐸𝑂𝐶𝑊𝐼𝑏 = 휃𝑏𝑙𝑛 (
𝐴0

𝐴
) + [𝐴 + 𝐶(𝐿)] [𝐷𝐸 (

1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) −

𝐸(𝑖)

2
]

+ [𝐴 + 𝐶(𝐿)] [1 − ((𝐸(𝑥) − (1 − 𝛽)𝐸(𝑥 − 𝑟)+)𝐸 (
1

𝑄 − 𝑦
))]𝐸(𝑖) 

 

 

(16) 

 

where 휃 is the fractional opportunity cost of capital per year. The buyer’s total holding cost with inflation based on the 

average annual cost method can be obtained as below( 𝑛𝑏 =
1

𝑇𝑏
=

𝐷

𝑄−𝑦
):   

[∫ ℎ (
𝑄 − 𝑦

2
+ 𝑟 − 𝑥 + (1 − 𝛽)(𝑥 − 𝑟)+) (1 + 𝑖𝑡)𝑑𝑡

𝑛𝑏𝑇𝑏

0

] = ℎ (1 +
𝑖

2
) (

𝑄 − 𝑦

2
+ 𝑟 − 𝑥 + (1 − 𝛽)(𝑥 − 𝑟)+) 

 

 

(17) 

 

Hence, considering (𝐼, 𝑋, 𝑌) as independent, the expected value of the holding cost per year with inflation (EHCWIb) for 

the buyer is computed by: 

𝐸𝐻𝐶𝑊𝐼𝑏 = ℎ (1 +
𝐸(𝑖)

2
) [

𝐸(𝑄 − 𝑦)

2
+ 𝑟 − 𝐸(𝑥) + (1 − 𝛽)𝐸(𝑥 − 𝑟)+] 

 

(18) 

 

Similarly, the expected purchasing cost per year with inflation (EPCWIb) is as follows: 

𝐸𝑃𝐶𝑊𝐼𝑏 = 𝐶𝑝𝑢𝐷 [1 +
𝐸(𝑖)

2
(1 −

𝑄(1 − 𝐸(𝑝))

𝐷
)] 

 

(19) 

 

So, the expected annual cost for the buyer with inflation is the sum of Eqs (13), (16), (18) and (19) as follows: 

 

𝐸𝐴𝐶𝑊𝐼𝑏(𝑄, 𝐴, 𝑟, 𝐿) = 𝐸𝑆𝐶𝑊𝐼𝑏 + 𝐸𝑂𝐶𝑊𝐼𝑏 + 𝐸𝐻𝐶𝑊𝐼𝑏 + 𝐸𝑃𝐶𝑊𝐼𝑏  

 

 

(20) 

3.3. Normal lead time demand distribution for buyer 

We assume that lead time demand X follows a normal distribution with mean 𝐸(𝑥) = 𝐷𝐿 and standard deviation 𝜎𝑥 =

𝜎𝐷√𝐿, and having the reorder point 𝑟 = 𝐷𝐿 + 𝑘𝜎𝐷√𝐿, the expected shortage, 𝐸(𝑥 − 𝑟)+, is as follows: 

𝐸(𝑥 − 𝑟)+ = ∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥
∞

𝑟

     ,    𝑘 =
𝑟 − 𝐸(𝑥)

𝜎𝑥

  ,   𝑧 =
𝑥 − 𝐸(𝑥)

𝜎𝑥

 
(21) 

→ 𝐸(𝑥 − 𝑟)+ = 𝜎𝑥 ∫ (𝑧 − 𝑘)𝑓(𝑧)𝑑𝑧
∞

𝑘

 

→ 𝐸(𝑥 − 𝑟)+ = 𝜎𝐷√𝐿 [∫ 𝑧𝑓(𝑧)𝑑𝑧 − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅
∞

𝑘

] , [∫ 𝑧𝑓(𝑧)𝑑𝑧 − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅
∞

𝑘

] = [𝜙(𝑘) − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅] = 𝜓(𝑘) 

→ 𝐸(𝑥 − 𝑟)+ = 𝜎𝐷√𝐿𝜓(𝑘) ≥ 0 (22) 

 

For the above formulation, 𝜙 denotes the probability density function of standard normal distribution and Φ̅ denotes the 

complementary cumulative function of standard normal distribution.   

Considering 𝑟 = 𝐷𝐿 + 𝑘𝜎𝐷√𝐿 , 𝐸(𝑥 − 𝑟)+ = 𝜎𝐷√𝐿𝜓(𝑘)  and 𝛽 = 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘), the expected stockout cost of the 

normal lead time demand distribution is changed as follows: 

𝐸𝑆𝐶𝑊𝐼𝑏
𝑁 = [𝜋 + 𝜋°(1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))] [𝐷𝐸 (

1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) +

𝐸(𝑖)

2
] 𝜎𝐷√𝐿𝜓(𝑘) 

 

(23) 

Also, the expected holding cost with inflation of the normal distribution can be written as follows:  



The Quadratic Approximation of an Inflationary Bi-objective Integrated Vendor-buyer Inventory Model with ... 

  

Int J Supply Oper Manage (IJSOM), Vol.5, No.2 169 

 

 

𝐸𝐻𝐶𝑊𝐼𝑏
𝑁 = ℎ (1 +

𝐸(𝑖)

2
) [

𝐸(𝑄 − 𝑦)

2
+ 𝑘𝜎𝐷√𝐿 + (1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))𝜎𝐷√𝐿𝜓(𝑘)] 

(24) 

Besides, the expected ordering cost with inflation is as follows: 

 

𝐸𝑂𝐶𝑊𝐼𝑏
𝑁 = 휃𝑏𝑙𝑛 (

𝐴0

𝐴
) + [𝐴 + 𝐶(𝐿)] [𝐷𝐸 (

1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) −

𝐸(𝑖)

2
]

+ [𝐴 + 𝐶(𝐿)] [1 − ((𝐷𝐿 − (1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))𝜎𝐷√𝐿𝜓(𝑘)) 𝐸 (
1

𝑄 − 𝑦
))]𝐸(𝑖) 

 

 

 

 

(25) 

3.4. Joint expected annual cost with inflation 

In this subsection, a situation is proposed in which the vendor and the buyer match their production and inventory 

strategies to specify their optimal strategy for the continuous review inventory supply chain system. Thus, the joint 

expected annual cost with inflation is obtained, as given below: 

𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿,𝑀)

= 𝐸𝑂𝐶𝑊𝐼𝑏
𝑁 + 𝐸𝐻𝐶𝑊𝐼𝑏

𝑁 + 𝐸𝑆𝐶𝑊𝐼𝑏
𝑁 + 𝐸𝑃𝐶𝑊𝐼𝑏 + 𝐸𝐻𝐶𝑊𝐼𝑉 + 𝐸𝑆𝑈𝐶𝑊𝑉 + 𝐸𝑃𝐶𝑊𝐼𝑉  

𝑄 ≥ 0, 𝑘 ≥ 0, 𝐴𝜖(0, 𝐴0] 𝑎𝑛𝑑 𝐿 𝜖 [𝐿𝑧 , 𝐿𝑧−1] 

(26) 

3.5. Reducing shortage variance as a second objective 

In case of probabilistic demand, as a consequence of high demand uncertainty, it is important to control shortage variation 

in order to keep the service in higher level. The shortage variation can be reduced with increasing the safety factor and 

accordingly the reorder point level. Therefore, the paper aims to reduces buyer’s shortage variance which is obtained as 

follows 

𝑉𝑎𝑟(𝑥 − 𝑟)+ = 𝐸 [(𝑀𝑎𝑥(𝑥 − 𝑟, 0))
2
] − [𝐸(𝑀𝑎𝑥(𝑥 − 𝑟, 0))]

2
 (27) 

𝐸 [(𝑀𝑎𝑥(𝑥 − 𝑟, 0))
2
] = ∫ (𝑥 − 𝑟)2𝑓(𝑥)𝑑𝑥

∞

𝑟

, 𝑘 =
𝑟 − 𝐸(𝑥)

𝜎𝑥

 , 𝑧 =
𝑥 − 𝐸(𝑥)

𝜎𝑥

 , 𝑃(𝑥 ≤ 𝑟) = 𝑝(𝑧 ≤ 𝑘)  

→ ∫ (𝑥 − 𝑟)2𝑓(𝑥)𝑑𝑥
∞

𝑟

= ∫ (𝑧𝜎𝑥 − 𝑘𝜎𝑥)
2𝑓(𝑧)𝑑𝑧 = 𝜎𝑥

2 ∫ (𝑧 − 𝑘)2𝑓(𝑧)𝑑𝑧
∞

𝑘

∞

𝑘

 
(28) 

and 

[𝐸(𝑀𝑎𝑥(𝑥 − 𝑟, 0))]
2

= 𝜎𝑥
2 [∫ 𝑧𝑓(𝑧)𝑑𝑧 − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅

∞

𝑘

]

2

 
(29) 

 

Hence, variance of shortages is as follows: 

𝑉𝑎𝑟(𝑥 − 𝑟)+ = 𝜎𝑥
2 {∫ (𝑧 − 𝑘)2𝑓(𝑧)𝑑𝑧

∞

𝑘

− [∫ 𝑧𝑓(𝑧)𝑑𝑧 − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅
∞

𝑘

]

2

} 
(30) 

휁(𝑘) = {∫ (𝑧 − 𝑘)2𝑓(𝑧)𝑑𝑧
∞

𝑘

− [∫ 𝑧𝑓(𝑧)𝑑𝑧 − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅
∞

𝑘

]

2

} 
(31) 

 

→ 𝑉𝑎𝑟(𝑥 − 𝑟)+ = 𝜎𝐷
2𝐿 휁(𝑘) ≥ 0  (32) 

 

3.6. The multi-objective model and the solution 

As mentioned in the previous sections, the paper aims to minimize the joint expected annual cost of vendor and buyer 

with inflation as a first objective and shortage variance as a second objective as follows:  
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min 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿,𝑀)

= 휃𝑏𝑙𝑛 (
𝐴0

𝐴
)

+ [𝐴 + 𝑎𝑖(𝐿𝑖−1 − 𝐿) + ∑ 𝑎𝑖(𝑇𝑗 − 𝑡𝑗)

𝑖−1

𝑗=1

+ 𝑄 (𝑏𝑖(𝐿𝑖−1 − 𝐿) + ∑𝑏𝑖(𝑇𝑗 − 𝑡𝑗)

𝑖−1

𝑗=1

)] [𝐷𝐸 (
1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) −

𝐸(𝑖)

2
]

+ [𝐴 + 𝑎𝑖(𝐿𝑖−1 − 𝐿) + ∑ 𝑎𝑖(𝑇𝑗 − 𝑡𝑗)

𝑖−1

𝑗=1

+ 𝑄 (𝑏𝑖(𝐿𝑖−1 − 𝐿) + ∑𝑏𝑖(𝑇𝑗 − 𝑡𝑗)

𝑖−1

𝑗=1

)] [1

− ((𝐷𝐿 − (1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))𝜎𝐷√𝐿𝜓(𝑘)) 𝐸 (
1

𝑄 − 𝑦
))]𝐸(𝑖)

+ ℎ (1 +
𝐸(𝑖)

2
) [

𝐸(𝑄 − 𝑦)

2
+ 𝑘𝜎𝐷√𝐿 + (1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))𝜎𝐷√𝐿𝜓(𝑘)]

+ [𝜋 + 𝜋°(1 − 𝜈𝑒−𝜗𝜎𝐷√𝐿𝜓(𝑘))] [𝐷𝐸 (
1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) +

𝐸(𝑖)

2
] 𝜎𝐷√𝐿𝜓(𝑘)

+ 𝐶𝑝𝑢𝐷 [1 +
𝐸(𝑖)

2
(1 −

𝐸(𝑄 − 𝑦)

𝐷
)] +

𝐶𝑝𝑟𝐷

1 − 𝐸(𝑝)
[1 +

𝐸(𝑖)

2
(1 −

𝑀𝐸(𝑄 − 𝑦)

𝐷
)]

+ ℎ𝑉 (1 +
𝐸(𝑖)

2
) [(

𝑄2𝐷

𝑃
𝐸 (

1

𝑄 − 𝑦
) (1 −

𝑀

2
)) +

(𝑀 − 1)𝑄

2
] + 𝑆 [

𝐷

𝑀
𝐸 (

1

𝑄 − 𝑦
)(1 +

𝐸(𝑖)

2
) −

𝐸(𝑖)

2
] 

min 𝑉𝑎𝑟(𝑥 − 𝑟)+ = 𝜎𝐷
2𝐿 휁(𝑘) 

𝑄 ≥ 0, 𝑘 ≥ 0, 𝐴𝜖(0, 𝐴0] 𝑎𝑛𝑑 𝐿 𝜖 [𝐿𝑧 , 𝐿𝑧−1] (33) 

Where 

𝜓(𝑘) = [𝜙(𝑘) − 𝑘Φ(𝑘)̅̅ ̅̅ ̅̅ ̅] 

𝐸 (
1

𝑄 − 𝑦
) ≅

1

𝑄(1 − 𝐸(𝑝))
+

𝑄𝐸(𝑝(1 − 𝑝)) + 𝑄2𝑉𝑎𝑟(𝑝)

(𝑄(1 − 𝐸(𝑝)))
3  

𝐸 (
𝑄 − 𝑦

2
) =

𝑄(1 − 𝐸(𝑝))

2
 

 

In order to solve the proposed multi-objective model in this paper, we present an algorithm where in the first step, the 

second objective (minimizing the variance of shortage) is eliminated. During this step, we obtain the minimum values 

of model (33) numerically because its partial derivatives are very complicated functions. It is noted that for any 

given (𝑄, 𝐴, 𝑘), 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿) is concave in 𝐿 ∈ [𝐿𝑧 , 𝐿𝑧−1], because 

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿)

𝜕𝐿2
≤ 0 (34) 

Therefore, for fixed (𝑄, 𝐴, 𝑘), the minimum expected  cost is at the end of interval𝐿 ∈ [𝐿𝑧, 𝐿𝑧−1]. Thus, for fixed 𝐿 ∈

[𝐿𝑧 , 𝐿𝑧−1], the minimum value of 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿,𝑀) will occur at the point (𝑄, 𝐴, 𝑘) which 

satisfies 
𝜕𝐽𝐸𝐴𝐶𝑊𝐼(𝑄,𝐴,𝑘,𝐿)

𝜕𝑄
= 0, 

𝜕𝐽𝐸𝐴𝐶𝑊𝐼(𝑄,𝐴,𝑘,𝐿)

𝜕𝑘
= 0 and 

𝜕𝐽𝐸𝐴𝐶𝑊𝐼(𝑄,𝐴,𝑘,𝐿)

𝜕𝐴
= 0 simultanuously. 

Therefore, we can use the proposed algorithm for finding the optimal (𝑄∗, 𝐴∗, 𝑟∗, 𝐿∗, 𝑀∗).  

Step 1. Set 𝑀 = 1. 

Step 2. Compute the intersection points 𝑄𝑠 of the crash cost lines 𝑐𝑧 = 𝑎𝑧 + 𝑏𝑧𝑄 and 𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗𝑄, for all 𝑧 and 𝑗, 

where 𝑎𝑧 > 𝑎𝑗, 𝑏𝑧 < 𝑏𝑗, 𝑧 ≠ 𝑗 and 𝑧, 𝑗 = 1,2, … , 𝑛. Arrange these intersection points such that 𝑄1
𝑠 < 𝑄2

𝑠 < ⋯ < 𝑄𝑤
𝑠 

and let 𝑄0
𝑠 = 0, 𝑄𝑤+1

𝑠 = ∞ 

Step 3. For each order quantity range (𝑄𝑗−1
𝑠, 𝑄𝑗

𝑠), 𝑗 = 1,2, … , 𝑤, rearranged 𝑐𝑧 such that 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛 , do: 

Step 3.1. For each 𝐿𝑧, 𝑧 = 0,1,2, … , 𝑛, perform step 3-1-1 to step 3-1-3. 
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Step 3.1.1. Input the values of 𝐴, 𝑆, 𝐷, ℎ𝑏 , ℎ𝑉 , 𝑘, 𝜋, 𝜋0, 𝐶𝑝𝑢, 𝐶𝑝𝑟 , 𝑖, , 휃, 𝑏, 𝜈, 𝜗 and 𝑃. 

Step 3.1.2. Compute  𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘 , 𝐴𝑘) in terms of different 𝑘 and 𝜓(𝑘) and find 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧 , 𝐴𝑘𝑧) =

𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑧 , 𝐴𝑧, 𝑘𝑧) as follows:               

 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧 , 𝐴𝑘𝑧) < 𝑀𝑖𝑛{𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧−𝜉 , 𝐴𝑘𝑧−𝜉), 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧+𝜉 , 𝐴𝑘𝑧+𝜉)} 

|𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧 , 𝐴𝑘𝑧)  − 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧−𝜉 , 𝐴𝑘𝑧−𝜉)| ≤ 휀 

|𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧 , 𝐴𝑘𝑧) – 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑘𝑧+𝜉 , 𝐴𝑘𝑧+𝜉)| ≤ 휀 

 

Step 3.1.3. If 𝑄𝑧 ≤ 𝑄𝑗−1
𝑠, let 𝑄𝑧 = 𝑄𝑗−1

𝑠 and if 𝑄𝑗
𝑠 ≤ 𝑄𝑧 let 𝑄𝑗

𝑠 = 𝑄𝑧. Using 𝑄𝑧 as a constant, 

compute 𝐽𝐸𝐴𝐶𝑊𝐼 (𝐴𝑧, 𝑘𝑧).   

Step 3.2. Put 𝑀𝐼𝑁𝑧=0,1,…,𝑛𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑧 , 𝐴𝑧, 𝑘𝑧 , 𝐿𝑧 , 𝑀) = 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑗
∗, 𝐴𝑗

∗, 𝑘𝑗
∗, 𝐿𝑗

∗, 𝑀) for the order quantity 

range (𝑄𝑗−1
𝑠, 𝑄𝑗

𝑠). 

Step 4. Set 𝑀𝐼𝑁𝑗=1,2,..,𝑤 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑗
∗, 𝐴𝑗

∗, 𝑘𝑗
∗, 𝐿𝑗

∗𝑀) = 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑀
∗, 𝐴𝑀

∗, 𝑘𝑀
∗, 𝐿𝑀

∗)      

Step 5. Set 𝑀 = 𝑀 + 1, perform Step 2 to 4 to find 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑀+1
∗, 𝐴𝑀+1

∗, 𝑘𝑀+1
∗, 𝐿𝑀+1

∗). 

Step 6. If (𝑄𝑀+1
∗, 𝐴𝑀+1

∗, 𝑘𝑀+1
∗, 𝐿𝑀+1

∗) ≥ 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑀
∗, 𝐴𝑀

∗, 𝑘𝑀
∗, 𝐿𝑀

∗) , then go to step 7, otherwise go to step 5.  

Step 7. Set 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄𝑀
∗, 𝐴𝑀

∗, 𝑘𝑀
∗, 𝐿𝑀+1

∗) = 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄∗, 𝐴∗, 𝑘∗, 𝐿∗, 𝑀∗ ). And hence the optimal reorder point is 𝑟∗ =

𝜇𝐷𝐿∗ + 𝑘∗𝜎𝐷√𝐿∗ and the optimal backorder rate is 𝛽∗ = 𝜈𝑒−𝜗𝜎𝐷√𝐿∗𝜓(𝑘∗). 

Also, 𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘, 𝐿,𝑀) is convex in M, for fixed 𝑄, 𝐴, 𝑘 and 𝐿, because
𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄,𝐴,𝑘,𝐿)

𝜕𝑀2 ≥ 0. 

Moreover, to ensure the convexity of the disscussed model, the optimal values of (𝑄∗, 𝐴∗, 𝑘∗, 𝐿∗) must satisfy the 

following sufficient conditions. 

For a given value of 𝐿 𝜖 [𝐿𝑧 , 𝐿𝑧−1], we obtain the Hessian matrix H for the objective function as follows: 

 

𝐻 =

[
 
 
 
 
 
 
𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄2

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄𝜕𝐴

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄𝜕𝑘

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴𝜕𝑄

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴2

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴𝜕𝑘

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘𝜕𝑄

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘𝜕𝐴

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘2 ]
 
 
 
 
 
 

 

The first, second, and third principal minors of H must be positive for the optimal values (𝑄∗, 𝐴∗, 𝑘∗) as follows: 

|𝐻11| =
𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄2
≥ 0 

|𝐻22| =
𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄2
×

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴2
− (

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴𝜕𝑄
)

2

≥ 0 

And  

|𝐻33| =

|

|

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄2

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄𝜕𝐴

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑄𝜕𝑘

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴𝜕𝑄

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴2

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝐴𝜕𝑘

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘𝜕𝑄

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘𝜕𝐴

𝜕2𝐽𝐸𝐴𝐶𝑊𝐼(𝑄, 𝐴, 𝑘)

𝜕𝑘2

|

|

≥ 0 

 

The above mentioned algorithm helps to find minimum values of the joint expected annual cost with inflation (JEACWI) 

as a first objective. However, to minimize the variance of shortage as a second goal of the corresponding inventory 

system, a heuristic method is proposed that reduces the shortage standard deviation in a distance of first objective’s 
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optimum point. As can be seen in the following, the standard deviation of shortage is dependent on the reorder point. 

The shortage standard deviation, therefore, can be reduced by increasing the reorder point in a distance (휂) of optimum 

point of the first objective which is given below. 

 
min 𝑉𝑎𝑟(𝑥 − 𝑟)+ = 𝜎𝐷

2𝐿 휁(𝑘) 

 

Subject to: 

 

𝐽𝐸𝐴𝐶𝑊𝐼 ≈ 𝐽𝐸𝐴𝐶𝑊𝐼∗ + 휂 

5. The numerical example 

To illustrate the behavior of the model developed in this paper, we consider an inventory problem with the following 

data:  

𝐷 = 600𝑢𝑛𝑖𝑡 𝑦𝑒𝑎𝑟⁄ , 𝐴0 = $200 , ℎ𝑏 = $20, 𝜎𝐷 = 7𝑢𝑛𝑖𝑡 𝑤𝑒𝑒𝑘⁄   
𝜋 = $50 , 𝜋0 = $150  𝜈 = 1, 𝜗 = 5 

ℎ𝑉 = $15, 𝑆 = $1000, 𝑏 = 2800, 휃 = 0.2, 𝑃 = 2000 𝑢𝑛𝑖𝑡/𝑦𝑒𝑎𝑟   
 

Also, we consider 𝛼 = 1 and 𝛽 = 4 for defective rate which follows the Beta distribution and the p.d.f of 𝑝 is given by    

𝑔(𝑝) = 4(1 − 𝑝)3 ,   0 <  𝑝 < 1 

Therefore, we have: 

𝐸(𝑝) =
𝛼

𝛼 + 𝛽
= 0.2 , 𝐸(𝑝2) =

𝛼(𝛼 + 𝛽)

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)
= 0.066 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑝) = 0.0266 

Besides, we take 𝐶𝑝𝑟 = $40 , 𝐶𝑝𝑢 = $60. 

 
Table 1. Lead time data 

Lead time component 𝑧 1 2 3 

Normal duration 𝑇𝑧 (days) 20 20 16 

Minimum duration 𝑡𝑧 (days) 6 6 9 

Unit fixed crash cost 𝑎𝑧 ($/day) 0.5 1.3 5.1 

Unit variable crash cost 𝑏𝑧 ($/unit/day) 0.012 0.004 0.0012 

 
Table 2. The values of 𝑄𝑠, order quantity ranges and crash sequence 

Inspection points (𝑸𝒔) Order quantity range Crash sequence of 

components 

100 (0, 100] 1, 2, 3 

426 (100, 426] 2, 1, 3 

1357 (426, 1357] 2, 3, 1 

--- (1357, ∞) 3, 2, 1 

 

The data of lead time’s components are listed in Table 1. The data are first used to evaluate the intersection points, order 

quantity range interval, and component crash priorities in each interval. Table 2 shows the crash sequence corresponding 

to each order quantity range. The inflation rate has a normal distribution function. The results of using the first step of 

the algorithm are shown in Table (3) for 𝐸(𝑖) = 0.00, 0.04, 0.08, 0.12 and 0.16. Moreover, the summary of results are 

given in Table (4), and to see the effects of set-up cost reduction, we provide the optimal results of the fixed set-up cost 

model in the same table. The associated results reveal that the larger inflation rate, the larger order quantity (see Fig. 2). 

Also, from Table (4) and Fig. (3), it is observed that the cost performance of the fixed ordering cost model is improving 

as the inflation rate increases. Table 4 shows that the optimal number of shipments is decreased when the inflation rate 

grows. Besides, according to the solution procedure, the optimal JEACWI values obtained in Table 3 are tabulated in 

Table 5 for various safety factor (k) quantities. The outcomes show that JEACWI is convex in terms of various safety 

factor amounts (see Fig 4 for i=0.08, L=8, M=4). In addition, for instance, the optimal values obtained for the variable 

ordering cost model in Table 4 are tabulated for different lead times and respective crashing costs and order quantity 

ranges (𝐶𝐿(0,100], 𝐶𝐿(100,426]) in Table 6. Considering 𝜉 = 10$ in the second step of the solution procedure, the 

effective solutions are tabulated in Table 7 for the variable ordering cost model. Moreover, performance of the multi-

objective inventory model for variance of shortages is shown in Fig 5 where a larger amount of safety factor results in a 

smaller amount of variance of shortages. 

 

This article assumes the quadratic approximation in order to show the influence of defective item in analyzing the first 

objective function. To illustrate that this obligation is satisfied in evaluating the first objective function, the values of 

𝐸 (
1

𝑄−𝑦
) and 𝐸(𝑄 − 𝑦) are given in Tables 3 and 8. Results reveal that using the corresponding approximation, effect of 



The Quadratic Approximation of an Inflationary Bi-objective Integrated Vendor-buyer Inventory Model with ... 

  

Int J Supply Oper Manage (IJSOM), Vol.5, No.2 173 

 

the standard deviation of the defective item on its mean is negligible and the computed expected values are precise, and 

the expected additional joint expected annual cost with inflation for considering defective units as a probabilistic variable 

is justifiable. For instance, in Table 3, for 𝐸(𝑖)=0.00, M=4, the values are obtained as follows 

 

𝐸 (
1

𝑄 − 𝑦
) = 0.0125, 𝐸(𝑄 − 𝑦) = 𝑄 − 𝐸(𝑦) = 82.85 𝑎𝑛𝑑 𝐸(𝑦) = 𝑄𝐸(𝑝) 

We know that: 
𝑉𝑎𝑟(𝑦)

(𝐸(𝑄 − 𝑦))
3 ≅ 𝐸 (

1

𝑄 − 𝑦
) −

1

𝐸(𝑄 − 𝑦)
= 0.0125 − 0.0121 = 0.0004 

 
Table 3. Results of first step of solution procedure (Lead time in weeks) 

𝐸(𝑖) 𝑀 (𝑄, 𝐴, 𝐿, 𝑘, 𝑟) 𝐸(𝑄 − 𝑦), 

𝐸 (
1

𝑄 − 𝑦
) 

𝐸𝑂𝐶𝑊𝐼𝑏, 𝐸𝐻𝐶𝑊𝐼𝑏 ,  
𝐸𝑆𝐶𝑊𝐼𝑏 , 𝐸𝑃𝐶𝑊𝐼𝑏 

𝐸𝑆𝑈𝐶𝑊𝐼𝑉 , 𝐸𝐻𝐶𝑊𝐼𝑉 ,  
𝐸𝑃𝐶𝑊𝐼𝑉 

𝐽𝐸𝐴𝐶𝑊𝐼 

 

 

0.00 

 

1 

 

2 

 

3 

 

4 

 

5 

 

 

299.61, 200.00, 

6, 1.81, 109.03 

181.77, 130.28, 

8, 1.98, 143.20 

131.64, 94.31, 

8, 2.08, 145.18  

103.56, 74.16, 

8, 2.14, 146.36 

85.43, 61.15, 8, 

2.19, 147.35 

 

239.69, 0.0043 

 

145.42, 0.0071 

 

105.31, 0.0098 

 

82.85, 0.0125 

 

68.34, 0.0152 

 

612.51, 3020.93, 96.13, 36000 

 

800.01, 2240.35, 105.33, 36000 

 

980.93, 1878.15, 99.42, 36000 

 

1115.53, 1676.91, 99.87, 36000 

 

1223.52, 1551.45, 99.18, 36000 

 

2606.66, 877.48, 30000 

 

2149.12, 1363.34, 30000 

 

1979.16, 1588.83, 30000 

 

1887.68, 1722.80, 30000 

 

1831.35, 1811.14, 30000 

 

73213.73 

 

72658.17 

 

72526.51 

 

72502.80* 

 

72516.66 

 

 

0.04 

 

1 

 

2 

 

3 

 

4 

 

5 

 

326.82, 200.00, 

6, 1.78, 108.52 

202.78, 142.50, 

6, 1.94, 111.26 

145.51, 102.54, 

8, 2.05, 144.58 

114.53, 80.74, 

8, 2.12, 145.97 

94.57, 66.68, 8, 

2.17, 146.96 

 

261.46, 0.0039 

 

162.22, 0.0064 

 

116.41, 0.0089 

 

91.62, 0.0113 

 

75.66, 0.0137 

 

578.21, 3293.34, 100.28, 

36406.24 

865.93, 2335.31, 91.78, 

36525.32 

934.09, 2016.97, 103.39, 

36580.30 

1067.92, 1792.01, 99.96, 

36610.04 

1175.08, 1649.08, 99.23, 

36629.20 

 

2417.26, 976.28, 

30338.53 

1944.80, 1551.30, 

30275.54 

1806.08, 1791.40, 

30250.75 

1720.65, 1943.57, 

30233.48 

1667.03, 2045.23, 

30221.69 

 

74110.17 

 

73590.02 

 

73483.00 

 

73467.64* 

 

73486.56 

 

 

 

0.08 

 

1 

 

2 

 

3 

 

4 

 

5 

 

361.39, 200.00, 

6, 1.75, 108.00 

227.26, 156.46, 

6, 1.91, 110.74 

163.71, 113.41, 

8, 2.02, 143.99 

129.11, 89.56, 

8, 2.09, 145.37 

106.76, 74.11, 

8, 2.14, 146.36 

 

 

289.11, 0.0036 

 

181.81, 0.0057 

 

130.97, 0.0079 

 

103.29, 0.0100 

 

85.41, 0.0122 

 

540.01, 3635.28, 103.08, 

36746.11 

808.14, 2574.36, 93.73, 

37003.64 

877.68, 2195.82, 105.51, 

37125.66 

1009.86, 1936.28, 102.04, 

37192.09 

1115.88, 1770.60, 101.27, 

37235.01 

 

2207.21, 1100.64, 

30621.76 

1747.34, 1772.67, 

30472.74 

1614.64, 2055.06, 

30414.15 

1534.64, 2234.11, 

30373.64 

1483.40, 2354.27, 

30345.89 

 

74954.12 

 

74472.66 

 

74388.55 

 

74382.09* 

 

74406.35 

 

 

0.12 

 

 

1 

 

2 

 

3 

 

4 

 

 

407.79, 200.00 

6, 1.71, 107.32 

261.51, 176.13, 

6, 1.86, 109.89 

192.61, 130.34, 

6 1.96, 111.60 

150.11, 102.36, 

8, 2.03, 144.19 

 

326.23, 0.0031 

 

209.21, 0.0049 

 

154.09, 0.0067 

 

120.08, 0.0016 

 

496.51, 4084.77, 107.12, 

36985.55 

735.58, 2896.65, 100.03, 

37406.83 

924.28, 2347.78, 94.07, 

37605.25 

935.05, 2126.77, 113.25, 

37727.68 

 

1969.71, 1265.75, 

30821.29 

1522.95, 2079.04, 

30544.73 

1373.16, 2464.44, 

30413.14 

1319.66, 2647.48, 

30358.94 

 

75730.72 

 

75285.84 

 

75222.15* 

 

75228.85 

 

 

0.16 

 

1 

 

2 

 

3 

 

4 

 

 

474.89,200.00, 

6, 1.66, 106.46 

312.40, 200.00, 

6, 1.80, 108.86 

232.82, 154.10, 

6, 1.90, 110.57 

186.28, 123.82, 

6, 1.97, 111.77 

 

379.91, 0.0027 

 

249.92, 0.0041 

 

186.25, 0.0055 

 

149.02, 0.0069 

 

445.92, 4723.99, 111.11, 

37056.41 

642.96, 3369.59, 106.07, 

37680.34 

819.48, 2717.79, 99.57, 

37985.95 

957.99, 2340.96, 95.83, 

38164.66 

 

1695.69, 1501.71, 

30880.34  

1269.91, 2530.51, 

30400.58 

1127.82, 3035.17, 

30164.89 

1052.43, 3347.77, 

30015.56 

 

76415.22 

 

75999.98 

 

75950.71* 

 

75975.24 
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Table 4. Summary of optimal solution for first step of solution procedure (Lead time in weeks) 

 

Variable ordering cost model 

 

 

Fixed ordering cost model (A=200) 
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Table 5. Optimal JEACWI values in terms of different safety factor (k) 
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Table 7. Results of second step of solution procedure (Lead time in weeks) 
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Table 6. Optimal values in terms of different lead time and respective crashing cost and order quantity range (Lead time in weeks) 

 
 

 

Figure 2. Optimal order quantity in terms of various inflation rates 
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Figure 3. Effect of changes in inflation rates for ordering cost reduction and fixed ordering cost model 

 

 

 
Figure 4. JEACWI values in terms of different safety factors (k) 

 

 
Figure 5. Multi-objective model performance for variance of shortages 
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In order to study how various parameters affect the optimal solution of the proposed inventory model, a sensitivity 

analysis is performed. Holding all other parameters fixed and varying a single parameter at a time, we analyze the results. 

Results of the sensitivity analysis are shown in Table 8. The following interpretations are obtained from it:     

 
Table 8. Effect of changes in various parameters (Lead time in weeks) 
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Figure 6. Optimal joint expected annual cost and backorder rate in terms of various backorder parameters 𝜗 

 

1. If the value of 𝜗 increases, the backorder rate, 𝛽, decreases, then the optimal reorder point, 𝑟∗, and the optimal expected 

annual cost, 𝐽𝐸𝐴𝐶𝑊𝐼∗, are increasing simultaneously. A simple economic viewpoint is as follows. A smaller backorder 

rate amount shows a larger shortage cost. Therefore, the optimal reorder point, 𝑟∗, and the optimal expected annual 

cost, 𝐽𝐸𝐴𝐶𝑊𝐼∗, get larger because a smaller backorder rate indicates a larger lost sales (see Fig 6). 

 

2. For a fixed lead time, 𝐿 𝜖 [𝐿𝑧 , 𝐿𝑧−1], a higher standard deviation of demand, 𝜎𝐷, increases the safety stock. Also the 

order quantity and the ordering cost escalate with increasing the standard deviation. 

 

3. Due to higher, 𝑏, the ordering quantity and the ordering cost are higher, resulting in an increasing joint expected annual 

cost with inflation, 𝐽𝐸𝐴𝐶𝑊𝐼∗. Also, safety factor and reorder point decrease with increasing, 𝑏.   
 

4. A higher vendor’s holding cost reduces the number of shipment. Also, as most of the cost factors are higher, the joint 

expected annual cost with inflation, 𝐽𝐸𝐴𝐶𝑊𝐼∗, increases automatically. 

 

5. A higher vendor’s ordering cost reduces the number of shipment. Also, For a fixed number of shipment, with an 

escalation in vendor’s ordering cost, order quantity and buyer’s ordering cost increase, but the safety factor and safety 

stock are reduced.        

   

6. Conclusion 

With the current high inflation in many business environments, especially in developing countries, it is very important 

to adapt mathematical models in this direction especially in uncertain areas. To achieve this goal, we adjusted the lot-

size reorder-point inventory model with stochastic demand with inflation where the lead time is a function of both 

reduced lead time and order quantity, and considered an integrated vendor-buyer cooperative inventory model instead of 

analyzing the optimal policy of one facility. The behavior of our model was illustrated in a numerical example. A 

sensitivity analysis with respect to the important system parameters was also performed. As regards future research, one 

line of inquiry would be to include some constraints in the model. We are also interested in finding optimal policy for 

the periodic review inventory model. Investigating optimal policies when LTD follows other distribution functions or a 

mixture of distributions would also be a challenging task for researchers.     
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Appendix 

It is assumed that imperfect items in a lot is a probabilistic variable, with beta-binomial distribution with parameters 

(𝑄, 𝛼, 𝛽) as follows.  

𝑃(𝑦|𝑝) = (
𝑄

𝑦
) 𝑝𝑦(1 − 𝑝)𝑄−𝑦  , 𝑦 = 0,1,2, … , 𝑄 

 

 

(A.1) 
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𝑓(𝑝) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑝(𝛼−1)(1 − 𝑝)𝛽−1, 0 ≤ 𝑝 ≤ 1 

 

 

(A.2) 

𝑓(𝑦) = ∫ 𝑓(𝑝)𝑃(𝑦|𝑝)𝑑𝑝
1

0

= (
𝑄

𝑦
)

Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
∫ 𝑝𝑦+𝛼−1(1 − 𝑝)𝑄−𝑦+𝛽−1

1

0

𝑑𝑝 

 

→ 𝑓(𝑦) = (
𝑄

𝑦
)
Γ(𝛼 + 𝛽)Γ(𝛼 + 𝑦)Γ(𝑄 + 𝛽 − 𝑦)

Γ(𝛼)Γ(𝛽)Γ(𝑄 + 𝛼 + 𝛽)
    ,   𝑦 = 0,1,2, … , 𝑄 

 

(A.3) 

Therefore: 

𝐸(𝑦|𝑝) = 𝑄𝑝 

 

(A.4) 

𝑉𝑎𝑟(𝑦|𝑝) = 𝑄𝑝(1 − 𝑝) 

 

(A.5) 

Thus, the expected value of 𝑌 is computed by: 

𝐸(𝑦) = 𝐸(𝐸(𝑦|𝑝)) = 𝑄𝐸(𝑝) 

 

(A.6) 

Also, the variance of 𝑌 is calculated as follows: 

 

 

Considering the quadratic approximation, 𝐸(𝑔(𝑥)) ≅ 𝑔(𝜇) +
𝑔′′(𝜇)

2
𝜎𝑥

2, the expected value of  
1

 𝑄−𝑦
 is calculated by: 

𝑔(𝑦) =
1

𝑄 − 𝑦
 , 𝑔′′(𝑦) =

2

(𝑄 − 𝑦)3
 

𝐸 (
1

𝑄 − 𝑦
) ≅

1

𝑄(1 − 𝐸(𝑝))
+

𝑉𝑎𝑟(𝑦) = 𝑄𝐸(𝑝(1 − 𝑝)) + 𝑄2𝑉𝑎𝑟(𝑝)

(𝑄(1 − 𝐸(𝑝)))
3  

 

 

(A.11) 

It is mentioned that the above approximation is accurate when the standard deviation is small. 

Besides, the expected value of 
𝑄−𝑦

2
 is: 

𝐸 (
𝑄 − 𝑦

2
) =

𝑄(1 − 𝐸(𝑝))

2
 

(A.12) 
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