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Abstract 

In this article, we present a sequential sampling plan for a three-state machine replacement problem using dynamic 

programming model. We consider an application of the Bayesian Inferences in a machine replacement problem .The 

machine was studied at different states of good, medium and bad. Discount dynamic programming (DDP) was applied to 

solve the three-state machine replacement problem, mainly to provide a policy for maintenance by considering item quality 

and to determine an optimal threshold policy for maintenance in the finite time horizon.  A decision tree based on the 

sequential sampling which included the decisions of renew, repair and do-nothing was implemented in order to achieve a 

threshold for making an optimized decision minimizing expected final cost. According to condition-based maintenance, 

where the point of defective item is placed in continuing sampling area, we decided to repair the machine or to continue 

sampling. A sensitivity analysis technique shows that the optimal policy can be very sensitive.  

Keywords: Machine replacement; Dynamic programming; Sequential sampling plan; Maintenance. 

1. Introduction

Maintenance is the set of actions conducted to keep a system into a situation where it can perform its function. Machine 

replacement problem is a principal issue in maintenance problems that can significantly affect the expenditures of the 

company to go lower. Many mathematical models based on cost objective function are presented for machine replacement 

problem not applying the quality of items produced by machine in such models can lead to incorrect decisions. Decision 

making about quality of machine based on inspecting the produced items usually results in the application of sampling 

plans. Two approaches have been applied to the machine maintenance problems. In the first approach, modeling helps to 

realize how the optimal maintenance policy depends on the intensity of technological change, the rate of capacity expansion, 

and the deteriorating rate. In the second approach, the maintenance policy that is being followed in practice is a combination 

of preventive and corrective maintenance (Niaki and Fallahnezhad, 2011). 

A large body of literature has continuously focused on problems including maintenance decision optimization.Tagaras 

presented the joint process control and the machine maintenance problem of a Markovian deteriorating machine (Tagaras, 

1988). Kuo applied an optimal adaptive control policy for a joint machine maintenance and product quality control (Kuo, 

2006). Bowling et al. used a Markovian model to determine optimum process-target levels for a multi-stage serial production 

system (Bowling et. al, 2004). Goldstein et al. presented a planning horizon for the first optimal replacement in an infinite-

horizon problem in which two types of machines are considered (Goldstein et. al, 1988). Ivy and Nembhard presented 

maintenance model for machine replacement problem by combining a statistical quality control technique with partially 

observable Markov decision processes (Ivy and Nembhard, 2005). Sethi et al. developed appropriate dynamic programming 

equations and established the existence of the solution using a verification theorem for optimality (Sethi et. al, 1997). Niaki 

and Fallahnezhad employed Bayesian inference and stochastic dynamic programming to design a decision-making 

framework in production environment (Niaki and Fallahnezhad, 2007). Further, Fallahnezhad et al. determined the optimal 

policy for two-machine replacement problem using Bayesian inference in the context of the finite mixture model – 
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(Fallahnezhad et. al, 2007). Fallahnezhad and Niaki proposed a two-machine dynamic programming model (Fallahnezhad 

and Niaki, 2011). Aslam et al. proposed a new sampling system based on the constraints of first and second and type errors 

(Aslam et. al, 2013). In addition, Chun and Rinks assumed the Beta distribution for proportion defective and modified 

producer and consumer risks based on Bayes producer and consumer risks (Chun and Rinks, 1998). Fallahnezhad et al. 

presented a model of Markov chain approach in acceptance sampling plans based on the cumulative sum of the number of 

successive conforming items (Niaki and Fallahnezhad, 2012). Fallah Nezhad analyzed the acceptance sampling design by 

using minimum angle method (Fallahnezhad et.al, 2011). Aslam et al. proposed repetitive acceptance sampling plan with 

new decision rule (Aslam et.al, 2012). The other approach is to design a sampling system which minimizes the total cost of 

decision making. Niaki and Fallahnezhad proposed a stochastic dynamic programming and Bayesian inferences concept to 

design an optimum sampling plan (Niaki and Fallahnezhad, 2009). Fallahnezhad and Niaki proposed an economically 

optimal acceptance sampling policy based on number of successive conforming items (Fallahnezhad and Niaki, 2013). 

Fallahnezhad and Hosseini Nasab proposed a single-stage acceptance sampling plan by minimizing total cost of the system 

(Fallahnezhad and Hosseini Nasab, 2011). Fallahnezhad et al. proposed Bayesian acceptance sampling plan based on cost 

objective function (Fallahnezhad et.al, 2012). 

In this article, a dynamic programing model for three-state machine replacement problem is developed to determine an 

optimal maintenance policy. The main contribution of this paper is determining an optimal threshold for three-state machine 

replacement problem using dynamic programming based on the sequential sampling plan in a finite time horizon. 

Considering the state of machine in good, medium and bad is an innovative plan to model an optimal maintenance policy 

in machine replacement problem. In the second section, the model and it assumptions is described. The third section states 

Notations and formulation. A numerical example is illustrated to clarify the subject and the sensitivity analysis technique is 

used to determine the effect of any parameters on the results. Conclusion comes in   section six.  

2. Description of the model

A decision tree is a decision support tool that employs a set of decisions and their feasible results, it is one method to present 

an optimal solution algorithm. A decision tree is a flowchart-like framework in which internal node demonstrates one 

decision, each branch determines result of event or choosing a decision and each leaf node shows decision results [20].  

A decision tree includes three types of nodes: 1) Decision nodes – mostly displayed by squares, 2) Chance nodes – 

represented by circles, 3) End nodes – represented by triangles [21]. In decision analysis, a decision tree is applied as an 

analytical decision support tool, where the expected costs of each decision are computed. 

One application of decision trees is for classification, but we used the decision tree for choosing among alternatives not for 

classification where the applied decision tree is computed based on backward dynamic programming [22]. In this paper, a 

decision tree for a three-state machine replacement problem is used to determine outcomes of event or selecting a decision. 

The proposed decision tree includes decisions of renewing, repairing machine and continuing the production without any 

maintenance. When the stage variable is equal to n, there are n available decisions. Supposing that the repair decision is 

selected at stage n, according to backward dynamic programming approach, the decision in the stage n-1, is made based on 

the prior decisions. Figure 1 illustrates the decision tree for the model proposed.  

The goal of the model is to minimize the cost recursive function in order to determine an optimal maintenance policy, more 

specifically in a finite time horizon. We can suppose that the machine states include bad, medium, good states.  Assumptions 

and formulas of the model are illustrated using Bayesian inference method. A framework for the model was proposed by 

sequential sampling plan and partially observable Markov decision process (POMDP). 

The POMDP approach is adopted to achieve the partial observations of machine state by sequential sampling. Sequential 

sampling plan is done so that the machine start to work and produce number of production;   considering  the framework 

presented, the random samples of lot is investigated; first the item is checked, then checking continues item by item.  The 

process of sampling continues until the number of defective items is placed in the determined area according to sequential 

sampling plan. If the number of defective items is more than determined upper threshold, the optimal decisions is renewing. 

In addition, if the number of defective items is less than determined lower threshold, the optimal decisions is continuing the 

production without any maintenance. If the number of defective items is placed between the upper threshold and lower 

threshold, two approaches can be applied by considering condition-based maintenance: 1.the repair decision is selected. 2. 

Sampling continues until the number of defective items is more than determined upper threshold or the number of defective 

items less than determined lower threshold. 

We can suppose that the machine can be placed in states good, medium and bad; the probability of being defective for 

machines depends on the amount of item produced. In fact, the case deals with a decision tree and optimal decision, which 

is selected, based on the produced parts quality.  
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Figure1. Decision tree that includes the decisions of renew, repair or do nothing and continue 

Based on the statistical quality control techniques and partially observable Markov decision processes (POMDP), it is 

proposed that the probability of producing a defective product is determined based on the machine state. The statistical 

quality control is used to determine the probability distribution of defective items. If the machine is in bad state, the defective 

observation distribution follows Bernoulli distribution with parameter p1 and if the machine is in medium state, the defective 

observation distribution follows Bernoulli distribution with parameter p2. If the machine is in good state, the defective 

observation distribution follows Bernoulli distribution with parameter p3. This assumption is shown in Figure 2. 

To illustrate the model, some assumptions should be considered. It is assumed that the machine can be placed in three states: 

good, Medium and bad. The backward dynamic programming is used; π (the probability that the machine is in bad state) is 

considered as state variable and the number of the programming periods equals stage variable; and programming is done in 

finite time horizon.  

Machine

Bad state Medium state Good state

Probability of
non conforming

item
=P1

Probability of
non conforming

item
=P2

Probability of
non conforming

item
=P3

Figure 2. Determining the parameters of the Bernoulli distribution for producing one item 
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Parameters and formulas of the model are illustrated in the following; some of them are obtained using the bayesian 

inference method. 

3. Notations

The notations required to model the problem at hand are given as: 

π: probability of machine state (machine states includes bad, medium, good state) 

Pr: Posterior probability of machine state when a conforming item is produced. 

Pr’: Posterior probability of machine state when a non-conforming item is produced. 

π1: Probabilty that the machine is in bad state; {st=0}. 

π2: Probability that the machine is in medium state; {st=1}. 

π3: Probability that the machine is in good state; {st=2}. 

α: Discount factor; α[0,1]

p1: Probability that the observation is defective if the machine is in the bad state. 

p2: Probability that the observation is defective if the machine is in the medium state. 

P3: Probability that the observation is defective if the machine is in the good state. 

z: Probability that the observation is defective. 

L: The defective observation. 

pr1: The posterior probability that the machine is in the bad state when a conforming item is produced. 

pr2: The posterior probability that the machine is in the medium state when a conforming item is produced. 

pr3: The posterior probability that the machine is in the good state when a conforming item is produced. 

pr1
’: The posterior probability that the machine is in the bad state when a non-conforming item is produced. 

pr2
’: The posterior probability that the machine is in the medium state when a non-conforming item is produced. 

pr3
’: The posterior probability that the machine is in the good state when a non-conforming item is produced. 

π0: Probability of the machine state for new machine. 

π01: Probabilty that the machine is in the bad state after the machine is renewed. 

π02: Probabilty that the machine is in the medium state after the machine is renewed. 

π03: Probabilty that the machine is in the bad state after the machine is renewed. 

n: The number of remained stages (the stage variable). 

T: The coefficient for the cost of repair decision in different states. 

T1: The coefficient for the cost of repair decision when the machine is in the bad state. 

T2: The coefficient for the cost of repair decision when the machine is in the medium state. 

T3: The coefficient for the cost of repair decision when the machine is in the good state. 

π11: Probability that the machine is in the bad state after the machine is repaired. 

π12: Probability that the machine is in the medium state after the machine is repaired. 

π13: Probability that the machine is in the good state after the machine is repaired. 

R: The fixed cost for renew decision  

A: Profit of a conforming item. 

C: Cost of one non-conforming item.  

M: The coefficient for the salvage value of machine (the value of the machine when no stage is remaining and the process 

terminates.) 

M1: The coefficient for the salvage value when the machine is in the bad state.  

M2: The coefficient for the salvage value when the machine is in the medium state. 

M3: The coefficient for the salvage value when the machine is in the good state.  

V0(π): The salvage value of the machine (the value of the machine when no stage is remaining and the process 

terminates). 

The optimality equation is illustrated as following: 
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The condition-based maintenance (CBM) and sequential sampling plan are used to illustrate the model proposed. CBM is 

used so that the point is placed in continue sampling area then the decisions of repairing the machine or continuing sampling 

can be chosen until the point is placed in rejection area and decisions of the renew are selected; if the point is placed in 
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accept area then the decisions of do-nothing is selected. Figure. 3 clearly shows sequential sampling method in machine 

replacement problem. 

Figure 3. Sequential sampling plan for machine replacement problem 

 A: Renew machine.

 B: Repair machine

 C: Continue the production without any maintenance action.

4. Numerical example

A numerical example is solved for illustrating the application of proposed methodology. Input data of the problem is as 

following: 

01

02 03

1 2 3

11 12 13

1 2 3

1 2

3

R=30, =0.95, =0.03,

=0.27, =0.7,

T =15,T =10,T =8,

=0.2, =0.3, =0.5

p =0.8,p =0.1,p =0.1,

C=15,A=5,M =2,M =6

M =8
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 
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 

Assumptions and equations used in this model are simulated by MATLAB software. 

For example, if n=5; decision making stages are available then the results for different values of state variable 

1 2 3( , , )    are reported in Table 1. 
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Table 1. Total expected costs for each 1 2 3( , , )    and its optimal decision

1 2 3( , , )   Cost(Renew) Cost(Repair) Cost(Continue 

the production) 
Vn 1 2 3( , , )   Decision 

(0,0,1) 26.54022 11.35199 -7.3829 -7.3829 Continue the production 

(0,0.1,0.9) 26.54022 11.55199 -7.53765 -7.53765 Continue the production 

(0,0.2,0.8) 26.54022 11.75199 -7.69241 -7.69241 Continue the production 

(0,0.3,0.7) 26.54022 11.95199 -7.84716 -7.84716 Continue the production 

(0,0.4,0.6) 26.54022 12.15199 -8.00192 -8.00192 Continue the production 

(0,0.5,0.5) 26.54022 12.35199 -8.15668 -8.15668 Continue the production 

(0,0.6,0.4) 26.54022 12.55199 -8.31143 -8.31143 Continue the production 

(0,0.7,0.3) 26.54022 12.75199 -8.46619 -8.46619 Continue the production 

(0,0.8,0.2) 26.54022 12.95199 -8.62095 -8.62095 Continue the production 

(0,0.9,0.1) 26.54022 13.15199 -8.7757 -8.7757 Continue the production 

(0,1,0) 26.54022 13.35199 -8.93046 -8.93046 Continue the production 

(0.1,0,0.9) 26.54022 12.05199 -2.15346 -2.15346 Continue the production 

(0.1,0.1,0.8) 26.54022 12.25199 -2.30486 -2.30486 Continue the production 

(0.1,0.2,0.7) 26.54022 12.45199 -2.45627 -2.45627 Continue the production 

(0.1,0.3,0.6) 26.54022 12.65199 -2.60767 -2.60767 Continue the production 

(0.1,0.4,0.5) 26.54022 12.85199 -2.75907 -2.75907 Continue the production 

(0.1,0.5,0.4) 26.54022 13.05199 -2.91048 -2.91048 Continue the production 

(0.1,0.6,0.3) 26.54022 13.25199 -3.06188 -3.06188 Continue the production 

(0.1,0.7,0.2) 26.54022 13.45199 -3.21328 -3.21328 Continue the production 

(0,1,0.8,0.1) 26.54022 13.65199 -3.36469 -3.36469 Continue the production 

(0.1,0.9,0) 26.54022 13.85199 -3.51609 -3.51609 Continue the production 
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Table 1. Continued 

1 2 3( , , )   Cost(Renew) Cost(Repair) Cost(Continue 

the production) 
Vn 1 2 3( , , )   Decision 

(0.2,0,0.8) 26.54022 12.75199 2.172761 2.172761 Continue the production 

(0.2,0.1,0.7) 26.54022 12.95199 2.05248 2.05248 Continue the production 

(0.2,0.2,0.6) 26.54022 13.15199 1.9322 1.9322 Continue the production 

(0.2,0.3,0.5) 26.54022 13.35199 1.811919 1.811919 Continue the production 

(0.2,0.4,0.4) 26.54022 13.55199 1.691638 1.691638 Continue the production 

(0.2,0.5,0.3) 26.54022 13.75199 1.571358 1.571358 Continue the production 

(0.2,0.6,0.2) 26.54022 13.95199 1.451077 1.451077 Continue the production 

(0.2,0.7,0.1) 26.54022 14.15199 1.330797 1.330797 Continue the production 

(0.2,0.8,0) 26.54022 14.35199 1.210516 1.210516 Continue the production 

(0.3,0,0.7) 26.54022 13.45199 6.108511 6.108511 Continue the production 

(0.3,0.1,0.6) 26.54022 13.65199 5.991166 5.991166 Continue the production 

(0.3,0.2,0.5) 26.54022 13.85199 5.873822 5.873822 Continue the production 

(0.3,0.3,0.4) 26.54022 14.05199 5.756477 5.756477 Continue the production 

(0.3,0.4,0.3) 26.54022 14.25199 5.639133 5.639133 Continue the production 

(0.3,0.5,0.2) 26.54022 14.45199 5.521788 5.521788 Continue the production 

(0.3,0.6,0.1) 26.54022 14.65199 5.404444 5.404444 Continue the production 

(0.4,0,0.6) 26.54022 14.15199 10.03251 10.03251 Continue the production 

(0.4,0.1,0.5) 26.54022 14.35199 9.915163 9.915163 Continue the production 

(0.4,0.2,0.4) 26.54022 14.55199 9.797818 9.797818 Continue the production 

(0.4,0.3,0.3) 26.54022 14.75199 9.680474 9.680474 Continue the production 

(0.4,0.4,0.2) 26.54022 14.95199 9.563129 9.563129 Continue the production 
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Table 1. Continued 

1 2 3( , , )   Cost(Renew) Cost(Repair) Cost(Continue 

the production) 
Vn 1 2 3( , , )   Decision 

(0.4,0.5,0.1) 26.54022 15.15199 9.445785 9.445785 Continue the production 

(0.5,0,0.5) 26.54022 14.85199 13.71193 13.71193 Continue the production 

(0.5,0.1,0.4) 26.54022 15.05199 13.62182 13.62182 Continue the production 

(0.5,0.2,0.3) 26.54022 15.25199 13.53171 13.53171 Continue the production 

(0.5,0.3,0.2) 26.54022 15.45199 13.44161 13.44161 Continue the production 

(0.5,0.4,0.1) 26.54022 15.65199 13.3515 13.3515 Continue the production 

(0.5,0.5,0) 26.54022 15.85199 13.26139 13.26139 Continue the production 

(0.6,0,0.4) 26.54022 15.55199 17.3677 15.55199 Repair 

(0.6,0.1,0.3) 26.54022 15.75199 17.27759 15.75199 Repair 

(0.6,0.2,0.2) 26.54022 15.95199 17.18748 15.95199 Repair 

(0.6,0.3,0.1) 26.54022 16.15199 17.09738 16.15199 Repair 

(0.7,0,0.3) 26.54022 16.25199 21.02347 16.25199 Repair 

(0.7,0.1,0.2) 26.54022 16.45199 20.93336 16.45199 Repair 

(0.7,0.2,0.1) 26.54022 16.65199 20.84325 16.65199 Repair 

(0.8,0,0.2) 26.54022 16.95199 24.67924 16.95199 Repair 

(0.8,0.1,0.1) 26.54022 17.15199 24.58913 17.15199 Repair 

(0.9,0,0.1) 26.54022 17.65199 27.46757 17.65199 Repair 

(1,0,0) 26.54022 18.35199 29.53257 18.35199 Repair 

As can be seen, the optimal policy is in the form of a control threshold policy. When (π1
*=0.6, π2

*=0, π3
*=0.4), then optimal 

decision is changed from continue-the-production decision to the repair decision; Fig 4 clearly shows this issue. According 

to input data, the renew decision is not recommended. By changing input data, the renew decision is applied which is 

further illustrated in the subsequent section. 
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Figure 4. Diagram of the expected costs for each 1 2 3( , , )  

5. Sensitivity Analysis

A sensitivity analysis is used to analyze the effects of changing parameters on the optimal solution. In each case of 

sensitivity analysis, one parameter of the model is altered. It is necessary to adjust the parameter value in a level so that 

one can easily interpret its behavior. The decision numbers for decisions of Renew, Repair and continue the production 

are 1, 2 and 3 respectively. For example, 32 means that the optimal decisions change from continue- the production-

decision to repair decision based on the cost objective function. Also 31 means that the optimal decisions changed 

from continue-the production-decision to renew decisions in the optimal threshold policy. The results are shown in Table 

2. 

Table 2 shows that the optimal threshold changes by changing parameters of the model. For example, by increasing R 

and C, the repair decision area decreases. In other words, the optimal threshold shifts to the right, as shown more 

clearly in Fig 5 and Fig 6. The result of sensitivity analysis for parametes π01, π02, π03, M1, M2, M3 shows that changing 

of these parameters does not affect optimal threshold. In addition, changing   parameters p2, p3 does not follow  a 

regular pattern. 

Table 2. The results of sensitivity analysis for the proposed sampling plan 

(π1
*, π2

*, π3
*) Changed 

value 

(π1
*, π2

*, π3
*) Changed 

value 

(π1
*, π2

*, π3
*) Changed 

value 

Parameters 

(0.6,0,0.4) 

32 

40 (0.5,0,0.5) 

32 

10 (0.2,0,0.8) 

32 

0 R

(0.6,0,0.4) 

32 

1 (0.6,0,0.4) 

32 

0.9 (0.7,0,0.3) 

32 

0.8 α

(0.5,0,0.5) 

32 

(0.5,0.3,0.2) 

23 

(0.6,0,0.4) 

32 

1 (0.6,0,0.4) 

32 

0.5 (1,0,0) 

3 

0 p1 

Irregular 1 irregular 0.5 (0.5,0,0.5) 

32 

(0.5,0.3,0.2) 

23 

(0.6,0,0.4) 

32 

0 P2 
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Table 2.Continued 

(π1
*, π2

*, π3
*) Changed 

value 

(π1
*, π2

*, π3
*) Changed 

value 

(π1
*, π2

*, π3
*) Changed 

value 

Paramete

rs 

Irregular 1 irregular 0.5 (0.5,0.3,0.2) 

32 

0 P3 

(0.7,0,0.3) 

31 

40 (0.6,0,0.4) 

32 

20 (0.5,0,0.5) 

32 

0 T1

(0.8,0,0.2) 

32 

40 (0.6,0,0.4) 

32 

(0.6,0.2,0.2) 

23 

(0.7,0,0.3) 

32 

20 (0.5,0.2,0.3) 

32 

0 T2

(0.7,0.2,0.1) 

32 

40 (0.7,0,0.3) 

32 

20 (0.5,0,0.5) 

32 

(0.5,0.3,0.2) 

23 

(0.6,0,0.4) 

32 

0 T3

(0.6,0,0.4) 

32 

1 (0.6,0,0.4) 

32 

0.5 (0.6,0,0.4) 

32 

0 π01

(0.6,0,0.4) 

32 

1 (0.6,0,0.4) 

32 

0.5 (0.6,0,0.4) 

32 

0 π02

(0.6,0,0.4) 

32 

1 (0.6,0,0.4) 

32 

0.5 (0.6,0,0.4) 

32 

0 π03

(0.7,0,0.3) 

31 

1 (0.7,0,0.3) 

31 

0.5 (0.3,0,0.7) 

32 

(0.3,0.2,0.5) 

23 

(0.4,0,0.6) 

32 

0 π11 

(0.7,0,0.3) 

31 

1 (0.7,0,0.3) 

31 

0.5 (0.5,0,0.5) 

31 

0 π12 

(0.7,0,0.3) 

31 

1 (0.6,0,0.4) 

31 

0.5 (0.5,0,0.5) 

31 

0 π13 

(0.6,0,0.4) 

32 

20 (0.6,0,0.4) 

32 

10 (0.6,0,0.4) 

32 

0 A 

(0.5,0,0.5) 

32 

20 (0.7,0,0.3) 

32 

10 (1,0,0) 

3 

0 C 

(0.6,0,0.4) 

32 

20 (0.6,0,0.4) 

32 

10 (0.6,0,0.4) 

32 

0 M1 

(0.6,0,0.4) 

32 

20 (0.6,0,0.4) 

32 

10 (0.6,0,0.4) 

32 

0 M2 

(0.6,0,0.4) 

32 

20 (0.6,0,0.4) 

32 

10 (0.6,0,0.4) 

32 

0 M3 
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Figure 5. The results of sensitivity analysis for parameters R 

Figure 6. The results of sensitivity analysis for parameters C 

6. Conclusion

In this article, we presented a backward dynamic programming model for three-state machine replacement problems in 

a finite time horizon in order to determine a control threshold policy using POMDP technique and sequential sampling 

plan. This model is applied for optimizing expected cost in machine replacement problem based on the methods of 

sequential sampling and Bayesian inferences. A decision tree is implemented to determine which decision can be chosen; 

if each decision is chosen the related cost is applied.  A cost objective function including the costs of replacement and 

repair, and the cost of defectives. The presented model can be used in the production departments in which machine 

deterioration is monitored using the quality of produced items. In this paper, the medium state of machine is considered 

and the results show that the proposed model presents an exact and optimal maintenance policy and develops prior 

researches.  In addition, the sensitivity analysis demonstrates that   changing the input data significantly influences the 

optimal solution. 
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