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Abstract  

This paper proposes a sensitivity analysis for evaluating the effectiveness of recovery solutions in 

the case of disturbed rail operations. Indeed, when failures or breakdowns occur during daily 

service, new strategies have to be implemented so as to react appropriately and re-establish ordinary 

conditions as rapidly as possible. In this context, the use of rail simulation is vital: for each 

intervention strategy, it provides the evaluation of interactions and performance analysis prior to 

actually implementing the corrective action. However, in most cases, simulation tasks are 

deterministic and fail to allow for the stochastic distribution of train performance and delays. 

Hence, the strategies adopted might not be robust enough to ensure effectiveness of the 

intervention. We therefore propose an off-line procedure for disruption management based on a 

microscopic and stochastic rail simulation which considers both service operation and travel 

demand. An application in the case of a real metro line in Naples (Italy) shows the benefits of the 

proposed approach in terms of service quality. 

Keywords: Sensitivity Analysis; Public Transport Management; Rail System; Travel Demand 

Estimation; Quality of Service. 
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1. Introduction 

The management of a rail system, especially in the event of disruption, is a complex task which 

significantly affects service attractiveness. Railway undertakings often struggle to find strategies 

which minimise delays and increase the reliability and stability of the planned timetable. Basically, 

the approaches adopted for reacting to service disruptions vary greatly and are based on the 

experience of dispatchers involved in this management phase (Pender et al., 2013). Moreover, the 

infrastructure characteristics and the signalling system technology strongly influence these 

decisions (Schmocker et al., 2005). However, the adoption of rail simulation models could be 

useful to find solutions for promptly reacting to unforeseen events (Hansen and Pachl, 2008). 

These models can be classified according to the assumption on the level of detail considered for 

network representation, into macroscopic, mesoscopic and microscopic. Macroscopic simulation 

models (Prinz et al., 2001; Kettner and Sewcyk, 2002) represent the railway network with a low 

level of detail. Hence a node can depict a station or a junction of the real network regardless of the 

complexity of the station or of the junction itself. 

Macroscopic models are usually adopted to support long-term planning tasks or special routing 

problems since they provide reliable results in a short computational time. Moreover, this method 

facilitates the adoption of integer programming models and hence promotes the implementation of 

algorithms for optimising both the planning and rescheduling process (De Shutter et al., 2002; 

Meng et al., 2010). Ease of computation also gives the possibility to consider different parameters 

to optimise by means of a more complex objective function. Thus rolling stock capacity, crew 

requirements and empty movements can also be taken into account (Schöbel, 2007; Cadarso and 

Marín, 2011, 2014).Mesoscopic models (Marinov and Viegas, 2011; De Fabris et al., 2014) are 

based on the simulation of network performance by means of aggregate variables such us capacity, 

flow and density. Moreover, traffic flow is represented by vehicle or convoy packets with identical 

characteristics (destination, routing behaviour, etc.) which propagate on the network. Thanks to the 

possibility to focus on specific factors, leaving aside the others, according to the aim of the 

analysis, this approach allows problems related to complex networks to be addressed in a 

simplified manner. Such models are generally used for both strategic and tactical planning. 

Microscopic simulation models (Nash and Huerlimann, 2004; Siefer and Radtke, 2005), by 

contrast, require a highly detailed description of the infrastructure, the signalling system and the 

rolling stock. As a consequence, simulation needs a longer computational time than when using 

macroscopic models, but provides extremely precise results. However, there are ever more 

examples of the combination between macro and micro approaches which draw on the benefits of 

the two methods and actually represent a good compromise for searching, in order to find optimal 

dispatching solutions (Eickmann et al., 2003; Placido et al., 2014). 

Consequently, optimization models may be classified as macroscopic, mesoscopic or microscopic 

according to the assumption related to the network model on which they are based. In order to take 

into account the large amount of interactions existing among the components of a railway system, a 

microsimulation approach is certainly the most appropriate. Based on this approach, operational 
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tools have been developed to support dispatchers in the management of networks during disrupted 

conditions (D’Ariano, 2009; Corman and D’Ariano, 2012). 

In the literature, this issue is called a ‘rescheduling problem’ and has been dealt with by adopting 

different approaches (Cacchiani et al., 2014), most of which are based on the Alternative Graph 

model proposed by Mascis and Pacciarelli (2002). Therefore, these models can be based on 

different failure severity (see, for instance, Corman et al., 2010a; Dollovoet et al., 2012; Ghaemi et 

al., 2016); different kinds of network (see, for instance, Corman et al. 2010b; Veelenturf et al., 

2016; Botte et al., 2017); and different perspectives such as passenger needs, operational costs or 

energy consumptions (see for instance Corman et al., 2011; D’Acierno et al., 2016; Umiliacchi et 

al., 2016). Obviously, operational aspects during perturbed operations are not the only factors to be 

considered. Another important issue to be taken into account is the interaction between travel 

demand and rail service which occurs during the passenger boarding/alighting process and 

produces the so-called snowball effect (Kanai et al., 2011): the greater the headway, the higher the 

crowding level on the platform will be. The more passengers are waiting on the platform, the 

longer are the dwell times of trains within the station. The longer the dwell time, the greater is the 

train delay which results in an increase in headway. 

The study of this phenomenon is vital to simulate the rail system faithfully and carry out feasible 

analyses regarding management of the network (Kunimatsu et al., 2012). Indeed, in the literature 

there are numerous contributions which address the close relationship between dynamic passenger 

demand, the timetable and the reliability of the rail service (see, for instance, Stato et al., 2013; 

Pouryousef and Lautala, 2015; Barrena et al., 2016). 

Hence, design strategies influence passenger behaviour and discomfort, and this effect strongly 

modifies the attractiveness of the service. Indeed, simulation of the network without considering 

customer needs is not sufficient to ensure a high level of service quality. To this end, both 

macroscopic and microscopic models have recently been proposed (Corman et al., 2012; Kecman 

et al., 2013). However, rescheduling tasks are generally based on deterministic simulations and fail 

to consider the randomness of some events such as driver behaviour or the boarding/alighting 

process at each station. This means that the solutions provided by the above-mentioned models 

may not be robust enough to implement in a real context. Therefore, automatic systems for real-

time dispatching of rail traffic have not yet been put into practice and are still a matter for research 

(Quaglietta et al., 2013). For this reason, the aim of this paper is to evaluate the robustness of 

intervention strategies during perturbed service conditions, considering the user generalised cost 

perceived by customers as a service quality index. Importantly, the concept of robustness addressed 

in the paper does not concern the capacity of the rail system to absorb delays and avoid their 

propagation (as proposed by Goverde, 2005; Cacchiani et al., 2009), but the more general notion of 

robustness as the ability of a model to provide the same output when input data change. To this 

aim, we tested the proposed optimisation model by considering input data first as deterministic 

values and then as random variables in order to compare the optimal intervention strategies 

provided by the model in these two cases. Therefore, the suggested methodology is based on a two-

step off-line procedure. First of all, the optimal solutions for re-establishing ordinary conditions 

and minimising passenger discomfort are evaluated by adopting a deterministic microscopic 



D'Acierno et al. 

  

Int J Supply Oper Manage (IJSOM), Vol.3, No.3 1354 

 

simulation. Then, by means of numerous stochastic microscopic simulations, a sensitivity analysis 

of these solutions was carried out so as to evaluate their feasibility and reliability. The paper is 

structured as follows. In the second section, the notation and terminology adopted in the paper are 

summarised. The architecture of the proposed model is described in detail in section 3. An 

application on a real metro network in the city of Naples (Italy) is then presented. Finally, 

conclusions and possible research prospects are summarised in section 5. 

2. Notation and terminology 

In the next sections the following notation will be adopted: 

X  The considered multivariate random variable (i.e. a vector of random variables); 

X  The fixed vector whose elements are the mathematical expectations (i.e. first moments 

or means) of elements of X ; 

Xε  The random residual of X ; 

 XΩ  The statistical distribution of Xε ; 

Xh  The vector of parameters of statistical distribution  XΩ ; 

y  The vector of parameters identifying the generic intervention action; 

STOCŷ  The optimal value of vector y , by adopting a stochastic approach; 

DETŷ  The optimal value of vector y , by adopting a deterministic approach; 

yS  The definition set of vector y , which identifies all feasible intervention strategies; 

fc  The vector of parameters describing failure contexts; 

tnp  The vector of parameters identifying the transportation network performance (i.e. travel 

times and monetary costs); 

rnp  The vector of parameters identifying network performance (i.e. headways and travel 

times) of the rail system; 

td  The vector identifying travel demand (i.e. user flows) on the network; 

 Λ  The function simulating the whole rail system; 
0in  The vector of parameters describing the rail infrastructure in a non-perturbed condition; 
0rs  The vector of parameters describing rolling stock performance in a non-perturbed 

condition; 
0ss  The vector of parameters describing the signalling system in a non-perturbed condition; 

pt  The vector describing the planned timetable; 

i The generic user category; 
i

VOT  A parameter which expresses the monetary value associated by user category i to a 

time unit and indicated in the literature as Value of Time (VOT); 
i

w  A parameter which expresses the relevance (i.e. relative weight) associated by user 

category i to waiting times; 
r,i

p,stw  The average waiting time for user category i at station s on platform p between run  

(r – 1) and run r; 
r,i

p,sfw  The number of passengers of category i waiting at station s on platform p between run 

(r – 1) and run r; 
i

b  A parameter which expresses the relevance (i.e. relative weight) associated by user 

category i to on-board times; 
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r,i

ltb  The time spent by user category i for travelling on the rail convoy associated to run r 

while crossing link l; 
r,i

lfb  The number of passengers of category i travelling on the rail convoy associated to run r 

while crossing link l; 

 FSMΓ  The function describing the Failure Simulation Model (FSM) which provides reduced 

performance of the rail system for each possible failure context; 

 SeSMΓ  The function describing the Service Simulation Model (SeSM) which provides rail 

system performances depending on rail infrastructure, rolling stock, signalling system, 

planned timetable and travel demand; 

 SuSMΓ  The function describing the Supply Simulation Model (SeSM) which provides user 

generalised costs on all transportation systems depending on the outputs from service 

and travel demand simulation models; 

 PPSMΓ  The function describing the Pre-Platform Simulation Model (PPSM) which provides 

passenger flow arrivals at each station depending on the performance of all transport 

modes; 

 OPSMΓ  The function describing the On-Platform Simulation Model (OPSM) which assigns 

passengers waiting at platforms to trains according to capacity constraints; 

 DETŷN  A neighbourhood of vector DETŷ , which consists of all configurations y  providing 

objective function values close to the objective function calculated in the case of 

strategy DETŷ ; 
rmc  The capacity (in terms of the maximum number of passengers per rail convoy) of run r; 

)s:s(obp 1  The number of on-board passengers between stations s-1 and s; 

sap  The number of passengers alighting at station s. 

rnp  The rail network performance calculated by the deterministic approach; 

td  The travel demand in the case of the average level. 

3. Analysis of the disruption management model 

In this section, we describe our proposal for determining optimal intervention strategies in the case 

of a rail or metro system breakdown which are robust to variations in input data such as rail service 

performance (speeds, accelerations and delays). In particular, Section 3.1 provides an innovative 

analytical formulation which can be implemented by adopting four simulation models proposed in 

the literature by D’Acierno et al. (2013). Commercial software and an ad-hoc tool developed for 

managing real-dimension networks are described in Section 3.2. Finally, in Section 3.3 the 

proposed procedure for analyzing the rail service by jointly adopting a deterministic and stochastic 

approach is described in detail. 

3.1.   Framework of the model 

The aim of this study is to provide a methodology in order to perform a stability analysis of 

intervention strategies in the case of rail system disruptions. As shown in the literature (D’Acierno 

et al., 2013), it is possible to identify a virtual analytical application which, for any possible 

Defining Robust Recovery Solutions for Preserving Service Quality … Int J Supply Oper Manage 

(IJSOM), Vol.3, No.3 breakdown of the rail system, is able to provide the optimal intervention 

strategy, minimizing user discomfort. 
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Obviously, it is necessary to allow for the effects of corrective action on all users of the rail system. 

This means that, in the case of a single train failure, discomfort has to be computed for users on the 

faulty train, for users on other trains and for users on the platforms. The improvement provided by 

the current study consists in considering some variables of the problem as the realization of random 

(i.e. stochastic) processes in order to verify the stability of solutions obtained with a deterministic 

approach, that is: 

XεXX   (1) 

With: 

 XX E   

Xε    XX hΩ   

Hence, the problem of determining the optimal intervention strategy in the case of rail system 

failure, adopting a random process approach, can be formulated as a multidimensional bi-level 

constrained optimisation problem where it is necessary to minimise an objective function which 

expresses user discomfort, that is: 

 tdrnptnpfcyy
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However, in the case of a deterministic approach, that is: 

0Xε            x    

Eq. (4) trivially degenerates into: 

   T000T000
ptssrsintdrnptnpfcyptssrsintdrnptnpfcy ,,,,,,,,,,,,,,,,   (6) 

And Eq. (2) has to be reformulated as: 

 tdrnptnpfcyy
ySy

DET ,,,,Zˆ  min arg


  (7) 
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It is worth noting that constraint (3) is a consistency constraint between travel demand flows and 

transportation system performance, whose formulation requires the definition of four kinds of 

simulation models (D’Acierno et al., 2013): failure, service, supply and travel demand simulation 

models. 

The Failure Simulation Model (FSM), indicated as function  FSMΓ , can be considered a model 

which provides reduced performances of the rail system (i.e. infrastructure, rolling stock and/or 

signalling system) for each possible failure context. Basically, this model is based on the adoption 

of RAMS techniques (see CENELEC, 1999). The term RAMS is the acronym for Reliability, 

Availability, Maintainability and Safety where: 

 Reliability can be considered the ability of a system to perform a specific function, and may 

be given as design reliability or operational reliability; 

 Availability represents the ability of a system to be kept in a functioning state; 

 Maintainability stands for the simplicity with which the product or system can be repaired 

or maintained; 

 Safety is the requirement not to harm people, the environment, or any other assets during 

the life cycle of the system. 

In our context, a RAMS technique aims to study the behaviour of the whole system, or just a 

component of it, in order to assess failure modes and their causes. In particular, RAMS analysis 

consists of the following three phases: data compilation, simulation and impact on system life 

cycle. The first phase is the basis of any RAMS simulation or process since it gives the possibility 

to obtain data on the failure rate and other reliability parameters which are the input for the 

simulation. In the second phase, the objective is to model the system in terms of reliability aspects. 

In other words, the simulation, given the values of failure rate and reliability of each single 

component, estimates causes and effects of failures of the same components, but by considering 

their mutual interaction in a system and a stated environment. Finally, in the last step, the goal is 

the assessment of the cost of breakdowns and corrective maintenance operations. Therefore, the 

failure model provides the possibility to determine weaknesses and defects of the rail system under 

study, selecting the failure scenarios which are worth analysing. 

The Services Simulation Model (SeSM), indicated as function  SeSMΓ , can be considered a model 

which provides rail system performance as depending on rail infrastructure, rolling stock, 

signalling system, planned timetable and travel demand. It consists of a microscopic rail simulation 

model which simulates the service with the highest level of detail regarding infrastructure, rolling 

stock and the planned timetable. 

The choice of adopting a microsimulation model, instead of a macrosimulation one, results from 

several reasons which is worth discussing. Microsimulation models, albeit not computationally 

efficient, can reproduce the dynamic of network loading and consider the evolution of rail traffic 

conditions during the whole daily service. Disruptions or breakdowns to the service are indeed 

dynamic events which cannot be simulated statically. Hence, a microsimulation model, due to the 

highly detailed description of the network, enables simulation of any kind of failure. Thus, the 

outputs provided by the FSM, whatever the component of the system affected (e.g. interruption of a 

line section, rail convoy breakdown, problem to the signalling system), can be set up in the SeSM 

for estimating related effects on the rail service. 
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The Supply Simulation Model (SuSM), indicated as function  SuSMΓ , can be considered a model 

which provides user generalised costs on all transportation systems depending on the outputs from 

service and travel demand simulation models. The idea is to simulate the rail network in detail (i.e. 

microscopically through the SeSM) taking into account also the different transport modes within 

the study area so as to enable a more realistic estimation of the arrival rate at station. In order to 

make clearer this statement, an example is provided. Passengers waiting for a train on the platform 

can decide to modify their trip (adaptive choice) if no trains arrive after a long period. Likewise, if 

something negative happens within the road or bus systems, it is likely that the number of 

customers arriving at stations increases. Obviously, this approach is useful for the study of urban 

contexts, where public transport systems are strongly integrated. Conventional railway networks 

(e.g. long distance train), by contrast, can be analysed as a closed system without interactions with 

other transport modes. 

The Travel Demand Simulation Model (TDSM) can be considered a model which provides user 

flows on all transportation networks (included the rail system) conditioned by all transportation 

system performance (i.e. outputs of SeSM and SuSM). This process is the result of two different 

choice levels, whose analysis requires two correspondent sub-models. First of all, the  

Pre-Platform Simulation Model (PPSM), indicated as function  PPSMΓ , determines the flows of 

passengers who, according to the performances of all transport modes (evaluated by the SuSM), 

arrive at each station and hence decide to take the train (Cascetta, 2009). By contrast, the On-

Platform Simulation Model (OPSM), indicated as function  OPSMΓ , assigns these passengers to 

trains according to their capacity limit. Basically, the OPSM analyses, for each train approaching 

the station, whether there is enough capacity to host all the customers willing to board the train. If 

this condition is not verified, passengers on the platform behave differently depending on the 

characteristics of the simulated rail service. 

In case of high frequency rail services, passengers do not know the exact train schedule but go to 

the station considering, as only information, the headway (e.g. a train every two minutes). Hence, 

due to the high frequency, it is likely that the surplus of passengers (i.e. users who do not manage 

to board the train) remain on the platform waiting for the next train. On the contrary, when the 

model is applied on conventional rail lines, where frequencies of a specific train category can be 

very low (e.g. long distance trains), except from particular situations where passengers do not have 

any alternative for reaching their destination, it is likely that no one remain on the platform waiting 

for a following convoy in case the capacity of the train is reached (very uncommon event on 

conventional lines) or in case the line is interrupted. 

According to these assumptions, the travel demand assignment is performed. Thus, all information 

about passenger trips (e.g. the time spent waiting the train, the number of train waited before 

boarding, the total travel time) is known and the objective function (i.e. Eq. 5) can be calculated. 

Taking the four simulation models explicitly into account, Eq. (3) can be rewritten as: 
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Figure 1. Interaction among simulation models 

 

Figure 1 shows the graphical representation of expression (6). Basically, given the failure data 

(FSM) and the passenger flows at each station (interaction between SuSM and PPSM), the kernel of 

the procedure is the simulation of the rail network (SeSM) and the assignment of travel demand to 

the service (OPSM). 

This generates a dynamic interaction: rail system performances (mainly headways and running 

times) influence passenger flow arrivals at stations which, in turn, affect the service through the 

boarding/alighting process. Therefore, the proposed approach is able to capture the above-

mentioned snowball effect (i.e. the increase in delays due to the interaction between rail service 

and travel demand). 

3.2. Description of software and tools for the application of the model 

Previous section shows the framework of the proposed approach and the analytical formulation of 

each model. However, there is no practical explanation about how the SeSM and the OPSM are 

implemented. 

The microscopic rail simulation model adopted in this procedure is OPENTRACK
® which is a 

commercial software programme (Nash et al., 2006). It reproduces in high detail the motion of the 

trains using a mixed discrete/continuous simulation process that calculates both the continuous 

numerical solution of the differential motion equations for the vehicles (trains) and the discrete 

processes of signal box states and delay distributions. All information regarding infrastructure, 

rolling stock and timetable can be set up so as to take any detail into account. In addition, 

according to the analysis targets, these data can be considered as deterministic or stochastic 

variables, giving the possibilities to simulate the effects of stochastic disturbances affecting real 

operations. Furthermore, in OPENTRACK
® it is possible to manage input and output data also from 

outside the program by means of proper text files, enabling the combination with other tools as the 

one presented in the following. 

The OPSM is performed by means of OPM 1.0, namely a specific application developed in C++ 

language (Placido, 2015) for the dynamic assignment of travel demand to the service. It consists of 

three modules which specify the passenger inflow to stations (as a result of the interaction between 

PPSM and SuSM), the rolling stock characteristics (e.g. the maximum number of passengers per 

train, number of doors per coach, the maximum number of sitting and standing passengers per 

coach) and the service simulation (e.g. itinerary of each simulated train, information regarding 

headways and running times). 

FSM SeSM 

PPSM 

OPSM 

SuSM 
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As outputs, this tool provides the actual load diagram for each simulated train, all information 

about passengers’ trips (e.g. waiting and boarding times), platform congestion and the user 

generalised cost of the strategy (i.e. objective function 5). OPM 1.0 can also estimate the dwell 

times at stations as flow dependent if integrated with another module, which is DwTE 1.0 (Placido 

et al., 2015). In particular, this module enables the analysis of the above mentioned ‘snowball 

effect’ providing the departure delays at each station resulting from the dynamic interaction 

between passengers and rail service. 

The combination of OPENTRACK
® and OPM 1.0 is shown in Figure 2. 

 

Figure 2. Combination of OPENTRACK® and OPM 1.0 

 

3.3. Procedure description 

The resolution of problem (2), subject to constraint (3) and to objective function (5), requires the 

implementation of two different phases. The first is a deterministic phase and is divided into the 

following steps: 

1. First of all, the FSM selects the breakdown context which has to be simulated and it 

determines the effects on the infrastructure, the rolling stock and on the signalling system; 

2. According to these outputs, the SeSM simulates the rail service under fault conditions; 

3. Different intervention strategies are then selected to re-establish ordinary service conditions 

by adopting an exhaustive approach (i.e. simulation of all possible implementable 

strategies) or a selective approach (i.e. simulation of a limited set of alternatives); 

4. For each simulated strategy, different passenger inflows (i.e. variability of variable td) to 

stations are assigned dynamically to the service considering the capacity constraint of 

trains, so as to evaluate the answer of the system with different travel demand levels; 
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5. After completing the travel demand assignment, the user generalised cost of each recovery 

solution is calculated; 

6. Then the costs are compared and the optimal intervention strategy DETŷ  (i.e. lower 

generalised cost) is identified, ending the deterministic phase. 

 

The second phase assesses the feasibility and the robustness of the strategies and consists of the 

following additional steps: 

1. At the end of the deterministic phase, a neighbourhood of DETŷ , indicated as  DETŷN , 

which consists of all the corrective actions providing objective function values close to the 

minimum cost (i.e. objective functions calculated in the case of strategy DETŷ ) is analysed; 

2. n vectors describing random residual 
X
ε  are extracted; 

3. For each single extracted vector
X
ε , the new objective function values for all the 

intervention strategies of set  DETŷN  are calculated. Obviously, calculation of the 

objective function requires the solution of problem (8); 

4. Finally, the distribution of the objective function values for each element of set  DETŷN  is 

analysed in order to perform the analysis of stability. 

Figure 3 summarises the whole procedure described above. 

4. Application to a real metro line 

In order to show the utility of the proposed approach, this methodology was applied in the case of 

Line 1 of the Naples metro system (Italy). The line, consisting of 17 stations along a total length of 

about 18 kilometres, plays a key role in the Naples public transportation system since it connects 

the high density suburbs with the city centre. For this reason, especially during peak hours, the line 

is extremely crowded since customers cannot rely on the performance of alternative means of 

transport (e.g. buses or trams) which is generally lower due to the high congestion level of the main 

roads. 
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Figure 3. Graphical description of both the deterministic and stochastic phases 

 

 

 

Figure 4. Framework of Line 1 in Naples (Italy) 

 

The Line 1 infrastructure is extremely complex because of the hilly terrain in the city. Indeed, steep 

slopes and low radius curves have led to the construction of two completely separate tunnels, one 

per direction. Only certain stations (indicated in Figure 4 with additional coloured dots and 
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squares) are equipped with points and/or recovery tracks, which reduces the elasticity of the system 

in the event of failure. 

Furthermore, there is just one depot located near Piscinola station and spare trains are not always 

available due to the lack of rolling stock. Indeed, when there is a faulty train in the network, 

dispatchers prefer to close the whole line and remove the broken-down convoy or, should it be 

possible, just leave the service without any kind of intervention. Obviously, this results in great 

discomfort for passengers who are not considered at all. Indeed, although this strategy is the easiest 

to implement and is also optimal from an operational point of view, it does not fulfil customers’ 

needs. The application of our approach will therefore show how it is possible to plan recovery 

intervention strategies whilst maintaining a high level of service quality. 

4.1. The deterministic approach for selecting the optimal intervention strategies 

As it is explained in the previous section, the deterministic approach is the first phase of the 

proposed procedure and it is necessary for the purpose of evaluating the optimal strategies form 

passengers’ standpoint. 

Hence, the whole line has been reproduced in OPENTRACK
® including all details regarding 

infrastructure, signalling system and rolling stock. 

The simulated scenario consists of assuming a breakdown to a train during the morning peak hours. 

To be precise, run 900 breaks down after leaving Chiaiano at 7:05 am and is forced to run at a 

maximum speed of 45 km/h. Obviously, this performance reduction constitutes a bottleneck for the 

line, since the faulty train cannot be easily overtaken. 

In order to evaluate the propagation of the effects on the following time periods, our simulation 

concerned all the daily operations. In particular, the following timetable is planned: 

 a train every 8 minutes from 6:00 am to 09:00 pm; 

 a train every 14 minutes from 09:00 pm to midnight. 

 

Figure 5. Estimation of travel demand values for different congestion levels 
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The pre-platform simulation model (i.e. function
PPSMΓ ), as already shown, estimates the travel 

demand matrices expressing passenger mode choices through the interaction with the SuSM 

(Cascetta, 2009). It is thus possible to ascertain the flow of passengers entering the system and 

going to the platform. As shown in the literature (Marzano et al., 2008; Cantelmo et al., 2014), 

these matrices are estimated by using a combination of models and surveys, and then used in this 

application. In particular, two flow levels are considered so as to evaluate whether the solutions are 

affected by different travel demands. Indeed, the procedure was applied by first considering the 

average travel demand flow corresponding to usual conditions and then a higher travel demand 

compatible with particular crowded days. Figure 5 shows the estimated distribution of travel 

demand which was determined by means of standard calibration techniques whose aim is to 

identify the statistical distribution which best fits the surveyed data (Cascetta, 2009). In particular, 

in our case, surveyed data are represented by passenger arrival flows at turnstiles which, in this 

way, are random variables, and thus the O-D matrices can be defined according to different travel 

demand percentiles. This estimation procedure was carried out for each station, travel direction and 

time period analysed. 

Travel demand is then assigned by OPM 1.0 (i.e. function
OPSMΓ ) to each train according to the 

network performance evaluated by OPENTRACK
® (i.e. function

SeSMΓ ). As far as the capacity 

constraint is concerned, in the case of Line 1 each train comprises two traction units coupled 

together for a total capacity of 864 passengers. 

The objective function parameters of formula (5) express the ‘disutility’ perceived by the users 

during their journey. In particular, as shown in the literature, the waiting time (
i

w  = 2.5) is 

considered almost three times more burdensome than the travel time (
i

b  = 1) (Wardman, 2004; 

Cascetta, 2009). Moreover 
i

VOT , which reflects the user’s willingness to pay for saving one hour 

of travel, is considered equal to 5.00 €/h. 

The determination of the intervention strategies is based on the adoption of an exhaustive 

approach. Basically, according to the infrastructure characteristics, the set of strategies comprises 

the following alternatives: 

1. The faulty train continues to perform its service all day; 

2. The train stops at Colli Aminei during its outward trip (i.e. from Piscinola to Garibaldi) and is 

then driven onto the recovery track. No spare trains are considered; 

3. The train stops at Medaglie d’Oro during its outward trip and is then driven onto the recovery 

track. No spare trains are considered; 

4. The train stops at Garibaldi at the end of its outward trip and is then driven onto the recovery 

track. No spare trains are considered; 

5. The train completes the outward trip and starts the return trip (i.e. from Garibaldi to Piscinola) 

up to Medaglie d’Oro where it is driven onto the maintenance track. No spare trains are 

considered; 

6. The train completes the outward trip and starts the return trip up to Colli Aminei where it is 

driven onto the maintenance track. No spare trains are considered; 

7. The train completes the outward trip and starts the return trip up to Piscinola where is driven to 

the depot. No spare trains are considered; 
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8. The train stops at Colli Aminei during its outward trip and is then driven onto the recovery 

track. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the 

daily operation; 

9. The train stops at Medaglie d’Oro during its outward trip and is then driven onto the recovery 

track. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the 

daily operation; 

10. The train stops at Garibaldi at the end of its outward trip and is then driven onto the recovery 

track. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the 

daily operation; 

11. The train completes the outward trip and starts the return trip up to Medaglie d’Oro where it is 

driven onto the maintenance track. A spare train starts from Piscinola to replace the faulty 

rolling stock for the rest of the daily operation; 

12. The train completes the outward trip and starts the return trip up to Colli Aminei where it is 

driven onto the maintenance track. A spare train starts from Piscinola to replace the faulty 

rolling stock for the rest of the daily operation; 

13. The train completes the outward trip and starts the return trip up to Piscinola where it is driven 

to the depot. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of 

the daily operation; 

14. The train stops its run at Dante and, after changing direction, is driven empty to the depot. A 

spare train starts from Piscinola to replace the faulty rolling stock for the rest of the daily 

operation; 

15. The train stops its run at Dante and, after changing direction, is driven empty to the depot. No 

spare trains are considered; 

16. The train stops its run at Vanvitelli and, after changing direction, is driven empty to the depot. 

No spare trains are considered; 

17. The train stops its run at Vanvitelli and, after changing direction, is driven empty to the depot. 

A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the daily 

operation; 

18. The train stops its run at Medaglie d’Oro and, after changing direction, is driven empty to the 

depot. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the 

daily operation; 

19. The train stops its run at Medaglie d’Oro and, after changing direction, is driven empty to the 

depot. No spare trains are considered; 

20. The train stops its run at Coli Aminei and, after changing direction, is driven empty to the 

depot. No spare trains are considered; 

21. The train stops its run at Colli Aminei and, after changing direction, is driven empty to the 

depot. A spare train starts from Piscinola to replace the faulty rolling stock for the rest of the 

daily operation. 
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Figure 6. Objective function values for different intervention strategies 

 

As can be seen, for any feasible strategy, the possibility of including a new spare train in the 

service has been considered. This assumption shows the importance of investing in rolling stock in 

order to increase the reliability and feasibility of the service, especially in the case of degraded 

conditions. It is important to underline the fact that, every time the train stops its run, passengers 

are forced to get off the coaches and wait for a following train on the platform. 

Table 1. Objective function values for any feasible intervention strategy 

 Average travel demand 

level 

High travel demand 

level 

Scenario User generalised cost User generalised cost 

1 €      582,728 €  1,679,960 

2 €  1,010,220 €  1,991,610 

3 €  1,008,680 €  2,021,960 

4 €  1,000,280 €  1,982,610 

5 €  1,000,390 €  1,982,780 

6 €  1,000,030 €  1,982,290 

7 €      999,338 €  1,981,330 

8 €      587,464 €  1,682,420 

9 €      586,201 €  1,700,280 

10 €      578,208 €  1,674,060 

11 €      578,361 €  1,674,280 

12 €      578,001 €  1,673,790 

13 €      577,305 €  1,672,830 

14 €      579,384 €  1,676,050 

15 €  1,001,420 €  1,984,550 
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17 €      586,131 €  1,694,210 
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It is worth noting that even in the case of a simple network as the one considered, the number of 

feasible intervention strategies is considerable. Hence, in the case of more complex networks (such 

as rail context with several interconnections) the adoption of an exhaustive approach has to be 

excluded and the optimisation problem (2) has to be solved by means of meta-heuristic algorithms 

in order to obtain sub-optimal solutions (i.e. selective approach) within suitable calculation times 

(D’Acierno et al., 2014). Figure 6 and Table 1 summarise the results of the deterministic approach 

considering both average and high travel demand. In order to make clearer how user generalised 

costs are evaluated, more details about the procedure are necessary. For each scenario, the SeSM 

provides the headways and the running times (i.e. r,i

ltb ) of each train performing the service. The 

number of passengers waiting for the approaching run r on the platform of the generic station s (i.e. 
r,i

p,sfw ) can be easily estimated multiplying the obtained headway by the passenger arrival rate at 

station. At the same time, the OPSM evaluates the number of passenger who can board the train 

(i.e. 
r,ifb ) according to its residual capacity, calculated as follows: 

s)s;s(

rr

s apobpmcrc  1  

Obviously, adopting a FIFO (First In – First Out) assumption, the number of non-served 

passengers will have priority in boarding the following runs. Thus parameter 
r,i

p,stw  considers a 

precise estimate of the time wasted on the platform by user flow 
r,i

p,sfw . 

For both travel demand levels, the optimal solution which produces the lowest user generalised 

cost is that corresponding to ‘strategy 13’. The strategies which consider the introduction of the 

spare train are evidently preferable inasmuch as they give the possibility to calm down the negative 

effects of the breakdown in less time than the other alternatives. In addition, these solutions enable 

to keep the planned frequency levels during the rest of the day. As previously explained, it is worth 

considering a neighbourhood (in terms of objective function value) of the optimal strategy and 

analysing also other alternatives which provide similar results. For this reason, strategies 10, 12 

and 13 are simulated again in the following stochastic approach. For all three strategies considered, 

the intervention solution suggests stopping the train after completing the outward trip. This is due 

to the fact that during the morning rush hours, many passengers travel from the suburbs to the city 

centre so as to reach the main places of the city. For the same reason, in the opposite direction, the 

travel demand matrix is almost unloaded. Therefore, the these strategies highlights the fact that 

users prefer travelling by a slower train and reaching their destinations rather than  waiting more 

time for other crowded trains which run faster. During the return trip by contrast, the cancellation 

of the run does not provide the same inconvenience, since passenger levels are lower. These results 

can be obtained only by means of travel demand assignment to the service, meaning that a simple 

simulation of the rail service is not sufficient to yield recovery strategies which are really useful to 

satisfy customers’ requirements. 

As regards the computational time, the simulation of each scenario takes about 500 seconds. The 

OPM 1.0 tool, by contrast, needs just a few seconds to assign passengers to the network and obtain 

the results. However, since our proposal is an off-line procedure, time is not the main variable to 

consider. 
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4.2. The stochastic approach for analysing the robustness of the selected intervention 

strategies 

Application of the stochastic analysis provides useful information about the feasibility and the 

robustness of the three optimal intervention strategies. Indeed, the variability in acceleration, the 

maximum speed and the dwell times are key factors which strongly influence the service and 

cannot be neglected. 

For this purpose, 100 stochastic scenarios were constructed based on the following assumptions: 

 Train performance (i.e. acceleration and speed) is defined according to a piecewise linear 

distribution function: 33% of the trains are supposed to perform at 85%–90%, 33% at 90%–

95%, and 34% at 95%–100%; 

 The departure delays at each station follow a negative exponential random variable whose 

average is 10 seconds. In this way, although implicitly, the variability of dwell time is taken 

into account. 

Both assumptions correspond to considering that vector rnp  is affected by variability. Hence, 

jointly with the assumption of two levels of demand, which corresponds to the adoption of 

variability also in the case of vector td , in this real metro line application Eq. (4) can be expressed 

as: 

     TTT

tdrnp εεtdrnptdrnp ,,,   

According to these data, the three selected strategies were evaluated again for all the stochastic 

scenarios, obtaining as output a user generalised cost vector comprising 100 elements. The results 

are then compared so as to highlight the optimal strategy for each case. 

Table 2. Number of times (%) of optimality for each strategy (stochastic analysis) 

 Strategy 

10 

Strategy 

12 

Strategy 

13 

Average travel demand  27% 32% 41% 

High travel demand  34% 33% 33% 

 

Table 2 shows the outputs of the above procedure. Obviously, different travel demand levels do not 

provide the same result since the number of passengers who are unable to board the first arriving 

train may differ considerably. 

As can be seen, given average conditions, strategy 13 is the one which guarantees the highest level 

of robustness. It has to be preferred since it proves the optimal solution in most cases. Moreover, 

from an operational point of view, this alternative is better than the other two: after running at low 

speed up to the terminus (i.e. Piscinola), the train is driven directly to the depot and does not need 

to be hauled from a recovery track at the end of the daily operations. 

In the case of crowded days, by contrast, all the three alternatives are equivalent and there is no 

evident advantage to choosing one over another. For this reason, strategy 13 is still the best since it 

guarantees fewer movements without passengers. However, even if this result may seem the same 

as that obtained without considering parameter variability, simulations show that only in 41% of 

cases the deterministic approach correspond to a ‘real condition’ scenario, while in the other 59% 

of cases the deterministic approach may provide a non-optimal intervention strategy. 



Defining Robust Recovery Solutions for Preserving ... 

 

  

Int J Supply Oper Manage (IJSOM), Vol.3, No.3 1369 

 

5. Conclusions and research prospects 

In this study we proposed an off-line procedure for implementing a stability analysis of 

intervention strategies in the case of breakdowns in rail/metro systems. Indeed, the adoption of 

traditional studies, based on considering the average values of variables (i.e. the deterministic 

approach), could generate alterations in the definition of corrective actions especially in extreme 

cases (such as days with high demand levels). For this reason, we showed a two-step procedure for 

identifying the optimal strategy and its neighbourhood (deterministic phase) and carrying out a 

stability analysis affecting involved variables by means of a Montecarlo approach. The proposed 

methodology was applied in the case of a metro line in Italy so as to highlight the advantages in a 

real context. Simulation results confirm the importance of allowing for stochasticity of both travel 

demand and train performance in order to reflect real conditions much better. In addition, the 

proposed approach provides an interesting methodology to interpret the outcome of the analysis 

more accurately since it allows estimation of the error degree which is made in the case of a purely 

deterministic procedure. 

For future research we propose to apply this decision support system to a large number of 

disruption events and to test the model also on more complex networks and/or conventional rail 

lines. Indeed, although the results obtained (i.e. the deterministic solution performs well also in the 

stochastic process) are interesting, more complex networks or breakdown contexts could bring to 

completely different conclusions and have to be evaluated. In addition, in order to provide a more 

complete analysis, the objective function will be modified to allow for intervention costs for rail 

operators, such as energy consumption and efficiency indexes. 
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