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Abstract 

This paper aims at the single-objective optimization of multi-product for three-echelon supply chain architecture 

consisting of production plants, distribution centers (DCs), and customer zones (CZs). The key design decisions 

considered in the study include the quantity of products to be shipped from plants to DCs, from DCs to CZs , cycle 

length, and the production quantity so as to minimize the total cost .To optimize the objective, three-echelon network 

model is mathematically represented considering the associated constraints, production, capacity and shipment costs and 

solved using genetic algorithm (GA) and Simulated Annealing (SA).Some numerical illustrations are provided at the end 

to not only show the applicability of the proposed methodology, but also to select the best method using a t-test along 

with the simple additive weighting (SAW) method. 

 

Keywords: Three echolon supply chain; Genetic algorithm; Simulated annealing Algorithm. 

1. Introduction 

 

Supply chain is a system of facilities and activities that functions to procure, produce, and distribute goods to the 

customers. ‘Supply chain management is basically a set of approaches utilized to efficiently integrate suppliers, 

manufacturers, warehouses, and stores so that the merchandise is produced and distributed at the right quantities, to the 

right locations, and at the right time in order to minimize system-wide costs (or maximize profits) while satisfying 

service-level requirements’ (Simchi et al., 2000, p. ?). The above definition reveals that there are many independent 

entities in a supply chain, each of which tries to maximize its own inherent objective functions in business transactions. 

This is a complicated problem as too many factors are involved and need more than one objective to be satisfied 

simultaneously. Since today, although the success measures for the companies are determined by lesser costs, shorter 

production time, shorter lead time, less stock, larger product range, more reliable delivery time, higher quality, better 

customer services, and efficient coordination between the customer demand, supply, and production, the trade-off 

between cost investment and service levels may change over time. Hence the supply chain performance needs to be 

evaluated continuously and the supply chain managers should make timely and right decisions (Shen, 2007). 

 

The key issues in supply chain management can broadly be divided into three main categories: (i) supply chain design, 

(ii) supply chain planning, and (iii) supply chain control. In the supply chain design phase, strategic decisions, like facility 

location decisions and technology selection decisions play major roles. It is very important to design an efficient supply 

chain to facilitate the transfer of goods. Environmental changes during the facility’s lifetime can drastically alter the 

appeal of a particular site, turning today’s optimal location into tomorrow’s investment blunder. Assigning the best 

locations for the new facilities is thus an important strategic challenge (Owen and Daskin, 1998). 

In traditional supply chain management, the focus of the supply chain network designs is usually on single objective,  
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minimum cost, or maximum profit. But the design, planning, and scheduling projects usually involve the trade-offs 

among different incompatible goals, such as fair profit distribution among all members, customer service levels, fill rates, 

safety stocks, etc. (Chen & Lee, 2004). Therefore, real supply chains are to be optimized simultaneously by considering 

more than a single objective.  

Many of the problems that occur in supply chain optimization are combinatorial in nature and picking a set of optimal 

solutions in case of multi-objective formulations requires a algorithm that can efficiently search the entire objective space 

using small amounts of computation time. The literature shows that evolutionary algorithms perform well in this respect 

and give optimal results when applied to many combinatorial problems. This work proposes the utility of genetic 

algorithm for the simultaneous optimization of one objective, minimizing total supply chain cost for a three-echelon 

supply chain architecture so as to arrive at an efficient supply chain design and optimal shipment plan which can be used 

as decision support system. Weber et al. (2000) proposed a method for suppliers’ selection which involves developing 

the supplier order quantity solutions using a SA method and evaluating these solutions using data envelopment analysis 

(DEA).  

Proposing the idea that supply chain design should be considered in terms of cooperating systems involved in networks, 

Chandra and Kumar (2001) developed two single-objective linear models for SCN design: (1) a decomposition model 

identifying common constraints and (2) a dynamic process flow model using the flow of components in a network.  

In most of the classical supply chain network designs, the aim has been to send products from one layer to another in 

order to supply demands such that the sum of strategic and tactical/operational cost is minimized. For instance, Amiri 

(2006) developed a SC model to obtain the best strategic decisions on locating production plants and distribution 

warehouses in order to dispatch the products from plants to customers with the goal of minimizing the total costs of the 

distribution network. Gebennini et al. (2009) suggested a three-stage production-distribution system to minimize costs. 

Intricacy involved in mutual relations between various supply chain components together with risks and uncertainties 

throughout the chain have turned the SC decision-making process into a challenging problem, where newer? Aims are 

propounded. The uncertainties in supply chain networks are divided into three classes based on the supplier layer, 

receiver layer, and in the middle layers. Because reversing the decisions in relation to the SC network configuration is 

very costly and difficult, the importance of the interactions between these decisions is largely enhanced under 

uncertainty. 

Bidhandi and Yusuff (2011) modeled a stochastic supply chain network as a two-stage program under strategic and 

tactical decisions. They also investigated how the demands of customer, operational costs, and the capacity of the 

facilities might be highly uncertain as all of them can severely affect the strategic decisions. In the strategic level, Snyder 

(2006) investigated a problem called "reliable facility location problem (RFLP)" to locate the facilities at the distributer 

level of a SC under uncertainty when the facilities were subject to random failures. Murthy et al. (2004) indicated that 

the uncertainty at the strategic level is the most important and difficult issue to be considered. In the tactical level, Van 

Landeghem and Vanmaele (2002) worked on a supply chain planning problem that involved the distribution of raw 

materials and products. Moreover, Jamshidi et al. (2012) suggested a bi-objective multi-echelon SCN design model 

considering several transportation options at each level of the chain with different costs and a capacity constraint. 

The SC network design under demand uncertainty has received significant attention in the last decade. For instance, 

Cardona-Valdés et al.(2011) purposed the design of a bi-objective two-echelon production distribution network under 

demand uncertainty to minimize both the total cost and the total service time. El-Sayed et al.(2010) developed a multi-

period three-echelon forward-reverse logistics network design under demand uncertainty in the forward direction and 

deterministic customer demand in the reverse direction in order to maximize the total expected profits. In the strategic 

level, Schüt et al. (2009) presented another SC problem as a two-stage stochastic program under the short-term operations 

and demand uncertainty to minimize the total expected costs. Georgiadis et al. (2011) investigated a supply chain network 

design problem under time-varying uncertain demand in terms of a number of probable scenarios. 

  Wang et al. (2011) studied a two-echelon SC with stochastic demand to make decisions at both strategic and operational 

levels to maximize profit, where a genetic algorithm (GA) with efficient greedy heuristics was employed to solve the 

problem. Moreover, the optimization of a bi-criteria multi-echelon SC in the presence of demand uncertainty with the 

goals of maximizing the net present value and minimizing the expected lead time was investigated by You and 

Grossmann (2008). They proposed a ε-constraint method to solve the multi-period mixed-integer nonlinear programming 

(MINLP) problem.  

Furthermore, Olivares-Benitez et al. (2012) modeled a two-echelon single-product SC design problem as a bi-objective 

mixed-integer programming and studied the three variations of the classical ε-constraint methods to generate Pareto-

optimal solutions. Ruiz-Femenia et al. (2013) analyzed the influence of demand uncertainty on the multi-objective 
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optimization of chemical supply chains, simultaneously considering their economic and environmental performance. 

Moreover, Rodriguez et al. (2014) proposed an optimization model to redesign the supply chain of spare part delivery 

under demand uncertainty from strategic and tactical perspectives in planning horizon consisting of multiple periods. 

They addressed the uncertain demand by defining the optimal amount of safety stock that would guarantee a certain 

service level at a customer site. Moreover, the risk-pooling effect was taken into account when defining inventory levels 

in distribution centers and customer zones. 

Mirzapour et al. (2011) addressed a multi-site, multi-period, multi-product three-echelon SC under uncertainties of cost 

parameters and demand fluctuations. They utilized the LP-metric method to solve the proposed bi-objective problem as 

a single- objective mixed integer programming. Azaron et al. (2008) proposed a multi-objective stochastic programming 

approach for the supply chain network design problem in which demands, supplies, processing time, shortage, 

transportation, and capacity expansion costs were purposed uncertain. They applied the goal attainment method to obtain 

the minimum values of the financial risk, the total expected costs, and the variance of the total cost as Pareto-optimal 

solutions.  

Mele et al. (2007) proposed an agent-based approach to solve problems involved in SCs that are either driven by pull 

strategies or operate under uncertain environments. Song et al. (2014) considered a manufacturing supply chain problem 

with multiple suppliers in the presence of multiple uncertainties, such as uncertain material supplies, random customer 

demands, and stochastic production times. Pishvaee et al. (2014) developed a multi-objective possibilistic programming 

model to design a sustainable medical supply chain network under uncertainty by considering the conflicting economic, 

environmental, and social objectives. Moreover, Wu et al. (2013) developed a stochastic fuzzy multi-objective 

programming model for supply chains that would outsource risk in the presence of both random and fuzzy uncertainties. 

Many researchers have widely applied GA to solve SCM (stands for?) problems. Tsai and Chao (2009) developed a 

dynamic adaptive GA using a chromosome refinement procedure designed to adapt the ordinal structure of the genes 

within a chromosome. Prakash et al. (2012) provided a knowledge-based GA (KBGA) to optimize a SC network. 

Bandyopadhyay and Bhattacharya fbu(2014) proposed a tri-objective optimization problem for a two echelon serial 

supply chain. They considered the modification of nondominated sorting genetic algorithm-II (NSGA-II) with a mutation 

algorithm that has been embedded into the modified NSGA-II to solve the problem. A Lagrangian heuristic approach 

was also utilized in their research to compare the obtained results. 

 Zegordi et al. (2010) used a GA to solve a mixed integer programming problem developed for a two-stage SC problem 

that involved the scheduling of products and vehicles. Costa et al. (2010) presented a new efficient encoding/decoding 

procedure used within a GA to minimize the total current cost of a single-product three-stage SCN design under strategic 

decisions. Moreover, Wang and Hsu (2010) considered a spanning-tree-based GA to minimize the relevant cost 

associated with strategic decisions in a closed-loop logistic network problem formulated into an integer linear 

programming model. 

Naimi Sadigh et al. (2012) investigated a multi-product manufacturer–retailer supply chain, where demand of each 

product is jointly influenced by price and advertising expenditure. They proposed several solution procedures including 

imperialist competitive algorithm, modified imperialist competitive algorithm, and evolution strategy. Pasandideh et al. 

(2010) considered a multi-product economic production quantity problem with limited warehouse-space in which the 

orders are delivered discretely in form of multiple pallets and the shortages are completely backlogged. Baykasoglu and 

Gocken (2010) presented a direct solution method that is based on ranking methods of fuzzy numbers and Tabu search 

to solve fuzzy multi-objective aggregate production planning problem. 

There are other approaches in the literature to solve different SC problems. For instance, Cardona-Valdés et al. (2011) 

investigated the design of a two-echelon SCN with uncertain demand. An important contribution of their study was the 

development of a Tabu search within the framework of multi-objective adaptive memory programming to find optimal 

Pareto fronts of a two-stage stochastic bi-objective programming problem.  

However, in recent years, many researcher have investigated some relevant issue as well. For instance, Zhou et al. (2013) 

introduced a multi-product multi-echelon inventory control model with joint replenishment strategy. Alimardani et al. 

(2013) considered bi-product inventory planning in a three-echelon supply chain with backordering, poisson demand, 

and limited warehouse space. Miranbeigi et al. (2015) investigated demand satisfaction in supply chain management 

system using a full online optimal control method. Maghsoudlou et al. (2016) optimized a bi-objective three-echelon 

multi-server supply-chain problem in congested systems. Modak et al. (2016) considered three-echelon supply chain 

coordination considering duopolistic retailers with perfect quality products. Dai et al. (2017) optimized multi-echelon 

inventory with three types of demand in supply chain. Mohammadi et al. (2017) found optimal design of a multi-echelon 

supply chain in a systems thinking framework.  Stenius et al. (2017) developed sustainable multi-echelon inventory 

control with shipment consolidation and volume dependent freight costs. Panda et al. (2017) scrutinized coordination 

and benefit sharing in a three-echelon distribution channel with deteriorating product. Ross et al. (2017) investigated 

http://www.sciencedirect.com/science/article/pii/S096599781100247X
http://www.sciencedirect.com/science/article/pii/S0965997809001501
http://www.sciencedirect.com/science/article/pii/S0965997810000839
http://www.sciencedirect.com/science/article/pii/S0965997810000839
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integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector. 

Topan et al. (2017) considered sustainable multi-echelon inventory control with shipment consolidation and volume 

dependent freight costs. Belgin et al. (2018) developed a mathematical model related to the two-echelon vehicle routing 

problem with simultaneous pickup and delivery and solved it by a heuristic approach. Ghasemy Yaghin (2018) 

investigated integrated multi-site aggregate production-pricing planning in a two-echelon supply chain with multiple 

demand classes. Habibi-Kouchaksaraei (2018) designed a robust bi-objective multi-echelon mathematical model for 

blood supply chain in a disaster. Johansson and Olsson (2018) considered age-based inventory control in a multi-echelon 

system with emergency replenishments. Kayvanfar et al. (2018) studied a multi-echelon multi-product stochastic model 

to supply chain of small-and-medium enterprises in industrial clusters. Liu et al. (2018) devised a branch-and-cut 

algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints. Zhou et al. (2018) took 

into account multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution. 

 

The current study addresses single-objective optimization of a multi-product three-echelonsupply chain network. The 

network consists of certain manufacturing plants, distribution centers (DCs), and customer nodes.  

The remainder of this paper is organized as follows. In Section 2, the problem is stated and the assumptions are explained 

in more details. Section 3 provides the mathematical model of the problem at hand. In Section 4, the solution approaches 

are described. Section 5 contains numerical examples for a set of designed problems of different sizes. In this section, 

we apply the t-test and the simple additive weighting (SAW) method, as astatistical and a multi-attribute decision-making 

(MADM) approach respectively, to compare the algorithms. Finally, the conclusion and suggestions for future studies 

are presented Section 6. 

 

2. The problem 

Consider a three-echelon supply chain network shown in Fig. 1. This network consists of manufacturing plants to the 

left, distribution centers (DCs) in the middle of the figure, and customer nodes to the right. 

 

 
 

Figure 1. A three-echelon supply chain net  

 

The main assumptions of this problem are: 

 The supply chain has an integrated structure consisting of manufacturing plants and potential DCs designed to supply 

customer demands for several products in single period. 

 Shortage can not occur at customer nodes. 

 More than one plant can replenish the demand of a given warehouse. 

 More than one distributor center can replenish the demand of each customer. 

 All the internal parameters, such as production and transportation costs, and holding costs of inventory for products 

all are considered as the uniform random variables. 

 The capacities of the manufacturers, the distributors, and the retailers are known. 

 The warehouses operate perfectly. 

 The manufacturing plants have limited production per period. 

 A production system with imperfect production processes. 

 Incomplete items of n different kinds, are generated at a rate, 𝑢𝑖; i = 1, 2, . . . , n , per cycle and among these products 

a 𝑠𝑐𝑖  portion is taken into account to be scrap and the other portion can be reworked. 

 All of the parameters are considered as stochastic in every cycle. 

 All of the products are manufactured by one machine. 

 A definite cycle length for all items is perceived: 𝑇1 = 𝑇2 = ⋯ = 𝑇𝑛 = 𝑇. 

 It is assumed that the production rate of the ith item is 𝑝𝑖  per cycle, and the quantity of the good items produced, 

denoted by 𝑑𝑖, in every cycle. 
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 We assume that the entire quantity of imperfect quality items will be reworked, and at the end of the rework period, 

a 𝑚𝑖 portion as scrap will be left.  

 The manufacturer at the same time utilizes the same resource for production and rework processes. 

 For the common production system, budget and capacity are finite. 

 In this research, the following basic assumption of EPQ inventory model with the rework process is that the rate of 

production minus defectives must always be greater than or equal to the demand. 

 The inspection process for the products is perfect, and the inspection time is zero. 

 The locations of plants, distributors, retailers and suppliers are fixed. 

 Products are temporarily stored at the distributors before delivery to the retailers. 

 There is no inventory at the distributor centers and customer zones at the beginning or end of the cycle. 

Under the above-mentioned conditions, the present study attempts to make decisions so as to determine a proper SCN 

configuration in order to minimize the total cost. 

The proposed mathematical model can determine the economic production quantity and the quantity of products 

produced by each plant in a period, and assign products to the transportation channels between the SC entities in a period. 

 

Furthermore, several limitations were considered in the proposed model as follows: 

 The capacities of the manufacturer, distributor, and retailers are limited. 

 The storage capacities for each perfect product are limited. 

 All demands must be satisfied during the planning horizon. 

 The production and reworking times are limited. 

3. Mathematical model 

A single-objective mixed-integer non-linear mathematical formulation of the problem at hand is derived in this section 

using the following notations including indices, parameters, and decision variables. 

Sets of indices: 

i   The set of indices {i = 1,2,…, ni} used for manufacturing plants 

j   The set of potential distribution centers (DCs) or warehouses {j = 1,2,…, nj} 

k  The set of customer nodes {k = 1,2,…, nk} 

l   The set of finished products {l = 1,2,…, nl} 

 

Parameters: 

 

𝑐𝑖𝑙      Unit production cost of product l produced by manufacturing plant i 

𝑝𝑖𝑙      The production rate of ith product at manufacturing plant i, units/unit time 

𝑑𝑏𝑖𝑙    The demand rate of i th productby all distribution center, units/unit time 

𝑑𝑟𝑘𝑙    Demand of product l by customer k, units 

𝑟𝑒𝑖𝑙     Rework cost per defective good l by manufacturer i 

ℎ𝑚𝑖𝑙   Holding cost of products l for defective goods stored at manufacturer i 

𝑢𝑖𝑙       Percentage of defective goods l produced by manufacturer i 

𝑠𝑐𝑖𝑙     Percentage of scrap productsl produced by factory i 

𝑓𝑙       Volume of one unit of product l (𝑚3) 

𝑚𝑖𝑙    The proportion of scrap of ith product in rework at manufacturing plant i 

ℎ𝑖𝑙       Unit inventory holding cost of product l by plant i 

𝑖𝑐𝑖𝑙      Unit inspection cost of product l by plant i 

𝐴𝑖𝑙      Set up cost of producing product l by manufacturing plant i 

𝐶𝑀𝑖𝑗𝑙   Shipping cost of each product l from manufacturer i to distributor j 

𝐶𝐷𝑗𝑘𝑙   Shipping cost of each product l from distributor j to retailer k 

𝑇𝑑𝑓𝑖𝑙   Shipping cost of each defective goods l at manufacturer i (from production to defective goods storage and vice 

versa). 

𝑑𝑐𝑖𝑙     Discount cost per scrap products l for sale by manufacturing plant i 

𝑆𝑖      Total storage capacity of plant i 

𝑊𝑖     The total available budget of manufacturing plant i per period 

𝐸𝑗      Total storage capacity of distributor j 

𝐸𝑠𝑗𝑙     Storage capacity of distributor j for product l 

𝑅𝑘     Total storage capacity of retailer k 

𝑅𝑠𝑘𝑙   Storage capacity of retailer k for product l 

𝐺𝑖𝑙      Production capacity of factory i for product l 

 

Decision variables: 
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𝑄𝑖𝑙                EPQ of products l by manufacturing plant i 

𝑄𝑖              Quantity of all products produced by manufacturing plant i 

𝐼𝑁𝑉𝑖𝑙           Inventory of product l at manufacturing plant i per period 

𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑙  Quantityof perfect products l produced by factory i per period 

𝑇              Cycle lenght 

𝑋𝑖𝑗𝑙            Quantity of products l transported from factory i to distributor j 

𝑌𝑗𝑘𝑙            Quantity of products l transported from distributor j to retailer k 

 

The production cycle length is the sum of the production uptimes for the good and incomplete items, 𝑡𝑖
1 and 𝑡𝑖

5 , 

respectively, the reworking time, 𝑡𝑖
2 , and the production downtimes, 𝑡𝑖

3 and 𝑡𝑖
4 . Hence, one has a total production cycle 

length of: 

 

𝑇 = ∑ 𝑡𝑖𝑙
𝑗

3

𝑗=1

                                                                                                                                                                                 (1) 

Since all products are produced on a single machine with a limited capacity, the cycle length for all products is shown 

in Figure 2. Therefore, we have: 

 
 

Figure 2. On-hand inventory for perfect quality items 

 

 

𝑡𝑖𝑙
1 =

𝑄𝑖𝑙

𝑝𝑖𝑙

                                                                                                                                                                                       (2) 

𝑡𝑖𝑙
2 = 𝑢𝑖𝑙

𝑄𝑖𝑙

𝑝𝑖𝑙

                                                                                                                                                                                 (3) 

𝑡𝑖𝑙
3 =

𝐻𝑖
𝑚𝑎𝑥

𝑑𝑖

= (
(1 − 𝑠𝑐𝑖𝑙 − 𝑚𝑖𝑙𝑢𝑖𝑙)

𝑑𝑏𝑖𝑙

−
(1 + 𝑢𝑖𝑙)

𝑝𝑖𝑙

) 𝑄𝑖𝑙                                                                                                         (4) 

𝐻𝑖𝑙 = ((1 − 𝑢𝑖𝑙 − 𝑠𝑐𝑖𝑙)𝑝𝑖𝑙 − 𝑑𝑏𝑖𝑙)
𝑄𝑖𝑙

𝑝𝑖𝑙

                                                                                                                                  (5) 

𝐻𝑖𝑙
𝑚𝑎𝑥 = 𝐻𝑖𝑙 + 𝑢𝑖𝑙((1 − 𝑚𝑖𝑙)𝑝𝑖𝑙 − 𝑑𝑏𝑖𝑙)

𝑄𝑖𝑙

𝑝𝑖𝑙

 

𝐻𝑖𝑙
𝑚𝑎𝑥 = ((1 − 𝑠𝑐𝑖𝑙 − 𝑚𝑖𝑙𝑢𝑖𝑙)𝑝𝑖𝑙 − (1 + 𝑢𝑖𝑙)𝑑𝑏𝑖𝑙)

𝑄𝑖𝑙

𝑝𝑖𝑙

                                                                                                      (6) 

Hence, from Eq. (1), the cycle length for a single product is: 

𝑇 =
(1 − 𝑠𝑐𝑖𝑙 − 𝑚𝑖𝑙𝑢𝑖𝑙)𝑄𝑖𝑙

𝑑𝑏𝑖𝑙

                                                                                                                                                     (7) 

𝑄𝑖𝑙 =
𝑇 × 𝑑𝑏𝑖𝑙

(1 − 𝑠𝑐𝑖𝑙 − (𝑢𝑖𝑙 × 𝑚𝑖𝑙))
                                                                                                                                               (8) 

 

𝑇𝐶 = ∑ ∑ 𝑐𝑖𝑙𝑄𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

+ ∑ ∑ ℎ𝑚𝑖𝑙𝑢𝑖𝑙𝑄𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

+ ∑ ∑ ∑ 𝑋𝑖𝑗𝑙(𝐶𝑀𝑖𝑗𝑙

𝑛𝑙

𝑙=1

𝑛𝑗

𝑗=1

𝑛𝑖

𝑖=1

) + ∑ ∑ ∑ 𝑌𝑗𝑘𝑙(𝐶𝐷𝑗𝑘𝑙

𝑛𝑙

𝑙=1

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

) + ∑ ∑ 𝑟𝑒𝑖𝑙𝑢𝑖𝑙𝑄𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

+ ∑ ∑ 𝑇𝑑𝑓𝑖𝑙𝑢𝑖𝑙𝑄𝑖𝑙 + ∑ ∑ 𝑑𝑐𝑖𝑙((𝑠𝑐𝑖𝑙 + 𝑚𝑖𝑙𝑢𝑖𝑙)𝑄𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

) 
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                       + ∑ ∑ 𝐴𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

+ ∑ ∑ 𝑖𝑐𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

𝑄𝑖𝑙 + ∑ ∑ ℎ𝑖𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

𝐼𝑁𝑉𝑖𝑙                                                                                        (9) 

 

Constraints: 

 

𝑄𝑖𝑙 ≤ 𝐺𝑖𝑙                                                                                                                                                                                      (10) 

∑ ∑ 𝑋𝑖𝑗𝑙

𝑛𝑙

𝑙=1

𝑛𝑖

𝑖=1

≤ 𝐸𝑗                                                                                                                                                                        (11) 

∑ 𝑋𝑖𝑗𝑙 ≤ 𝐸𝑠𝑗𝑙

𝑛𝑖

𝑖=1

                                                                                                                                                                         (12) 

∑ ∑ 𝑌𝑗𝑘𝑙

𝑛𝑙

𝑙=1

𝑛𝑗

𝑗=1

≤ 𝑅𝑘                                                                                                                                                                      (13) 

∑ 𝑌𝑗𝑘𝑙 ≤ 𝑅𝑠𝑘𝑙

𝑛𝑗

𝑗=1

                                                                                                                                                                        (14) 

𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑙 = 𝑄𝑖(1 − 𝑠𝑐𝑖𝑙 − (𝑢𝑖𝑙 × 𝑚𝑖𝑙))                                                                                                                            (15) 

∑ 𝑋𝑖𝑗𝑙 =𝑛𝑖
𝑖=1 ∑ 𝑌𝑗𝑘𝑙

𝑛𝑘
𝑘=1                                                                                                                                                                (16)                   

∑ 𝑌𝑗𝑘𝑙 =  𝑑𝑟𝑘𝑙                                                                                                                                                                          (17) 

𝑛𝑗

𝑗=1

 

∑ 𝑋𝑖𝑗𝑙 = 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑙

𝑛𝑗

𝑗=1

                                                                                                                                                              (18) 

∑(𝑡𝑖𝑙
1

𝑛𝑙

𝑙=1

+ 𝑡𝑖𝑙
2) + ∑ 𝑡𝑠𝑖𝑙

𝑛𝑙

𝑙=1

≤ 𝑇                                                                                                                                                (19) 

∑(𝑐𝑖𝑙

𝑛𝑙

𝑙=1

+ 𝑟𝑒𝑖𝑙 × 𝑢𝑖𝑙)𝑄𝑖 ≤ 𝑊𝑖                                                                                                                                                (20) 

∑ 𝑋𝑖𝑗𝑙 = 𝑇 × 𝑑𝑏𝑖𝑙

𝑛𝑗

𝑗=1

                                                                                                                                                               (21) 

∑ 𝑓𝑙(((1 − 𝑠𝑐𝑖𝑙 − 𝑚𝑖𝑙𝑢𝑖𝑙)𝑝𝑖𝑙 − (1 + 𝑢𝑖𝑙)𝑑𝑏𝑖)
𝑄𝑖𝑙

𝑝𝑖𝑙

)

𝑛𝑙

𝑙=1

≤ 𝑆𝑖                                                                                             (22) 

𝑄𝑖𝑙  , 𝑄𝑖 , 𝑇, 𝑋𝑖𝑗𝑙  , 𝑌𝑗𝑘𝑙 ≥ 0 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                                                                                                     (23) 

 

Eq.(9) represents an objective function that minimizes the total costs of the supply chain, including the costs of 

production, holding at the distributor, defective good storage, rework of defective goods, transportation from the 

manufacturers to the distributors, transportation from the distributors to the retailers, transportation from the 

manufacturers to defective good storage and vice versa, the discount cost of scrap goods for sale, and the retailer 

shortages due to defective goods production. Eq. (10) states the restriction of production capacity. Eqs. (11) and (12) 

denote the delivery capacity limitations of the distributors for all types of products and each type of product, respectively.  

Eqs. (13) and (14) consider the delivery capacity limitations of the retailers for all product types and each product type, 

respectively. Eq. (15) expresses the total amount of perfect goods after reworking. Eq. (16) shows the balance between 

the total inputs and outputs of goods moving to and from the distributors during the cycle. Eq. (17) explains how the 

total demands during the cycle are supplied. Eq. (18) assures that the total goods shipped from the manufacturers to the 

distributors are of perfect quality. In other words, the scrap goods are removed from the system. In the joint production, 

systems having rework, the overall production, rework, and setup times ought to be smaller than the cycle length.  

  Eq. (19) assures ∑ (𝑡𝑖𝑙
1𝑛𝑙

𝑙=1 + 𝑡𝑖𝑙
2) + ∑ 𝑡𝑠𝑖𝑙

𝑛𝑙
𝑙=1  must be less than or equal to T. Since the production quantity is𝑞𝑖

𝑠 , the total 

available budget is 𝑊, and 𝑢𝑖𝑞𝑖
𝑠 is the number of the i-th product which requires rework. Eq. (20) shows the budget 

constraint.  

Eq. (21) expresses the total goods shipped from the manufacturers to the distributors that are equal to the product of the 

length of each period and the demand rate of ith product by all distribution center. Eq. (22) shows the space of the 
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warehouse to store the products at manufacturing plants is limited. Eq.(23) indicates that the production amount, 

deliveries to warehouses and retailers, and perfect goods after reworking should all have positive values. 

4. Solution algorithms 

4.1. GA 

Genetic algorithm (GA) is introduced first by Holland (1975). The formulation of the model is a non-linear integer-

programming (NIP) model. This characteristic causes the model to be hard enough to be solved by an exact method 

(Gen, 1997). Genetic algorithms are stochastic search techniques based on the mechanism of natural selection and natural 

genetics. Each individual in the population is called a chromosome, deputizing a solution to the problem at hand. The 

chromosomes evolve through consecutive iterations, called generations.  

During every generation, the chromosomes are evaluated, utilizing some measures of fitness. To create the subsequent 

generation, new chromosomes, called offspring, are built by either crossover operator or mutation operator. A new 

generation is built according to the fitness values of the chromosomes. After some generations, the algorithm converges 

to the best chromosome (Pasandideh and Niaki, 2008). 

The usual form of GA was described by Goldberg (1989). GA is a stochastic search technique whose solution process 

mimics natural evolutionary phenomena: genetic inheritance and Darwinian strife for survival (Gen, 2000). Recently, 

the GA has been receiving great attention and it has successfully been applied to other problems in the supply chain 

environment (Chen et al., 1998; Park, 2001).  

GA is known as a problem-independent approach; however, the chromosome representation is one of the critical issues 

when applying it to optimization problems.  

 

4.1.1. GA algorithm in initial and general conditions 

The required initial information to start a GA is: 

 

(i) Population size (nPop): It is the number of the chromosomes or scenarios that are kept in each generation. 

(ii) Crossover rate (Pc): This is the probability of performing a crossover in the GA method. 

(iii) Mutation rate (Pm): This is the probability of performing mutation in the GA method. 

(iv) maximum number of iterations (N) 

(v) The general steps involved in a GA algorithm are as follows: 

 

1. Initialization. 

1.1. Set the parameters (N, Pc, Pm, stopping criteria, selection strategy, crossover operation, mutation operation, 

and number of generation). 

1.2. Initialize the population (randomly). 

2. Evaluate the fitness. Repeat 

3. Select individuals for the mating pool (size of mating pool = N) 

4. For each consecutive pair, apply crossover with probability Pc. 

5. For each new generation, apply mutation with probability Pm. 

6. Replace the current population by the resulting mating pool. 

7. Evaluate the fitness. 

Until stopping criteria is met. 

 

4.1.2. The chromosomes 

One of the important components of the GA is the selection of chromosomes. We attempted to select the best 

chromosomes in the proposed GAs that would give us good results and require a low run-time. In the studied 

mathematical model, the variable 𝑌𝑗𝑘𝑙 has both direct and indirect relationships with the variables 𝑆𝑐𝑖𝑙  , 𝑋 𝑖𝑗𝑙 ,and 𝑄𝑖𝑙  . 

Therefore, any change in variable 𝑌𝑗𝑘𝑙  leads to certain changes in other variables, and thus, the variable 𝑌𝑗𝑘𝑙  was chosen 

as the chromosome. The chromosomes are displayed in a matrix with the columns denoting the number of products (l) 

and rows (𝑗 ∗ 𝑘). Each gene in the matrix was randomly created by Matlab software, as shown in Eq. (24). 

Matrix 𝑌(𝑗∗𝑘)∗𝑙 = (

𝑌111 ⋯ 𝑌11𝑙

⋮ ⋱ ⋮
𝑌1𝑘1 ⋯ 𝑌𝑗𝑘𝑙

)

(𝑗∗𝑘)∗𝑙

                                                                                                                           (24) 

4.1.3. Evaluation 

A fitness function is required to evaluate the chromosomes of each generation. In most GA applications, the objective 

function of the optimization model at hand is considered a fitness function. However, as explained before, the inventory 

model of this research has some constraints. These characteristics make the probability of a generated chromosome being 

feasible very low. In order to promote this chance, a penalty function is defined to be a positive and known sum of 
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squared violation of each constraint. As a result, the penalty and the fitness function in which violation per constraint is 

denoted by 𝐸𝑖is defined as follows: 

Penalty function = {
∑ 𝐸𝑖/4  If the chromosome ∈ infeasible region

4

𝑖=1

0             If the chromosome ∈ feasible region

 

 

Fitness function = Penalty function +Objective function                                                                                        (25) 

 

4.1.4. Initial population 

In this step, a collection of chromosomes is randomly generated. 

 

4.1.5. Crossover 

To perform the crossover, two chromosomes must be merged. First, the chromosomes to be combined should be 

identified and allowed to mix. The columns will be combined for each chromosome selected for the crossover, and the 

intersection point will be used to combine the chromosomes.  

For example, if we work with two chromosomes with four periods and three rows, the combination of the chromosomes 

will proceed as follows. First, the intersection point is chosen. Thereafter, the values of both sides of the matrix are 

exchanged. The intersection point shown in this example denotes the first period (Figure 3). 

 

 
Figure 3. Display of the cross over operation. 

4.1.6. Mutation 

The mutation probability refers to the probability of change in any gene. In this research, each chromosome receives a 

certain number of genes that are assumed to change, and this number is derived by multiplying the total number of genes 

by the mutation probability. Accordingly, a number of genes must be selected to undergo mutation. 

The resulting value is rounded off to the nearest whole number. If four genes should undergo mutation, these four genes 

are randomly selected, and their values are changed (Figure 4). 

 

 
Figure 4. Display of the mutation operation 
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4.1.7. Chromosomes selection 

In genetic algorithms, the selection operator is used to guide the search process towards more promising regions in a 

search space. Some selection methods, like roulette wheel, tournament, ranking, and elitist are discussed in Michalewicz 

(1996) . Furthermore, a detailed explanation of the operation of roulette wheel selection can be found in Goldberg (1989).  

Since in the roulette wheel selection, better solutions get higher chance to become parents of the next generation, it is 

used to select the chromosomes of this research. The selection in this method is based on the fitness value of the 

chromosomes. We select N chromosomes among the parents and the offspring with the best fitness values.  

 

4.1.8. Stopping criterion 

The last step in a GA methodology is to check if the method has found a solution that is good enough to meet a stopping 

criterion. Stopping criteria is a set of conditions such that when the method satisfies them, a good solution is obtained. 

In this study, a pre-specified maximum number of iterations (N) is considered to stop the algorithms. 

 

4.2. SA 

Simulated annealing (SA) is a generic probabilistic meta-heuristic for the global optimization problem of locating a good 

approximation to the global optimum of a given function in a large search space (Kirkpatrick et al 1983).The method 

was independently described by Kirkpatrick et al (1983)  and Cerny (1985). The title and the inspiration come from 

annealing in metallurgy, a technique that involves heating and controlled cooling of a material to increase the size of its 

crystals and reduce their deficiencies. 

Both of them are attributes of the material that depend on its thermodynamic free energy. Heating and cooling the 

material impress both the temperature and the thermodynamic free energy. While the very amount of cooling brings the 

same amount of decrease in temperature, it will afford a bigger or smaller decrease in the thermodynamic free energy 

depending on the rate that it occurs, with a slower rate generating a bigger decrease. 

This notion of slow cooling is implemented in the Simulated Annealing algorithm as a slow decrease in the probability 

of accepting worse solutions as it explores the solution space. Accepting worse solutions is a basic property of meta-

heuristics because it allows for a more extensive search for the optimal solution. 

The procedure of simulated annealing algorithm is given below for the minimization problem: 

 

 Get an initial temperature T >0. 

 Get an initial solution S. 

 Initial solution (S) is considered as the best solution. 

 The following loop repeats until stopping criteria is met. 

 Perform the following loop L times. 

 Generate solution S’in neighborhood of S. 

 Let ∆ = cost (S’) - cost(S). 

 If (∆< 0) (downhill move), set S = S’. 

 If (∆>0) (uphill move), Create a random number (x) , 𝑥 ∈ [0 1] 
 If 𝑥 <exp (-∆ /T), set S = S’. 

 End loop 

 Set T = 𝛼 × T (reduce temperature). 

 If stopping criteria is met, the algorithm is terminated. 

 

The required initial information to start a SA is: 

 

 Population size (nPop): It is the number of the initial solutions 

 Final Temperature (TF) 

 Temperature Decrement Rate (𝛼) 

 Iterations at each temperature (IT) 

 

4.2.1. Determining starting temperature 

There are two key parameters in the cooling process that determine how firm or amorphous the result of the metal in its 

frozen state will be. The first one is the temperature starting point from which the cooling begins, and the second is the 

rate by which the temperature is falling. Concerning the rate of decay, it should be low enough to allow the atoms in the 

molten metal to line themselves up and give enough time to form a crystal lattice with the minimum internal energy. 

Evidently, a slow decay will lead to a long-time - solidifying process.  
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To reduce the run time, one may think of a low starting temperature. However, on the other hand, if the initial temperature 

is not copious enough, atoms of the molten metal would not have enough freedom to rearrange their positions in a very 

regular minimum energy structure. 

In this algorithm, starting temperature is calculated based on Equation (26). 

 

𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒 =
𝑇𝐹

𝛼^𝐼𝑇
                                                                                                                                                            (26) 

 

4.2.2. Initial solution structure 

The quality of the initial solution affects the performance of the meta-heuristics. To reduce this dependency, several 

methods start their search from multiple primary solutions.The structure presentation of the chromosome in this 

algorithm is similar to GA algorithm that was explained previously.   

In this step, a chromosomes is generated. Equation (25) is considered as the fitness function.  

 

4.2.3. Neighbourhood search 

The way in which a meta-heuristic moves from one solution to its neighbor is another critical component in SA algorithm. 

For every iteration, the neighbourhood solution is generated using the mutation operator used in GA algorithm. This 

process is called neighbourhood generation. 

 

4.2.4. Temperature Decrement 

There are some rules for temperature decrement, where the most common method is classic temperature decrement 

(T=T×α).The temperature decrement rate is α. 

 

4.2.5. Stopping criteria 

The assumed criteria in this algorithm is reaching to Final Temperature (TF). 

 

4.3. Tuning the parameters of the two solution algorithms 

In this paper, a regression approach is utilized for calibrating the main parameters of  thealgorithms. First, each algorithm 

is employed 30 times. Each time their parameters are changed in their relevant intervals.The values of the related 

responses are first normalized by the linear norm. 

Then, a quadratic regression function for each measure is estimated using the Design Expert software to find the 

significant relationships between the parameters and their responses. Next, the estimation of the results utilizing the 

estimated regression function is taken to be optimized by the GAMS software in order to find the optimal combinations 

of the parameters. The quadratic regression function consists of interaction, linear, and quadratic coefficients shown in 

Equation (27). 

𝐸(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 + 𝛽44𝑋4

2 +  𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽14𝑋1𝑋4 +
𝛽23𝑋2𝑋3 + 𝛽24𝑋2𝑋4 + 𝛽34𝑋3𝑋4                                                                                                                                             (27)   

 
 

Where 𝐸(𝑌) is the expected value of a given response, 𝛽0 is a constant coefficient representing the intercept, 𝛽𝑖, i = 

1,2,3,4 are the linear coefficients, 𝛽𝑖𝑖 , i = 1,2,3,4 are the quadratic coefficients, 𝛽𝑖𝑗 , i & j = 1,2,3,4, i ≠ 𝑗 are the interaction 

coefficients, and 𝑋𝑖 , i = 1,2,3,4 are the four parameters of the algorithms. This process is explained in the next section, 

where input data of the problem instances are given. Furthermore, the results obtained using the parameter-tuned 

algorithms are analyzed. 

Numerical examples evaluate the performances of the two meta-heuristic algorithms in the next section. Then, they are 

solved employing GA and SA. Numerical examples are provided in the next section to evaluate the performances of the 

two single-objective meta-heuristic algorithms in the next section.  

5. Numerical results 

Consider a multi-product, multi-period, three-echelon SC problem, in which the internal parameters are randomly 

generated based on Uniform distributions in their corresponding ranges for different problem instances shown in Table 

1. And the ranges of the parameters are given in Table 2.  
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Table 1. Generated problem instances 

 Problem No. 

1 2 3 4 5 

Manufacturing plants 3 6 8 9 13 

Distributor centers 6 8 10 12 16 

Customers 3 9 10 11 17 

Products 3 5 6 7 8 

 
Table 2. Parameter range 

d~uniform [500 700] 

pc~uniform [4,8] 

u~uniform [0,0.09] 

A~uniform [1,4] 

ts~uniform [0.0025,0.0045] 

re~uniform [4,8] 

h~uniform [2,30] 

f~uniform [0.1,3] 

hd~uniform [7,13] 

 

Tcm~uniform [9,15] 

Tcd~uniform [6,10] 

Tcdef~uniform [3,7] 

disc~uniform [8,14] 

cb~uniform [2,3] 

sc~uniform [0.04,0.06] 

m~uniform [0,0.9] 

ci~uniform [1,3] 

Inv~uniform [2800 3900] 

hm~uniform [4,8] 

S~uniform [2000 3000] 

p~uniform [5000 12000] 

db~uniform [4000 5000] 

tscd~uniform [24000 30000] 

scd~uniform [10000 18000] 

tscr~uniform [15500 28900] 

scr~uniform [4000 8500] 

sto~uniform [10000 20000] 

W~uniform [1000000000,4000000000] 

 

The parameter ranges of both algorithms along with their levels are shown in Table 3. 

 
Table 3. Algorithm parameter ranges along with their levels. 

Single-objective 

algorithms 

Algorithm parameter Parameter range Low(-1) Medium (0) High (1) 

GA nPop(A) 10-50 10 30 50 

Pc (B) 0.6-0.8 0.6 0.7 0.8 

Pm (C) 0.01-0.1 0.01 0.055 0.1 

Ngen (D) 5-15 5 10 15 

SA nPop (A) 1-11 1 6 11 

IT (B) 31-59 31 45 59 

Alpha (C) 0.8-0.9 0.8 0.85 0.9 

TF (D) 0.1-0.3 0.1 0.2 0.3 
 

As mentioned in the previous section, the parameters of the algorithms is first tuned to obtain better solutions. Therefore, 

each algorithm is employed 30 times, each time their parameters change in their corresponding ranges. Then, the fitness 

function is recorded in each run. As an example, Table 4 contains the experimental results of employing GA. 

Table 4. Experimental results of employing GA 

No. nPop N Pc Pm Cost 

1 10 15 0.8 0.01 741571 

2 10 5 0.6 0.1 729150 

3 50 10 0.7 0.055 724177 

4 30 10 0.7 0.055 730092 

5 30 10 0.7 0.055 725932 

6 30 15 0.7 0.055 736817 

7 30 10 0.6 0.055 719168 

8 50 5 0.8 0.01 719685 

9 50 15 0.6 0.1 714431 
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Table 4. Continued 

No. nPop N Pc Pm Cost 

10 30 5 0.7 0.055 737146 

11 10 15 0.6 0.01 737620 

12 10 15 0.8 0.1 736120 

13 10 10 0.7 0.055 728026 

14 30 10 0.7 0.055 725094 

15 50 5 0.6 0.01 719957 

16 30 10 0.8 0.055 727127 

17 50 5 0.8 0.1 744086 

18 30 10 0.7 0.055 721584 

19 30 10 0.7 0.055 733371 

20 30 10 0.7 0.1 725031 

21 10 5 0.6 0.01 745728 

22 50 15 0.6 0.01 712495 

23 50 15 0.8 0.1 720066 

24 10 5 0.8 0.01 733738 

25 50 15 0.8 0.01 729551 

26 50 5 0.6 0.1 725417 

27 10 15 0.6 0.1 733302 

28 30 10 0.7 0.055 728543 

29 30 10 0.7 0.01 740144 

30 10 5 0.8 0.1 742045 

 

To investigate the relationship between the fitness value and the parameters, a regression analysis using the Design 

Expert software is then employed. The quadratic regression coefficients of the fitness function of the GA are given in 

Table 5.  
Table 5. The Quadratic regression coefficients of the fitness function of the GA 

Term Coefficient(𝛃) Standard error F-value p-value 

Model - - 3.21 0.0161 

Constant 7.283E+005 1895.34 - - 

nPop -6524.19 1438.16 20.58 0.0004 

N -1943.33 1438.16 1.83 0.1966 

Pc 3151.17 1438.16 4.80 0.0446 

Pm -602.20 1438.16 0.18 0.6813 

nPop × N -1909.55 1525.40 1.57 0.2298 

nPop × Pc 2088.34 1525.40 1.87 0.1911 

nPop × Pm 2521.94 1525.40 2.73 0.1190 

N × Pc 634.84 1525.40 0.17 0.6832 

N × Pm -2431.72 1525.40 2.54 0.1318 

Pc × Pm 1954.59 1525.40 1.64 0.2195 

nPop ×  nPop -3074.92 3790.68 0.66 0.4299 

N × N 7805.23 3790.68 4.24 0.0573 

Pc ×  Pc -6028.67 3790.68 2.53 0.1326 

Pm ×  Pm 3411.03 3790.68 0.81 0.3824 

 
 

This relationship is obtained as: 

 

𝐸(𝐺𝐴) = 𝐸(𝐶𝑜𝑠𝑡)𝐺𝐴 = 728300 − 6524.18735 × 𝑛𝑃𝑜𝑝 − 1943.33149 × 𝐼𝑇 + 3151.16663 × 𝑃𝑐 − 602.20327 ×
𝑃𝑚 − 1909.54674 × 𝑛𝑃𝑜𝑝 × 𝐼𝑇 + 2088.34096 × 𝑛𝑃𝑜𝑝 × 𝑃𝑐 + 2521.94017 × 𝑛𝑃𝑜𝑝 × 𝑃𝑚 + 634.84159 × 𝐼𝑇 ×
𝑃𝑐 − 2431.72137 × 𝐼𝑇 × 𝑃𝑚 + 1954.58958 × 𝑃𝑐 × 𝑃𝑚 − 3074.91626 × 𝑛𝑃𝑜𝑝2 + 7805.22589 × 𝐼𝑡2 −
6028.67381 × 𝑃𝑐2 + 3411.02944 × 𝑃𝑚2                                                                                                      (28) 



 Najafi, Ghodratnama and Pasandideh 

 

  

Int J Supply Oper Manage (IJSOM), Vol.4, No.3 242 

 

Afterwards, the regression function is optimized using the GAMS software to obtain the best values of the parameters in 

their corresponding ranges.The results of parameter setting process of GA and SA are presented in Table 6 and 7, 

respectively. 

Table 6. The results of parameter setting process of GA algorithm 

Algorithms nPop N Pc Pm 

GA 50 6 0.6 0.01 

 

Table 7.  The results of parameter setting process of SA algorithm 

Algorithms nPop Alpha TF IT 

SA 4 0.8 0.3 59 

 

In order to validate the results obtained using GA, not only a t-test is used, but also a multiple attribute decision-making 

(MADM) approach is employed. The t test is employed using the SPSS software. The null hypothesis in this test is the 

equality of the means, i.e., H0 :μ1=μ2, where μ1 and μ2 are the response means. To do this, both algorithms are first 

implemented n=30 times, each time with their optimal parameter setting.  

Then, the values of objective functions and the CPU time of problem instances are obtained. The means of the 30 runs 

for each of the 5 problem instances solved by GA and SA are provided in Tables 8 and 9, respectively. 

Table 8. The mean of the objective function and the mean of CPU TIME in GA algorithm 

Problem No. Cost CPU Time 

1 114032.0426 1.5871297 

2 548930.3058 15.8196912 

3 722018.301 35.9244424 

4 930298.327 48.297758 

5 1642840.303 207.424508 

 
Table 9. The mean of the objective function and the mean of CPU TIME in SA algorithm 

Problem No. Objective function CPU Time 

1 106836.7178 1.059103 

2 532068.1821 9.838433 

3 717157.165 22.81341 

4 922899.1441 48.1613 

5 1611441.6 222.3112 

 

Based on 95% confidence level, i.e., a=0.05, the results of the t-test on the means of fitness function and CPU time 

obtained using the two algorithms on the first problem are shown in Table 10. 

 
Table 10. CPU TIME and Cost mean comparison of employing the two algorithms in solving the first problem 

Paired Differences 

Criteria Mean Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of the 

Difference 

t df Sig 

 

.(2-tailed) 
Lower Upper 

Objective 

function 
-7399.18286 11484.72311 2096.81397 -11687.64895 -3110.71677 -3.529 29 0.001 

CPUTI 
-0.13645 13.85549 2.52965 -5.31018 5.03727 -0.054 29 0.957 

 

As seen in this table, there are significant differences between the fitness function means of the two algorithms, since the 

related value of significance (two-tailed) are less than 0.05. 

 

The values of significance (two-tailed) of the measure comparisons in all problem instances are shown in Table 11.  
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Table 11. The p-values of the t-tests on the equality of the means of the measures in all problem instances 

Problem No. Objective function CPU Time 

1 0.000 0.000 

2 0.000 0.000 

3 0.000 0.000 

4 0.001 0.957 

5 0.000 0.108 

 
As seen in this table, there are significant differences between the objective function means of the two algorithms 

obtained in all problem instances and there are significant differences between the CPU time means of the two algorithms 

obtained in fourth and fifth problem instances. 

 

To select the better algorithm, the SAW method (Hwang and Yoon, 1981), as one of the multiple attribute decision-

making approach, is utilized here. As the SAW method starts with normalizing a decision matrix based on the linear 

method, a decision matrix 𝐷 = [𝑑𝑖𝑗]
𝑚×𝑛

 is first organized for m (here 2) alternatives and n indices (here 2) based on the 

desirability of alternative i towards index j denoted by 𝑑𝑖𝑗 . In the next step, an un-scaled weight matrix is made the 

weights obtained of Entropy method. The weights are shown in Table 12. 

 
Table 12. The weight vector of the means of the two measures in all problem instances 

Problem No. Objective function CPU TIME 

1 0.02579788 0.9742021 

2 0.004417 0.995582961 

3 0.00022701 0.999773 

4 0.8884662 0.111533849 

5 0.071977388 0.928023 

 

Then, the total sum of each row is computed. At the end, an algorithm with the largest total sum of weights (TSW) is 

selected for each of the problem instances. Table 13 shows TSWs of each algorithm in all problem instances.  

Table 13. Comparison results using the SAW method 

Problem No. GA SA Applicability 

1 0.674262303 1 SA 

2 0.623444931 1 SA 

3 0.635120081 1 SA 

4 0.992618417 1 SA 

5 0.998624336 0.937856412 GA 

 

As seen in this table, SA is the better algorithm for problem instances with small and medium sizes, while GA works 

satisfactorily. In short, based on the results obtained using the t-test and the SAW method, it can be concluded that both 

algorithms work satisfactorily to optimize the SCN problem at hand. 

Both algorithms are coded and implemented in MATLAB 8.20 and run on a computer with core (TM) i3-CPU 2.40 GHz, 

RAM 4.00 GB. 

 

7. Conclusion  

In this paper, we have proposed a new mathematical model for a three-echelon defective goods supply chain network 

(DGSCN) that not only minimizes the costs of production, holding, transport, defective goods, and scrap products, but 

also determines the economic production quantity (EPQ) and the appropriate cycle length. The GA and SA methods 

were used to solve the proposed mathematical model. To model the real states accurately, the values of the parameters 

were treated as probabilities with uniform distributions.  

Five problem instances of small, medium, and large were used to demonstrate the application of the proposed 

methodology as well as to compare the performances in terms of the means of two performance measures. After the 

parameter calibration process of both algorithms based on a statistical method using 30 samples, the algorithms were 

employed to solve the problem instances, each 30 times. The results of t-test and the SAW method at the end showed 

SA acted better than GA for most of problem instances. 

For future researches in this area, we recommend the followings: 
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 In addition to the storage capacity limitation, we may consider other constraints too. 

 Other meta-heuristic search algorithms may also be employed and a comparison may be made among the algorithms. 

 We can consider backorder or lost sale for shortages. 

 Some parameter of the model may be either fuzzy or random variable. This being the case, the model has either 

fuzzy or stochastic nature. 

 Researchers could apply other mutation and crossover operators. 

 For the further remarks, discounts or inflation for system costs can be took into account.  

 A distance parameter between the layers as well as travel times to transport the products to customer nodes can 

appropriately be considered. 

 The SCN using the De-Novo programming approach can also be designed. 
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