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Abstract 

This paper studies the incapacitated P-hub centre problem in a network under decentralized management assuming 

time as a fuzzy variable. In this network, transport companies act independently, each company makes its route choices 

according to its own criteria. In this model, time is presented by triangular fuzzy number and used to calculate the 

fraction of users that probably choose hub routes instead of direct routes. To solve the problem, two genetic algorithms 

are proposed. The computational results compared with LINGO indicate that the proposed algorithm solves large-scale 

instances within promising computational time and outperforms LINGO in terms of solution quality.  
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1. Introduction

Hub location problems (HLP) are of great importance in the field of operation management with a wide range of 

applications and ever-growing body of literature. (See for example Zarrinpour 2011, Alumur 2012, Campbell 2012, 

Hernandez 2012). Zanjirani Farahani et al. (2013) provided a complete and detailed discussion of the various aspects of 

the problem and the state of the art of its different formulations and solution methods.  

Table1. Different types of HLPs (Zanjirani Farahani et al. (2013)) 

Capacity of hub node Assignment of non-hub 

node to hub nodes 

Type of the HLP Number of hub 

nodes 

Capacitated (C) Single allocation (SA) Median (M) Single (1) 

Incapacitated (U) Multiple allocation (MA) Center (T) More than one (P) 

Covering (V) 

Set covering (SV) 

Maximum 

covering (MV) 

As it was marked in table.1, the problem we discussed in this paper is based on Incapacitated Multiple allocation P hub 

centre problem. So, in the rest of this section, the recent studies pertinent to our studied DFUMHLP1will be reviewed.    

According to Zanjirani et al. (2013), majority of studies have dealt with incapacitated cases of HLPs. One of the most 

recent studies in this area has been done by O’Kelly et al. (2014) who formulated a model to analyse the role of fixed 

costs in the design of optimal transportation hub networks. Campbell et al. (2015) presented a new model for hub 

location and network design that uses fixed and variable transportation costs on all arcs, fixed costs for hubs, and also 

allowed direct arcs.  

1 Decentralized Fuzzy Incapacitated Multiple Hub Location Problem 
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In real world applications, all the parameters of a network may not be known precisely due to uncontrollable factors. 

Because due to rapid changes, lack of data, and incomplete and/or noisy factors in the available information, if any 

decision is made based on the deterministic models, demands may not be reached at the right location, at the right time, 

and at the best costs (2013b). Yang et al. (2011) studied the p-hub centre problem with discrete random travel time. 

Qin and Gao (2014) formulated a new incapacitated p-hub location model with flows described by uncertain variables. 

Hult et al. (2014) proposed a reformulation for the p-hub centre problem when the uncertainty of travel times was 

considered. In short, these studies point out that if a decision maker ignores the uncertainty, it causes huge regrets in 

long run (2013a).  

For many cases, the estimations of probability distributions for decision factors may not be easy due to the lack of data. 

So this type of imprecise data has not always been well represented by random variable selected from a probability 

distribution. This kind of data can effectively be presented by fuzzy features (Kaur and Kumar 2011). Yang et al. 

(2013) presented a new risk aversion p-hub centre problem with fuzzy travel times. Nematian (2016) presented an 

incapacitated p-hub center problem in case of single allocation and also multiple allocations in which travel times or 

transportation costs were considered as fuzzy parameters.  

Both the facility location and network design problems as sub problems of the facility location–network design 

problem are NP-hard (Ghaderi2013, Rabbani2015). So, UMHLP is known to be NP-hard, with exception of special 

cases, for example when matrix of flows  is sparse (Kratica 2005). Even though integer programming optimization 

approaches are applied to solve small hub problems, larger instances of HLPs need to be solved by heuristic procedures 

or meta-heuristic procedures. As a matter of fact, while large-size instances can be dealt with specialized exact 

methods (e.g., benders decomposition and branch and price methods), development of meta-heuristics has helped many 

real-world applications, in which optimal/near-optimal solutions can even be obtained in less computational time 

(Zanjirani et al. 2013). 

The most related and recent GA solution approaches are summarized in table2. 

Table 2. Genetic algorithms in HLPs 

Article Problem Solution algorithm 

Kratica et al. (2005) incapacitated genetic algorithm- applied caching technique 

Topcuoglu et al. (2005) incapacitated genetic algorithm 

Eraslan S. (2010) incapacitated genetic algorithm 

Bashiri et al. (2013) capacitated genetic algorithm- hybrid approach 

Yang et al. (2013) no capacities involved genetic algorithm- hybrid approach 

Rabbani et al. (2015) incapacitated genetic algorithm and simulated annealing 

According to the literature of HLP solution approaches, we think that UMHLP problem under decentralized 

management has not yet been solved for large-sized scale problems, but it is a very common case in the analysis of 

networks of regional or greater scope. Besides, few studies have considered hub location problems with uncertain 

parameters (Contreras 2011) so; another contribution of this paper is that we considered travel time in the network as a 

fuzzy parameter in order to study the network in a more real situation. It may contribute to estimate the network time 

and cost more accurately. The existing model is only applicable to networks by the deterministic factors.  

In this paper, we are aimed to develop the mathematical formulation of the Vosconcelos’s problem (2011)-

incapacitated multiple allocation p-hub location problem under decentralized management- with uncertainty in travel 

time parameter. This parameter is characterized by a triangular fuzzy number while the objective function of this 

problem minimizes the expected costs. Then we present a novel solution based on a genetic search framework for 

DFUMHLP. We compared the quality of solutions from our method by comparing the both solutions; by exact time 

factor and fuzzy time factor. To demonstrate the effectiveness of our method, we compared the quality of solutions 

from our method and GA algorithm with the solutions from LINGO for small-sized networks. The results showed that 

LINGO solver fails to efficiently solve large and complicated instances.  

The rest of this paper is organized as follows. In Section 2, we extend the Vosconcelos’s model. The solution approach 

and GA operators are discussed in Section 3. Computational results are reported in section 4 by using the proposed 

algorithm. Finally, Section 5 covers the conclusions. 

2. Mathematical formulation

The studied problem deals with a network with n nodes in which there are some pre-established hubs (  and P 

hubs to be established. The traffic between any pair of non-hub nodes is routed via one or two hubs at most, and the 

multiple allocation schemes are assumed. In this model, a non-limited amount of flow can be collected in a hub. The 

goal is to minimize the sum of the overall transportation costs in the network. The traffic in the network consists of 
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collection (from origin nodes to hubs), transfer (between hubs) and distribution (from hubs to destination nodes). 

Consider G=(N, A) as a hub-and-spoke network in which each vertex of the set N corresponds to a point of origin and 

destination of flows and can be chosen for establishment of a hub. The arcs of set A are the elements that constitute the 

routes. Let  be the flow demand matrix between pairs of nodes ij (with ). 

Vasconcelos et al (2011) defined  as the sum of the transport costs of the direct flows and the flows via hubs of a 

node i to another node j (according to the following equation): 

 (1) 

The equation (1) indicates that the flows from vertex i to vertex j are distributed between two route types (a direct one 

and another through hubs). To estimate the transportation cost matrix we used the formulation of Vasconselos et al. 

(2011) For highway transport they created (by regression analysis) two curves to model the average freight rate per 

ton-kilometer (US$/t km) as a function of the distance traveled (dist), which are  and 

. The first function models the freight rate for hauling services to collect or distribute 

cargoes to or from hubs, while the second function refers to direct highway transport between an O–D pair.  

The parameters and variables used in this model are as follows. 

Table3. Parameters 

n The number of nodes 

Pre-established hubs 

, , Discount factors due to economies of scale 

A constant of the hinterland of the origin hub (k) 

The vector of parameters of the hinterland of the origin hub (k) 

The probability that a user of the pair ij will opt for the ijkm hub route when it is 

offered the choice only between this route and the direct route 

Demand matrix between pairs of nodes ij 

The transport cost of demand  over a route ijkm 

The cost of a direct route (ij) 

The sum of the transport costs of the direct flows and the flows via hubs of a node 

i to another node j 

The vector of variables related to the route from i to j that goes through hubs k and 

m 

The vector of variables related to the direct route 

Table4. Decision variables 

Binary taking value 1 if a hub is established at vertex k; and 0 otherwise. 

Binary taking value 1 if no hub is used for the transportation; and 0 otherwise. 

Binary taking value 1 if a flow from i to j is routed via hub nodes (k,m); and 0 

otherwise. 

The objective function is written as (2): 

(2) 

Where  is the subset consisting of points where hubs have already been installed and  is the subset 

consisting of feasible points at which new hubs may be installed. The transport cost of demand  over a route ijkm is 

given by 
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    (3) 

,  and  are unit transport costs for each route sub segment in which ,  and  are discount factors due to 

economies of scale. Each of these three factors ranges from 0 to 1, and  is expected to be smaller than the other two 

since the most significant cost reductions are achieved over the interhub links, where the flows are higher than on the 

spokes. So = . .  is the cost of establishing a new hub terminal at vertex h N. 

The constraints are: 

(4) 

     (5) 

 (6) 

    (7) 

(8) 

        (9) 

 (10) 

         (11) 

  (12) 

  (13) 

      (14) 

    (15) 

The constraints in (4) guarantee that each flow ij is totally routed. Those of (5) type define the vertices h of the network 

that are existing hubs, such that their respective  values are nil. Constraints in (8) guarantee that  is null and 

 equals 1 when  vanishes. The constraints in (9) guarantee that a new route that goes through a hub k, only can 

be used if this concentrate or terminal is established. The constraints in (10) determine that a flow starting from one 

hub must go directly to a distribution hub without passing through a collection hub because the origin is already 

considered to be a collection hub. The constraints in (11) follow the same logic as that in (10) but analogously. The 

constraint in (12) represents the case where hub i is both the origin and destination of a flow, but this flow may not 

pass through any other vertex because hub i itself is the collection and distribution hub. The constraints in (13) and (14) 

follow the same logic as those in (10), (11) and (12), which impede flows over redundant routes.   

In this model, the author defined  as the fraction of users that probably choose route ijkm if this is the best one 

via hubs. Vasconselos et al. (2011) estimated  utilizing choice model (as proposed by Domencich and McFadden 

(1975) and discussed in Ortuzar and Willumsen (1995) : 

        (16) 

where  is the vector of parameters of the hinterland of the origin hub ( );  is a constant of the hinterland of the 

origin hub (k);  is the vector of variables related to the route from  to  that goes through hubs k and m; and 

is the vector of variables related to the direct route. 

To obtain , it was necessary to estimate the various characteristics of the transport process which could be 

considered as variables of vectors  and   (e.g., cost, time, variance of time, etc.). Thus, for each O–D pair ij, 

we assumed and  as the time of transportation for direct and hub routes, respectively. Basis on the physical 

laws, time is directly proportional to distance when speed is constant and inversely is proportional to speed when 

distance is constant. Combining these two rules together gives definition of time in symbolic form: 
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 (17) 

In each transportation model, road geometry standards, type of vehicles, speeds restriction, distances between nodes etc 

were necessary to be studied. Gathering such data was possible for a real world problem. But in this case it needed 

financial and human resources which had not been considered in the scope of this study. So, for each solution, the 

distances between nodes were generated randomly and speed parameter was defined based on road type and 

permissible speed. The speed estimation was covered in more detail in this Section. 

As we mentioned before, we applied fuzzy theory as an innovative aspect of our study in order to obtain a more real 

situation in the network. Considering the difference between driving speeds applied by different drivers in different 

road types, we define the speed variable as a triangle fuzzy number, consequently the time is calculated as a fuzzy 

function. Utilizing the fuzzy time variable in  formulation causes this probability is calculated as a fuzzy 

function, after defuzzification, it is used in  estimation. In this study, establishing a new hub is not feasible for an 

O–D pair with a distance of less than 400 km nor for an O–D pair where the distance from its origin or from its 

destination to the respective closer port was greater than 1000 km. It was possible to eliminate the first type of O–D 

pair because in those cases there are no scale economies and the second types were out of the aim of the study, so, we 

assume that those cases are considered in the other networks such as airline, waterway etc. 

Taking the above explanation into account, the main parameters are defined in this way;  was defined as the distance 

between pairs of nodes, ij,  and  are defined as the speed and time of transportation between pairs of nodes, ij, 

when a flow starting from one hub and going directly to a distribution hub without passing through a collection hub, 

and  and  are defined as the speed and time of transportation between pairs of nodes, ij, when a flow 

starting from one node and going to another node with passing through a collection hub, k and m ( ). In order 

to estimate  defined as the triangular fuzzy number; we apply the Pereira and Widmer’s classification (2013). They 

classified the roads of Brazil according to Minimum Radius, maximum grade, width of traffic lanes, and with of 

shoulders. However, the valid speed in each class is shown in the Table 5. 

In the studied problem, three paths were assumed; from one hub to another hub, from a non-hub node to a hub (and 

vice versa), and from a non-hub node to another none hub node. 

Table5. Road Classification 

Valid speed (km/h) Road 

Classification 
Level Rolling hills Mountainous 

120 100 80 Class Zero 

100 80 60 Class One 

100 70 50 Class Two 

80 60 40 Class Three 

60 50 30 Class Four 

We merged two classes, “one” and “two”, because their upper and lower bounds were approximately closed. In the 

new interval named class “one”, the bounds were replaced by the average speeds of the two previous classes. 

Considering the upper bound of class “four” which was low, the fifth class road was thought not to be acceptable from 

the design standards point of view and considering the objective function, cost minimization in the network, it was not 

applied for transportation. On the basis of these assumptions, Table 5 was changed as bellow. 

Table 6. Proposed road classification 

Valid speed (km/h) Road 

Classification 
Level Rolling hills Mountainous 

120 100 80 Class Zero 

100 75 55 Class One 

80 60 40 Class Two 

With regard to Table 6, these assumptions had been made: 

The road class for hub-hub pairs in the network was “Zero” 
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The road class for hub-spoke or spoke-hub pairs in the network was “one” 

The road class for spoke-spoke pairs in the network was “two” 

A driver, who drives at speed of less than the lower bound or more than the upper bound of the defined ranges for each 

class of road, would be penalized. 

The valid speed was defined as a triangular fuzzy number as it is illustrated in Figure 1: 

Figure1. Speed definition as a triangular fuzzy number 

For each O-D pair ij, transferring time was calculated via the fuzzy function: 

 (18) 

It is proved that the inverse and multiplication of a fuzzy number, is a fuzzy number, so the above equation is 

acceptable (Kwang 2005). Since, the results from addition between fuzzy numbers result also fuzzy numbers (Kwang 

2005), the transferring time was estimated for each path via this equation: 

  (19) 

Then, equation of  was modified as is noted bellow: 

  (20) 

After calculating , it was defuzzified using COG (center of gravity) method. Some other necessary parameters 

(that can be obtained) were the followings: 

O–D matrix for the general cargo flows between the hinterlands ( ); 

Transportation cost matrix for each pairs of nodes; 

The cost of the establishing a new hub ( ; 

Discount factors;  ,  , . 

Parameters of the probability functions;  , . 

In our research, we did not find a general cargo O–D matrix for Brazil that could be used in this study. On the other 

hand, the main aim of this work was to extend of the previous model. Thus, an exact estimation of the O-D matrix 

considering substantial human and financial resources for field surveys was not possible within the scope of this study. 

Therefore, a random O-D matrix (n n) between two assumptive numbers was obtained by software in each stage of 

the solution. In real world problems, it can be generated by methods such as regression analysis using the annual 

demand from i to j.  

By using the generated distance matrix and cost equation as it was explained before, the cost for each route could be 

calculated and the cost matrix would be made in this way. Since we had not considered any special nodes, we couldn’t 

estimate the establishment costs. Therefore  for each node should be considered as a random number.  was the 
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vector of parameters of the hinterland of the origin hub (k);  was a constant of the hinterland of the origin hub(k). 

Since, we didn’t considered a special network, it could not be calculated, so, in order to estimate  we created a 

random matrix with arrays between -2 to +2 and according to the main model we set . , ,  are discount 

factors estimated in a way to be more efficient for this study which is demonstrated in more details, in section 4. 

3. Genetic algorithm

As we discussed in pervious sections, to the best of our knowledge, the UMApHLP in a decentralized management has 

not been solved for large scale problems. So, another contribution of this study is applying an efficient metaheuristics 

algorithm to solve this problem for large sized networks. The closest study to our research is the one carried out by 

Rabbani et al. (2015). They applied two well-known metaheuristic algorithms, Simulated Annealing (SA) and Genetic 

Algorithm (GA) to solve the incapacitated multiple allocation p-hub center problem for small scale and large scale 

standard data sets. The numerical results of running the GA and SA for standard test problems show that for smaller 

scale test problems, SA showed greater performance versus GA but for larger scales of data sets the GA generally 

yielded more desirable solutions. As we applied LINGO to solve small scale problems, it would be possible to test our 

results for small sized networks by comparing the computational results by LINGO outputs. But when it comes to large 

sized networks we preferred to apply more efficient algorithm, so we selected GA. 

Genetic algorithm (GA) is an optimization and search technique based on the principles of genetics and natural 

selection. It is used to find the near-optimal solutions in large spaces, which is inspired from population genetics 

(Haupt 2004). The method was developed by John Holland (1975) and popularized by one of his students, David 

Goldberg (1989). GA have been successfully applied to a variety of problems in operation research including HLP 

problems; several samples are found in Topcuoglu et al. (2005), Kartica et al. (2005), Eraslan (2010), Yang (2013), 

Bashiri et al. (2013), Rabbani et al. (2015) etc.  

The basic idea is to start from a population of initial solutions and search for successive improvements by examining 

neighboring solutions. GA chooses a direction to move, then moves in that direction until the cost function begins to 

decrease. Next the procedure repeats in another direction (Haupt 2004). 

3.1. Representation and objective function 

Following this line, we propose an efficient GA with two phases. Phase1, called GA1, aims at providing an initiative 

network in which there are some hubs and spokes while Phase2, called GA2, aims at improving solutions of this 

network with some pre-established hubs. Note that the same operators are applied for both algorithms, GA1 and GA2.  

GA works with a population of individuals, each representing a possible solution to a given problem. In both phases, 

the binary encoding of the individuals is used in GA implementation. Each solution is represented by the binary string 

of length n. Digit 1 in the genetic code denotes that particular hub was established while 0 shows it is not. For instance, 

the genetic code A=[101101] represents a network with 6 nodes in which the first, third, fourth, and sixth ones are 

hubs. Since users can be assigned only to the opened hub facilities, only array  is obtained from the genetic code. 

There are no capacities, so the values of  can be calculated during the evaluation of the objective function. In 

each solution, after finding the paths between all pairs of nodes, the objective function can be computed by summing 

up the distances origin-hub, hub-hub and hub-destination, multiplied by flows and corresponding parameters , ,

parameters and adding fixed cost of established hubs (  = 1). 

3.2. Initialization process 

The initial solutions of GA1 are generated a heuristic approach, while those of GA2 are generated randomly. 

The heuristic, called “nearest neighbor ordering”, applied for GA1 is as follows. The “closer” hubs are favored for each 

non-hub node. Therefore, while generating the initial population, the first bit and the remaining ones of each genetic 

code segment are generated with different probabilities. Each individual in the initial population is generated as 

follows. The first bit in each gene takes the value of 1 with the probability of  .The second bit in each gene is 

generated with the probability of  , while the following bits takes the value 1 with two times smaller probability than 

the previous ones . The applied strategy ensures that in the initial population each non-hub node is 

frequently assigned to its closest/closer hub and rarely to a distant hub. For more detailed explanation see (Kratica 

2005). 

Although the probability of  for generating the first bits in each gene leads to establishing p hubs, it might be 

slightly different in practice. If an individual had a number of ones in the genetic code that is different from 

(denoted as k, k ), it is corrected by adding/erasing | − k| hubs going backwards from the end of the genetic 
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code. In this way, the initial population becomes feasible. Genetic operators implemented in the GA1 preserves the 

fixed number of hubs and keep them distinct. Therefore, all individuals in the following generations remained feasible. 

The initial population of the GA2 is randomly generated. The specific characteristic of this procedure is that the 

generation occurs in a given string already contained some pre-established hubs that will be frozen during the GA2. 

The number of hubs to be located is in GA2 predetermined (P).  

Figure2. The proposed chromosome 

3.3. Selection mechanism 

The selection operator chooses the individuals that produce offsprings in the next generation, according to their fitness. 

The term fitness is extensively used to designate the output of the objective function in the GA literature (Haupt 2004). 

The fitness function represents the objective function which describes the optimization problem. It is taken the same as 

the objective function, hence, the fitness of each individual can be calculated by first solving the problem and 

computing the objective value (Doerner et al. 2007); hence, the minimum value of the fitness function was desired. 

Low fitness-valued individuals have less chance to be selected than high fitness-valued ones.  

We use the rank weighting roulette-wheel strategy for our both genetic algorithms. This approach is problem-

independent and found the probability from the rank, n, of the chromosome (Haupt 2004). In this method, the ranks of 

the chromosomes are calculated via their fitness function value which is used instead of the fitness values. The 

selection probability of the chromosome i is calculated through this equation: 

 (21) 

In which, rank j was calculated using the following equation: 

 (22) 

Before ranking, elitist strategy by replacing the worst solutions with the best solutions had been done. 

3.4. Crossover mechanism 

After a pair of parents is selected, the crossover operator is applied to them producing two offsprings. The operator we 

use in both GA1 and GA2 implementation is one-point crossover. It is performed by exchanging segments of two 

parents’ genetic codes after randomly chosen crossover point. Consider a 10-node network, as it is illustrated in 

Figure4, F genes are the pre-established hubs which had been created in GA1 and are frozen in GA2.  

Figure3. The crossover of GA1 

Figure4. The crossover of GA2 

3.5. Mutation mechanism 

The simple mutation operator used in this GA concept is performed. Note that, the hubs which are resulted from the 

GA1 are frozen; hence, if the number of frozen genes is ,as it is illustrated in Figure 6 in which the frozen nodes are 

named F, the search space concludes n-  genes. 

 Crossover 

 Crossover 
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Figure5. The mutation of GA1 

Figure6. The mutation of GA2 

3.6. Generation replacement strategy 

Considering (Kratica 2005), two thirds of the populations are directly passing in the next generation (elite individuals). 

Genetic operators are applied on the rest of the population, so that only one third of the population was replaced in 

every generation. The objective value of each elite individual is calculated only once, and this provides significant time 

savings.  

Regarding (Kratica 2005), duplicated individuals are removed in each generation. This is very effective method for 

saving the diversity of genetic material and keeping the algorithm away from premature convergence. 

4. Computational results

In this section, we present the results of our GA, tested on an Intel ® Core™ i3-4030 processor and 4.00 GB of RAM 

memory under Microsoft Windows 7 operating system. The code is written in Matlab R2013b v8.2 programming 

language. We conduct two sets of numerical experiments. Firstly, a simulated problem involves 10, 20, and 30 nodes. 

Secondly, two new data sets consisting of 50 and 100 nodes are generated to demonstrate that our algorithm can 

effectively solve large-scaled problems. In order to verify the effectiveness of the proposed GA, we applied two 

methods, explained in section4.3.   

4.1. Parameters tuning: Taguchi method 

In order to tune algorithm’s parameters, a number of statistical methods can be used in the design of experiments. 

Taguchi's method is a systematic, simple, and yet efficient approach to optimize design parameters of each algorithm 

using a limited set of tests. The major tools used in Taguchi method to change and systematically test different levels 

of parameters include: 1) designing experiments particularly orthogonal arrays (OAs), 2) single-to-noise ratio (S/N), 

and 3) calculating relative percentage of deviation (RPD). OA matrix is composed of numbers arranged in rows and 

columns. Each row represents the level of parameters in each execution and each column refers to a specific level of a 

parameter that can be changed in each execution. S/N ratio is an indicator. Taguchi tests are aimed at finding the best 

level of each parameter so that the S/N ratio of each parameter at the same level becomes maximized. The relative 

percentage of deviation indicator seeks to reduce solutions’ deviation from the optimal value of the objective function. 

Taguchi method can be divided into several different steps. These steps are described below: 

Step 1: Various parameters and their levels that affect the performance of the given process are first identified. In other 

words, the parameters that can have positive impact on the performance of the algorithm are selected. 

The following parameters are selected in the present study: 

1) Crossover probability; 2) mutation probability; 3) initial population size; and 4) maximum iteration.

The considered parameters and their levels are shown in the table8. In other words, the method is used for four 

parameters at three levels. The numbers mentioned in table 7 are based on the trial and error method. 

Table7. The Selected Values for Each Parameter at Each Level 

Given the above table, we use Taguchi design in our tests that consists of nine tests with 4 three-level parameters. 

After this step, in order to compute the S/N and RPD ratios, the normalized values of objective functions with respect 

to every trial are calculated. 

Level 2 Level 1 Level 0 Parameter 

0.9 0.8 0.7 % Cross 

0.3 0.2 0.1 % Mut 

30 20 10 Pop size 

30 20 10 Max iter 

 Mutation 

 Mutation 
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Table 8. The OA Matrix used in the Selected Taguchi Design 

Sen 1 Sen 2 Sen 3 Sen 4 Sen 5 Sen 6 Sen 7 Sen 8 Sen 9 

0 0 0 1 1 1 2 2 2 

0 0 2 0 1 2 0 1 2 

0 2 1 2 1 0 1 0 2 

0 1 2 2 0 1 1 2 0 

Step 2: S/N ratio of each test is calculated. In general, there are three types of S/N ratio in Taguchi method. Here, S/N 

ratio of Eq. (23) is used. 

 (23) 

Where K is the number of tests. Eq. (24) is used to calculate the relative percentage deviation. 

 (24) 

 and are the algorithm’s solution and the best solution, respectively. When all the S/N and RPD ratios 

are calculated for each test, Taguchi method uses a diagram approach to analyse the data. According to this approach, 

the average diagrams for S/N and RPD ratios of each parameter at different levels are drawn. The optimal level of each 

factor is where the S/N diagram and RPD diagram are maximized and minimized, respectively. Thus, the optimal value 

of parameter is first determined according to diagram S/N. When at least two levels have an equal S/N ratio, we refer 

to the RPD diagram and compare the specific parameters according to it. Figure 7 shows the results. 

Figure7. S/N Diagram 

The selection of optimal levels based on one of the Figures guarantees the optimal values in the other. Given the 

Figures, the optimal values are shown in table 9. 

Table9. Optimal Values of Parameters 
Optimal Value Parameter 

0.8 %Cross 

0.2 %Mut 

20 Popsize 

30 Maxiter 

4.2. Solution result of the proposed GA algorithm 

The proposed GA algorithm is executed 20 times for each problem size with  pre-established hubs using different 

seed values and the solution with the minimum cost is selected. Our experimental study is grouped into two categories 

including small-scale and large-scale problems; for small ones   {10, 20, 30} and for large ones  ∈ {50, 100} are 

assumed. In order to provide the best initial state of the network, for each problem size  and  (assumed pre-

established hubs, GA1 was run 30 times and the solution with the lowest cost value obtained becomes the initial 

network. 

We assumed that each of these three factors ,  and  are ranges from 0 to 1, and  (2011). In order to 

obtain the best amount of these parameters we use sensitive analysis. A small instance is solved with different discount 

factors and the best ones are selected for the next solutions. In this instance, pop size=20, N=10, Hub=3, =30, 
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Pc=0.8 and Pm=0.2 are considered. At first, for  we solve the instance with , with 

increasing in  , the cost is worse, so we assume  and solve the instance with , with 

the reduction of , the cost becomes better. Hence, we assumed , and solve the problem with 

, in that case, the best cost is obtained with  , basis of this analysis the discount 

factors were assumed , , . 

For each instance, O-D matrix, establishment costs, economic coefficients, vector of parameters of the hinterland of the 

origin hub, distance matrix and consequently the cost matrix had been generated once for GA1 and then they are used 

in related GA2. The results of small instances are condensed in Table 10 and for large instances they are shown in 

Table 11.  

Table 10 presents the results for GA based on the small problems and table 11 presents the result of executing the large 

size problems. For each problem instance, n denotes the number of nodes, pre-hub denote the initial state of network, 

 , the optimal values of the objective function (initiate cost of the network before assuming the time as a 

fuzzy parameter), the numbers in the column labelled “ ” , the final cost of the objective function after 

applying the proposed model. “Num of new hubs” shows the number of established hubs in the network after applying 

the fuzzy method via our proposed model, while , denotes the new-hub numbers. Total running time is shown in 

the last column. As we can see from the Table 10, the network with n=10 nodes and and  show the 

minimum network cost. 

Table10. The results of small instances 

n case Primary network Final network 

Pre-Hub Num of 

new 

hubs 

t 

10H1 3 6578.14 0 0 4223.66 32.4 

10 10H2 3,6 7640.16 0 0 6017.29 45.6 

10H3 2,3,6 7737.06 1 5 7507.22 45.0 

10H4 2,3,6,7 7905.52 1 4 7528.98 50.9 

10H5 3,4,5,6,7 8755.83 0 0 7536.68 56.4 

20H1 12 11184.58 0 0 9986.24 130.4 

20H2 2,12 10772.30 1 7 9577.21 165.5 

20 20H3 2,7,8 11246.05 2 3,5 11253.12 179.7 

20H4 2,5,7,12 10036.71 1 8 10025.98 190.3 

20H5 2,5,8,12,13 12544.03 0 0 12143.32 200.8 

30H3 3,12,22 13834.01 3 13,18,22 10142.26 299.2 

30H4 12,17,18,22 11222.32 1 3 99787.93 286.1 

30 30H5 3,12,17,18,22 11387.80 0 0 11325.22 280.2 

30H6 2,3,17,18,22,25 10279.41 0 0 10022.44 273.3 

30H7 3,15,17,18,20,22,25 16998.92 1 5 162529.12 272.1 

By increasing the number of hub, the network cost is increased too. The results for the network with n=20 can be 

analyzed in the same way. For the networks with n=30 the minimum cost is obtained with  and . 

Note that for each problem size, {1,2,3,….,n/2} was assumed. But we show 5 solutions around the optimum one. 

As an example, for n=20, the problem was solved by 1to10 pre-established hubs. 

As it is clear in table 11, the optimal costs for network with n=50, and   and for network with 

n=100, and   are obtained. 

4.3. Comparison of Computational results 
In order to measure the effectiveness of our method, we solved an instance with n=10, 20 node with deterministic and 

fuzzy time parameter and then compare the solution quality and running times in the both models.
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Table11. The results of large instances 

case Primary network Final network 

Pre-Hub New 

hubs 

t 

50 50H5 3,4,7,8,13 81332.8 0 0 74915.30 1208.7 

50H6 3,4,7,8,41,45 76694.3 0 0 72515.23 1001.3 

50H7 4,7,8,9,26,37,45 69931.8 5 2,3,6 61122.65 985.2 

50H8 8,13,25,28,32,37,39,45 65334.1 2 12,17 61741.78 979.4 

50H9 13,18,23,26,28,32,37,45,48 61225.4 2 10,15 86959.11 944.6 

50H10 5,8,13,18,32,35,39,41,45,48 95132.5 4 1,27,38,42 102888.00 900.2 

100 100H10 12,18,32,45,52,68,70,75,82,95 157222.8 5 4,5,10,14 198478.88 3241.5 

100H11 12, 15, 17, 19, 26, 32, 45,52, 67, 75,82 175325.7 2 5,8 151784.24 2999.4 

100H12 3,5,8,12,18,32,43,55,62,70,82,95 195342.0 0 0 162214.33 2514.6 

100H13 1,5,8,12,14,18,32,45,52,67,70,82,95 152340.3 3 22,40,58 201782.14 2387.8 

100H14 8,12,15,18,26,32,39,43,52,55,62,67,82,92 200142.3 1 35 199852.92 1978.2 

We also compared the solution results with those had obtained by LINGO solver 15. Both GA and LING were run on 

the same system with the same parameters.  

To perform the comparison of experiments, the population size P=20 and the number of generation for GA are set to 

30 and , and  and the discount factors are assumed as , . Tables 12 gives 

the results of comparison experiment for two kinds of networks (n=10, 20) with various hubs ( . 

The third, fifth and seventh columns of the table 12 present set of hubs. The fourth and sixth columns of the table5 

shows the corresponding costs from the results generated by our GA-based framework assuming the time as a 

deterministic and as a fuzzy parameter respectively. The eighth columns show the corresponding costs generated by 

LINGO. The running time of the three methods are given in the CPU (Time) columns which are measured in CPU 

seconds.  

As we can see from table 12, the results demonstrate that the solutions of the fuzzy model because of more accurate 

seeking the solution space would be better than the model with deterministic parameters. 

Table12. Effectiveness of the proposed algorithm 
n case GA 

(Deterministic) 

GA 

(Fuzzy) 

LINGO 

(Fuzzy) 

CPU(Time) 

Hubs Cost Hubs Cost Hubs Cost LINGO 

10H1 3 6578.14 3 4223.66 3 4223.66 35.2 32.4 1300 

10 10H2 3,6 7640.16 3,6 6017.29 3,6 6017.29 50.4 45.6 2070 

10H3 2,3,6 7737.06 2,3,5,6 7507.22 2,3,5,6 7507.22 52.9 45.0 2550 

10H4 2,3,6,7 7905.52 2,3,4,6,7 7528.98 2,3,4,6,7 7528.98 57.8 50.9 2490 

10H5 3,4,5,6,7 8755.83 3,4,5,6,7 7536.68 3,4,5,6,7 7536.68 60.2 56.4 2360 

20H1 12 11184.58 12 9986.24 12 9986.24 133.4 130.4 7821 

20H2 2,12 10772.30 2,7,12 9577.21 2,7,12 9577.21 184.6 165.5 10245 

20 20H3 2,7,8 11246.05 2,3,5,7,8 11253.12 2,3,5,7,8 11253.12 194.8 179.7 9482 

20H4 2,5,7,12 10036.71 2,5,7,8,12 10025.98 2,5,7,8,12 10025.98 203.9 190.3 11254 

20H5 2,5,8,12,13 12544.03 2,5,8,12,13 12143.32 2,5,8,12,13 12143.32 213.0 200.8 8759 

Moreover, comparison between the sixth and eighth columns of Table 7 illustrates that GA concept reaches optimal 

solution in significantly shorter CPU time compared to LINGO. Specifically, when the problem size is 20, the average 
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running time of GA method is 173s. LINGO solver achieves the same optimum values by an average running time of 

9512 s. In addition, LINGO solver fails to efficiently solve large and complicated instances. It is due to the fact that 

LINGO solver achieves its optimal solution using the branch and bound procedure by examining nodes, where number 

of nodes becomes very large when the test problem size increases. Due to the memory requirements, LINGO solver is 

unavailable for large problem size. 

5. Conclusions and future research

Among all of network parameters, travel time is one of the most important factors that cannot be considered 

deterministic since its values may vary because of traffic conditions, speed, and time of day, climate conditions, and 

land and road types. Due to the uncertainty of relevant data, the estimated travel time by automobile between two 

points has fuzzy features due to the measurement imprecision and perception (Yang et al. 2013).  

In this paper we extended the model of the incapacitated hub location problem with fixed costs on networks under 

decentralized management (UHLP-DM) which was created by Vasconcelos et al. (2011). In our proposed extension, 

the time had been supposed as a fuzzy parameter and then the model was solved by genetic algorithm.  

The results revealed that, because of exploring the more pieces of the solution space, using the fuzzy parameters 

contributed to more accurate system analysis. Using non-deterministic parameters has large practical real-world 

application in network design. Since, in the model, we sought to solve the large-sized UHLP-DM problem, it was 

solved using two genetic algorithms; the first one, GA1, was applied to create the initial network in which there were 

some pre-established hubs and the second one, GA2, was applied to find new hubs in such a network with regarding to 

the objective function. The proposed model was implemented for small-sized and large-sized problems using Matlab 

optimization software (R2013b v8.2) and it was run on the Windows 7 operating system with an Intel ® Core™ i3-

4030 processor and 4.00 GB of RAM. The described GA method used a binary encoding of the individuals and an 

appropriate objective function. However, the proposed GA algorithm surpasses the LINGO solver with respect to 

efficiency. It obtains optimal values in significantly less time than the LINGO solver for the same test problems. The 

proposed GA was also able to solve practical size problems that were out of reach for exact methods. 

The presented solution is applicable to analyse the transport networks in free markets. Additionally, there are many 

other points for future research. Some of the points are: 

 Consideration of demand in  calculation. 

 Consideration of the transferring cost in network cost calculation.

 Consideration the demand as a fuzzy parameter

 Creation of a new constraint to cover the demand in any hinterland.
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