Green Supplier Evaluation by Using an Integrated Fuzzy AHP- VIKOR Approach

Mehdi HakimiAsl, Mohsen Sadegh Amalnick*, Farbod Zorriassatineb and Alireza HakimiAsl

a Industrial Engineering School, University of Tehran, Tehran, Iran
b Department of Industrial Engineering, Islamic Azad University, Shiraz branch, Shiraz, Iran

Abstract
In recent years, depletion of fossil fuel reserves and environmental challenges such as air and water pollution, global warming, and greenhouse-gas emissions have increased environmental concerns considerably. Subsequently, one of the most practical and useful solutions to decrease environmental pollutants is to deploy green purchasing and use of clean energies by organizations or even governments. Thus, construction of renewable-energy power plants and, consequently, green supplier selection for equipment of these plants have become increasingly more important. In this respect, this article presents a novel approach to assess and select green suppliers of a solar power plant. The proposed approach integrates Fuzzy Analytic Hierarchy Process and VIKOR methodologies. The results demonstrate the efficiency of the suggested approach as a practical tool to assist managers and CEOs of electric power industry in assessing suppliers for their required equipment.

Keywords: Green supplier evaluation and selection; Solar power plant; Fuzzy AHP; VIKOR.

1. Introduction

Increased awareness of environmental issues, heightened concerns about hazards of environmental pollution and pressing worries due to depletion of fossil fuel reserves force organizations and governments to seek alternative sources of energy. As a result, renewable energy and sustainable

* Corresponding author email address: amalnick@ut.ac.ir
development have been steadily established worldwide as some of the most environmentally justifiable alternatives. Solar energy is one of the critical sources of renewable energies that pervasively serves as a viable energy supply alternative in most parts of the world (D. Al Katsaparakakis, 2012). Some of the significant advantages of using solar energy cited in the literature include (http://www.suna.org.ir), (M. S. Jame et al., 2013):

- Serving as a clean and renewable energy source
- Causing no pollution
- Producing solar energy free of charge once a solar panel is installed
- Being noise free while the giant machines utilized for pumping oil are extremely noisy and impractical
- Requiring very little maintenance to keep solar cells running as there are no moving parts in a solar cell
- Providing high return on investment in the long term due to the amount of free energy a solar panel can produce (it is estimated that the average household will see 50% of their energy coming from solar panels)

Renewable Energy Organization of Iran (SUNA) indicated that as Iran is located on the global Sunbelt, it enjoys an annual total of 2800 sunshine hours (M. Bahrami and P. Abbaszadeh, 2013). Iran, with 300 sunny days in more than two third of its area, and a daily average radiation of 4.5-5.5 kwh/m2 is one of the countries with huge potential in terms of solar energy (http://www.suna.org.ir).

One of the best solutions to decrease the level of environmental pollutants is using green supply chain concepts (M. H. Zavvar Sabegh et al., 2016). For this reason, the Green Supply Chain Management (GSCM) approach has attracted much attention in recent years (M. Nazam et al., 2015). For example, Rostamzadeh et al. (R. Rostamzadeh et al., 2015) evaluated GSCM practices by using fuzzy VIKOR technique. GSCM includes several components such as green packaging, green production, and green supplier evaluation.

Supplier selection plays a key role in the field of GSCM. In today's global competitive environment, many critical issues such as success or failure of the chosen supply chain, reduction of procurement costs, and improvement of the quality of final products are strongly dependent on the selected supplier (J. Roshandel et al., 2013). Therefore, companies have paid great attention to choose the most appropriate supplier (H. Mohamadi and A. Sadeghi, 2014). Many researchers have addressed the issues related to green supplier selection. For example, Kuo et al. (T. C. Kuo et al., 2015) evaluated the green suppliers of an electronics company by means of a novel hybrid multi-criteria decision-making method. First, they deployed a hybrid method of DEMATEL and ANP to determine the weights for the evaluation criteria of the suppliers. Then, they evaluated the environmental performance of the company’s suppliers by applying VIKOR method. Similarly, Awasthi et al. (A. Awasthi et al. 2010) presented a fuzzy multi-criteria approach in order to evaluate

1 Decision Making Trial and Evaluation Laboratory Model (DEMATEL)
2 Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
the environmental performance of suppliers. In addition, Freeman and Chen (D. Gary Graham, 2015) evaluated green suppliers using an AHP–Entropy–TOPSIS framework. Chaghooshi et al. (A. J. Chaghooshi, 2015) used an integrated method based on AHP–VIKOR methodology to select the best green supplier. In this regard, they obtained the weights of each criterion by using AHP method. Then, VIKOR methodology was employed for ranking green suppliers. Chen et al. (H. M. Wang Chen et al. 2016) used hybrid FAHP-FTOPSIS technique in order to evaluate suppliers from the economic and environmental aspects.

The present study attempts to offer an integrated approach for evaluating green suppliers of solar power plant’s equipment. It does so while considering environmental factors within the bounds of Iran's potential implementation of solar energy and some aspects related to the problem of green supplier selection.

Zadeh (L. Zadeh, 1965) introduced the basic concept of fuzzy sets to consider the vagueness, ambiguity, and subjectivity of human judgment. A major contribution of Fuzzy set theory is its ability of representing ambiguous data in decision-making process. Fuzzy logic theory provides a mathematical platform from which the uncertainties associated with human cognitive procedures such as thinking and reasoning is obtained. Fuzzy multi-criteria decision making (FMCDM) has provoked high interest in different fields such as: decision science, management science and etc. Fuzzy multi-attribute decision making is one of the significant components of the FMCDM. Therefore, in this research, Fuzzy AHP–VIKOR approach is employed to tackle imprecision and uncertainty in decision makers' judgments for evaluating green suppliers (C. Cruz, 2006).

2.1. Fuzzy Analytical Hierarchical Process (FAHP)

Analytical hierarchy process (AHP) method is one of the MADM methods, which has been used successfully in several practical decision-making problems (D. Choudhary and R. Shankar, 2012). Though the goal of AHP is to capture an expert's knowledge, the conventional AHP cannot still reflect the human thought. Thus, fuzzy AHP, a fuzzy extension of AHP, was developed for solving the hierarchical fuzzy problems (S. Mahmoodzadeh, 2007).

2.2. VIKOR

The VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) is one of the most popular and widely applied Multi Attribute Decision Making (MADM) methods, which was developed for multi criteria optimization of complex systems (C.-L. Hwang and K. Yoon, 1981). It specifies the compromise ranking list, the compromise solution, and the weight stability intervals for preference stability of the compromise solution acquired with the initial (given) weights. This method concentrates on ranking and selecting from a set of alternatives in the presence of different criteria. It introduces the multi criteria ranking index with respect to the particular measure of “closeness” to the “ideal” solution (S. Opricovic, 1998).
Assume that each alternative is evaluated based on each criteria function, the compromise ranking could be done by comparing the measure of closeness to the ideal alternative. The multiple criteria measure for compromise ranking is extended from the \(L_p \)-metric that is used as an aggregating function in a compromise programming technique (P.-L. Yu, 1973), (M. Zeleny and J. L. Cochrane, 1973). The various \(k \) alternatives \((k = 1, 2, ..., n)\) are shown as \(a_1, a_2, ..., a_n \). For \(k \)th alternative, the rating of the \(j \)th criteria is shown by \(f_{kj} \); in other words, \(f_{kj} \) is the value of the \(j \)th criteria function for the alternative \(a_k \); \(m \) is the number of criteria \((j = 1, 2, ..., m)\). Development of the VIKOR method started with the following form of \(L_p \)-metric:

\[
L_{p,k} = \left(\sum_{j=1}^{m} \left[w_j (f_j^+ - f_{kj}) / (f_j^+ - f_j^-) \right]^p \right)^{1/p}, 1 \leq p \leq \infty; k = 1, 2, ..., n. \tag{1}
\]

Within the VIKOR method, \(L_{1,k} \) and \(L_{\infty,k} \) are used to formulate ranking measure. The solution calculated by \(\min_k S_k \) is with a maximum group utility ("majority" rule, demonstrated as average gap, when \(p = 1 \)) and the solution calculated by \(\min_k R_k \) is with a minimum individual regret of the “opponent”. The compromise solution \(F^c \) is a feasible solution that is the “closest” to the ideal \(F^* \) and compromise means an agreement established by mutual concessions, by these equations \(\Delta f_1 = f_1^* - f_1^c \) and \(\Delta f_2 = f_2^* - f_2^c \).

3. Problem Definition

Mazandaran Province is an iranian province, which is located along the southern coast of the Caspian Sea in the north of Iran (M. S. Khavarinejad, 2014). The province of Mazandaran covers an area of 23701 km\(^2\) in northern Iran. It constitutes the northern slopes of the Alborz Mountain Range and coastal lowland along the Caspian Sea. It is dominated by the green belt of the Hycranian vegetation zone, which stretches over the northern slopes of the Alborz mountain range and covers the southern coast of the Caspian Sea (G. Ghobadi et al. 2013). According to dramatic growth of electricity consumption in Mazandaran Province, the Regional Electric Company attempts to build a solar power plant in the province (http://www.suna.org.ir). Since, construction of this solar power plant needs purchasing solar panels, this article presents an integrated approach to evaluate and rank solar panels’ suppliers for establishing the solar power plant. As a result, eight authentic firms (GS01-08) in terms of supplying solar panels are to be evaluated.

4. Proposed Design

In this section, the steps of the integrated FAHP-VIKOR approach for purchasing solar panels used in the solar power plant are described. Figure 1 outlines the proposed approach.
Step 1: Preparing a list of green suppliers
As mentioned before, in this article, eight authentic firms (GS01-08) will be evaluated in terms of supplying solar panels.

Step 2: Identify the evaluation criteria
Since this article aims to evaluate the green supplier of solar power plant’s equipment, at first by reviewing scientific texts in this field and interviewing the experts of SUNA, ten criteria for suppliers’ evaluation were derived, which are shown in Table 1.

Step 3: Obtain the criteria weights
In this step, the weight of each criterion is obtained by applying FAHP method as follows (D.-Y.
Green Supplier Evaluation by Using an Integrated ...

Chang, 1996):

A: Create pairwise comparison matrix

In this part, the experts are asked to determine the importance of each criterion in pairwise comparison matrix, regarding to Table 2, presented by Kahraman et al. (C. Kahraman, 2006). In the proposed model, \((l, m, u)\) shows three elements of a triangular fuzzy number which always \(l \leq m \leq u\). The questionnaires are filled by the experts in the way that each criterion in each row will be compared with the criteria in the columns.

B: Calculate \(S_i\) for each row of the pairwise comparison matrix

For each row of the pairwise comparison matrix, \(S_i\) is computed by Equation 2:

\[
S_i = \left(\sum_{j=1}^{n} M_{gi}^j \otimes \left[\sum_{j=1}^{m} \sum_{i=1}^{n} M_{gi}^j\right]\right)^{-1}
\]
(2)

where \(i\) shows the row’s number; and \(j\), the column’s. In this equation \(M_{gi}^j\) and \(S_i\) are triangular fuzzy numbers.

\[
\sum_{j=1}^{m} M_{gi}^j = \left(\sum_{j=1}^{m} l_j, \sum_{j=1}^{m} m_j, \sum_{j=1}^{m} u_j\right)
\]
(3)

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^j = \left(\sum_{i=1}^{n} l_i, \sum_{i=1}^{n} m_i, \sum_{i=1}^{n} u_i\right)
\]
(4)

\[
\left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^j\right]^{-1} = \left(\frac{1}{\sum_{i=1}^{n} u_i}, \frac{1}{\sum_{i=1}^{n} m_i}, \frac{1}{\sum_{i=1}^{n} l_i}\right)
\]
(5)

C: Calculate the degree of possibility of \(S_i\) to each other

In general, if \(\tilde{M}_1 = (l_1, m_1, u_1)\) and \(\tilde{M}_2 = (l_2, m_2, u_2)\) are two triangular fuzzy numbers, the degree of possibility of \(\tilde{M}_2\) to \(\tilde{M}_1\) \(\left(V(\tilde{M}_2 \geq \tilde{M}_1)\right)\) is computed as Equation 6:

\[
V(\tilde{M}_2 \geq \tilde{M}_1) = hgt(\tilde{M}_1 \cap \tilde{M}_2) = \begin{cases}
0 & \text{if } m_2 \geq m_1 \\
1 - \frac{l_1 - u_2}{(m_2 - u_2) - (m_1 - l_1)} & \text{if } l_1 \geq u_2 \\
\text{o.w} & \text{otherwise}
\end{cases}
\]
(6)

In this step, the degree of possibility for a convex fuzzy number to be greater than n convex fuzzy
numbers $\bar{M}_j (j = 1, 2, \ldots, n)$ can be calculated by Equation 6.

$$V(\bar{M}_N \geq \bar{M}_1, \bar{M}_2, \ldots, \bar{M}_{N-1}, \bar{M}_n) = V(\bar{M}_N \geq \bar{M}_1), \ldots, V(\bar{M}_N \geq \bar{M}_n) = \min V(\bar{M}_N \geq \bar{M}_j) = d'(e_j)$$ (7)

Table 1. Supplier selection criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C02: Quality</td>
<td>(D. Simić et al., 2014), (S. H. Hashemi et al., 2015), (F. T. S. Chan and N. Kumar, 2007), (C. Gencer and D. Gürpinar, 2007), (S. H. Huang and H. Keskar, 2007)</td>
</tr>
<tr>
<td>C03: Delivery</td>
<td>(M. Nazam et al., 2015), (J. Roshandel et al., 2013), (K. Govindan et al., 2013), (R. Florez-Lopez, 2007), (Y. M. Chen et al., 2007)</td>
</tr>
<tr>
<td>C05: Production Flexibility</td>
<td>(M. Nazam et al., 2015), (S. H. Hashemi et al., 2015), (S. H. Huang and H. Keskar, 2007), (C. Bai and J. Sarkis, 2010)</td>
</tr>
<tr>
<td>C06: Innovation Capability</td>
<td>(M. Nazam et al., 2015), (C. Bai and J. Sarkis, 2010), (F. T. S. Chan et al., 2007), (A. Amindoust et al., 2012)</td>
</tr>
<tr>
<td>C07: Organizational culture</td>
<td>(J. Roshandel et al., 2013), (R. Florez-Lopez, 2007), (S. H. Huang and H. Keskar, 2007)</td>
</tr>
<tr>
<td>C09 Green procurement</td>
<td>(L. Shen, L. Olfat, and K. Govindan, 2013), (C. Ninlawan et al., 2010), (A. Webb, 2010), (H. Shekari et al., 2011), (Q. Zhu et al., 2005)</td>
</tr>
</tbody>
</table>

Table 2. Linguistic scales for difficulty and importance

<table>
<thead>
<tr>
<th>Linguistic scales for difficulty</th>
<th>Linguistic scales for importance</th>
<th>Triangular fuzzy scale</th>
<th>Triangular fuzzy reciprocal scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just equal (JI)</td>
<td>Just equal (JI)</td>
<td>(1, 1, 1)</td>
<td>(1, 1, 1)</td>
</tr>
<tr>
<td>Equally difficult (ED)</td>
<td>Equally important (EI)</td>
<td>(1/2, 1, 3/2)</td>
<td>(2/3, 1, 2)</td>
</tr>
<tr>
<td>Weakly more difficult (WMD)</td>
<td>Weakly more important (WMI)</td>
<td>(1, 3/2, 2)</td>
<td>(1/2, 2/3, 1)</td>
</tr>
<tr>
<td>Strongly more difficult (SMD)</td>
<td>Strongly more important (SMI)</td>
<td>(3/2, 2, 5/2)</td>
<td>(2/5, 1/2, 2/3)</td>
</tr>
<tr>
<td>Very strongly more difficult (VSMD)</td>
<td>Very Strongly more important (VSMI)</td>
<td>(2, 5/2, 3)</td>
<td>(1/3, 2/5, 1/2)</td>
</tr>
<tr>
<td>Absolutely more difficult (AMD)</td>
<td>Absolutely more important (AMI)</td>
<td>(5/2, 3, 7/2)</td>
<td>(2/7, 1/3, 2/5)</td>
</tr>
</tbody>
</table>
Calculate the criteria weight vector

The criteria’s weight vector will be as Equation 8:

\[W' = (d'(C_1), d'(C_2), ..., d'(C_n))^T \] \hspace{1cm} (8)

Obtain the final weight vector

To calculate the final criteria weights, it is enough to normalize the obtained weight vector of the previous step according to Equation 9:

\[W = \left(\frac{d'(C_1)}{\sum_{j=1}^{n} d'(C_j)}, \frac{d'(C_2)}{\sum_{j=1}^{n} d'(C_j)}, ..., \frac{d'(C_n)}{\sum_{j=1}^{n} d'(C_j)} \right) \] \hspace{1cm} (9)

Step 4: Ranking the suppliers

In this step, the VIKOR method is used to evaluate the different green suppliers, as follows (C.-L. Hwang and K. Yoon, 1981), (S. Opricovic and G.-H. Tzeng, 2004):

A- Construct the decision matrix

In this step, considering experts’ opinion, the score of each supplier is determined on each criterion. Accordingly, the Fuzzy Logic Theory was employed to determine each supplier’s score (L. Zadeh, 1965). The fuzzy linguistic variables are transformed into crisp values (defuzzification) by applying Chen and Hwang approach. The crisp value, corresponding to the Fuzzy number \(M \) can be obtained as follows: The presented minimizing and maximizing sets, are like Equations 10 and 11 (S.-J. J. Chen et al. 1992).

\[\mu_{\text{max}}(x) = \begin{cases} x & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \] \hspace{1cm} (10)

\[\mu_{\text{min}}(x) = \begin{cases} 1-x & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \] \hspace{1cm} (11)

The left utility score of each Fuzzy number \(M_i \) is introduced as \(\mu_L(M_i) = \text{Sup}_x [\mu_{\text{min}}(x) \land \mu_{M_i}(x)] \).

The \(\mu_L(M_i) \) is a unique real number, within \([0, 1]\). This score is the maximum membership amount from the intersection of \(M_i \) and Fuzzy min. The right utility value is similarly calculated as \(\mu_R(M_i) = \text{Sup}_x [\mu_{\text{max}}(x) \land \mu_{M_i}(x)] \). As \(\mu_L(M_i) \), \(\mu_R(M_i) \) is a unique real number within \([0, 1]\). By Calculating the left- and right scores, the total score of \(M_i \) is obtained as follows.

\[\mu_{\text{Total}}(M_i) = \left[\frac{\mu_R(M_i) + 1 - \mu_L(M_i)}{2} \right] \] \hspace{1cm} (12)

According to this approach, crisp score for linguistic terms \((M_i) \) can be computed as shown in Fig. 2. (A. Baykasoglu, 2012).

B- Calculate the normalized decision matrix
In this part, the normalized value r_{ij} is calculated by means of Equation 13:

$$r_{ij} = \frac{f_{ij}}{\sqrt{\sum_{j=1}^{l} f_{ij}^2}}, j = 1, ..., l; i = 1, ..., n$$ \hspace{1cm} (13)

C- Determine the best f_j^* and the worst f_j^- values

In this step, the best f_j^* and the worst f_j^- values of all criterion functions, ($j = 1, 2, ..., m$) are determined. If the jth function represents a benefit, then $f_j^* = \max_k f_{kj}$ or is set as the aspired/desired level, $f_j^- = \min_k f_{kj}$ or is set as the worst level.

D- Calculate the S_k and R_k values

In this part, the S_k values ($k = 1, 2, ..., n$), are obtained by using equation (14), which are shown as in the average gap. Also, R_k values are obtained by using equation (15), which are shown as maximal gap for improvement priority, where w_j are the weights of criteria, expressing their relative importance.

$$S_k = \sum_{j=1}^{m} w_j |f_j^* - f_{kj}| / |f_j^* - f_j^-|$$ \hspace{1cm} (14)

$$R_k = \max_{j} [|f_j^* - f_{kj}| / |f_j^* - f_j^-|] \hspace{1cm} j = 1, 2, ..., m$$ \hspace{1cm} (15)

E- Calculate the value Q_k

The Q_k ($k = 1, 2, ..., n$) values are obtained by equation (16):

$$Q_k = v \left(\frac{S_k - S^*}{S^- - S^*} \right) + (1 - v) \left(\frac{R_k - R^*}{R^- - R^*} \right), \hspace{1cm} k = 1, 2, ..., m$$ \hspace{1cm} (16)

Where

$S^* = \min_k S_k$ or let $S^* = 0$ be zero gap, i.e., achieve the aspired level,

$S^- = \max_k S_k$ or let $S^- = 1$ be the worst level,

$R^* = \min_j R_j$ or let $R^* = 0$ be zero gap, i.e., achieve the aspired level,

$R^- = \max_j R_j$ or let $R^- = 1$ be the worst level

Thus, we also can re-write $Q_k = v S_k + (1 - v) R_k$, when $S^* = 0, S^- = 1, R^* = 0$, and $R^- = 1$. v is
Green Supplier Evaluation by Using an Integrated ...

defined as the weight of the strategy of “the majority of criteria” (or “the maximum group utility”) and here $\nu = 0.5$.

F- Rank the alternatives
In this step, the alternatives are ranked based on the values of S, R, and Q. The results are three ranking lists.

G- Determine the compromise solution
The best alternative is selected (a'') based on the minimum value of Q, if the following two conditions are satisfied:

C1. “Acceptable advantage”:
$$ Q(a'') - Q(a') \geq DQ, $$
Where a'' is the alternative with second position in the ranking list by Q; $DQ = 1/(J - 1)$; and J is the number of alternatives.

C2. “Acceptable stability in decision making”:
Alternative a' must also be the best ranked by S or/and R. This compromise solution is stable within a decision-making process, which could be: “voting by majority rule” (when $\nu > 0.5$ is required), “by consensus”($\nu \approx 0.5$), or “with vote” ($\nu < 0.5$). At this point, ν is the weight of the decision-making strategy “the majority of criteria” (or “the maximum group utility”).

If one of the conditions is not satisfied, then a set of compromise solutions is suggested, which includes:

• Alternative a' and a'' if only condition C2 is not satisfied, or
• Alternative $a', a'', \ldots, a^{(n)}$ if condition C1 is not satisfied; and $a^{(n)}$ is determined by the relation $Q(a^{(n)} - Q(a')) < DQ$ for maximum n (the positions of these alternatives are “in closeness”).

As mentioned before, the best alternative, which is ranked by Q, is the one with the minimum value of Q. The main ranking result is the compromise ranking list of alternatives and the compromise solution with the “advantage rate.”
Figure 2. Linguistic terms to fuzzy number conversation to evaluate criteria values for each alternative

(A. Baykasoglu, 2012)

5. Results and Discussions

Initially, the weights of the ten criteria were determined by deploying FAHP method. Table 3 shows part of the pairwise comparison matrix as completed by the experts. The FAHP results show that the criteria weight vector consists of 0.113, 0.111, 0.110, 0.104, 0.098, 0.095, 0.099, 0.093, 0.091 and 0.086, respectively. The results show that the price criteria and pollution criteria have the highest and lowest weights respectively in determining the most appropriate supplier for solar power plant’s equipment.

Table 4 shows part of the suppliers’ scores on each criterion. The suppliers’ score with respect to each criterion was determined by using the experts’ opinion. For example, in Table 4 the score of supplier 1 on criterion 1 is M5. It means, the decision maker believes that performance of supplier 1 with respect to criterion 1 is “Below average” where, according to the linguistic terms as shown in Figure 2, “Below average” is equal to 0.420. Eventually, after constructing Table 4, the final rank of each supplier was determined by using VIKOR method. As shown in Table 5, the eighth supplier (GS08) is the most appropriate firm for supplying panels used in Mazandaran solar power plant.

Table 3. Part of the pairwise comparisons matrix of criteria

<table>
<thead>
<tr>
<th></th>
<th>C01</th>
<th>C02</th>
<th>C03</th>
<th>C04</th>
<th>C05</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>1</td>
<td>JD</td>
<td>WMI</td>
<td>SMI</td>
<td>EI</td>
</tr>
<tr>
<td>C02</td>
<td>JD</td>
<td>1</td>
<td>WMD</td>
<td>VSMI</td>
<td>JI</td>
</tr>
<tr>
<td>C03</td>
<td>WMD</td>
<td>WMI</td>
<td>1</td>
<td>SMI</td>
<td>SMD</td>
</tr>
<tr>
<td>C04</td>
<td>SMD</td>
<td>VSMD</td>
<td>SMD</td>
<td>1</td>
<td>VSMD</td>
</tr>
<tr>
<td>C05</td>
<td>ED</td>
<td>ED</td>
<td>SMI</td>
<td>VSMI</td>
<td>1</td>
</tr>
</tbody>
</table>
Green Supplier Evaluation by Using an Integrated ...

Table 4. Part of the scores of suppliers with respect to each criterion

<table>
<thead>
<tr>
<th></th>
<th>C01</th>
<th>C02</th>
<th>C03</th>
<th>C04</th>
<th>C05</th>
<th>...</th>
<th>C10</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS01</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>...</td>
<td>M8</td>
</tr>
<tr>
<td>GS02</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M7</td>
<td>M6</td>
<td>...</td>
<td>M10</td>
</tr>
<tr>
<td>GS03</td>
<td>M4</td>
<td>M4</td>
<td>M4</td>
<td>M4</td>
<td>M4</td>
<td>...</td>
<td>M8</td>
</tr>
<tr>
<td>GS04</td>
<td>M2</td>
<td>M2</td>
<td>M2</td>
<td>M3</td>
<td>M3</td>
<td>...</td>
<td>M5</td>
</tr>
<tr>
<td>GS05</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M2</td>
<td>M2</td>
<td>...</td>
<td>M6</td>
</tr>
</tbody>
</table>

6. Conclusion

The worldwide awareness of ecological protection is dramatically increasing. This is due to the ever-worsening ecological pollution. For organizations in need of attaining competitive advantage, the significance of green purchasing has become more prominent. The environmental performance of organizations interacts with two sets of factors namely: the inner environmental efforts and the suppliers’ environmental performances. Hence, in order to choose an appropriate supplier, a company needs to carry out a performance evaluation on potential green suppliers.

In this study, an integrated approach to select green suppliers of solar power plant was presented. Initially a list of suppliers meeting the minimum required conditions, was prepared. Then, based on the scientific texts and opinions of solar power industry experts, ten assessment criteria, including both economic and environmental factors were identified. Then, the weights of criteria were calculated with FAHP. The obtained results show that the price criterion is the most significant factor in selecting the best supplier for solar power plant’s equipment. Afterwards, based on experts’ opinion, on each criterion, the score of each supplier was determined and eventually, the rank of each supplier was acquired using VIKOR technique. Accordingly, supplier number 8 (GS08) was selected as the best firm for purchasing solar panels of Mazandaran solar power plant.

It is noteworthy that our proposed approach has the ability to evaluate green suppliers of solar power plant's equipment without quantitative information and by using linguistic terms to overcome the uncertainty due to human qualitative judgment. Senior and mid-level managers can use this method to select the most appropriate green suppliers for solar power plant’s equipment. For future research, the results can be compared with other fuzzy MCDM techniques such as fuzzy ANP- VIKOR. It can also be helpful to analyze the interdependencies among the decision criteria and their relative intensities. The impact of inter-relationship between criteria on decision making results need to be examined.
Table 5. Final Rank of Suppliers

<table>
<thead>
<tr>
<th>Final Rank</th>
<th>Supplier's code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GS8</td>
</tr>
<tr>
<td>2</td>
<td>GS2</td>
</tr>
<tr>
<td>3</td>
<td>GS7</td>
</tr>
<tr>
<td>4</td>
<td>GS1</td>
</tr>
<tr>
<td>5</td>
<td>GS3</td>
</tr>
<tr>
<td>6</td>
<td>GS5</td>
</tr>
<tr>
<td>7</td>
<td>GS4</td>
</tr>
<tr>
<td>8</td>
<td>GS6</td>
</tr>
</tbody>
</table>

References

C. Gencer and D. Gürpınar, “Analytic network process in supplier selection: A case study in an
Green Supplier Evaluation by Using an Integrated ...

HakimiAsl, Amalnick, Zorriassatine and HakimiAsl

Green Supplier Evaluation by Using an Integrated ...

