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Abstract 

Material selection is a problematic issue in manufacturing processes. Inappropriate selected 

material may fail the manufacturing process or results in disaster for end users, especially in high-

tech industries such as aircraft and shipping. A weighted linear optimization method (WLOM) in 

the class of data envelopment analysis is adopted to address material selection problem which deals 

with both qualitative and quantitative criteria, effectively. However, it is demonstrated that the 

adopted WLOM method is not able to produce a full ranking vector for the material selection 

problems borrowed from the literature. In this paper an augmented common weight data 

envelopment analysis model (ACWDEA) is developed with the aim of eliminating deficiencies of 

WLOM model. The proposed ACWDEA is able to produce full ranking vector in decision making 

problems with less computational complexity in superior to the WLOM. Also, the proposed 

ACWDEA determines the weight of qualitative and quantitative criteria precisely with solving a 

model without needing to any judgmental data. All the criteria will be involved in evaluation 

process with setting a lower bound for them. The presented ACWDEA can be used for any type of 

decision making problems as well as material selection problems. Finally, the robustness and 

effectiveness of the proposed ACWDEA method are evaluated through with solving two material 

selection problems and using Spearman’s correlation tests. 
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1. Introduction  

Selecting the most appropriate material for the production processes plays an important role in the 

early stage of the product life cycle, especially in design and redesign processes (Edwards, 2005; 

Deng and Edwards, 2007). As there are a large number of criteria which ranges from mechanical to 

electrical characteristics, decision makers need to consider all the attributes simultaneously 

(Shanian and Savadogo, 2006.a). Material characteristics typically consist of mechanical, chemical, 

physical, magnetic, thermal and radiation, surface, and manufacturing properties in addition to 

availability, reliability, durability, cost, cultural aspect, and etc. (Crilly et al., 2004, Van Kesteren et 

al., 2007, Rao and Davim, 2008; Jahan et al., 2010). On the other hand, selecting improper material 

may result in failure in manufacturing processes, producing low-quality products, incurring extra 

costs, customer dissatisfaction, and decreasing operation performances (Torabi and Shokr, 2015; 

Jahan et al., 2011). Since both of the qualitative and quantitative criteria must be involved in 

material selection problems, it is a challenging issue to evaluate materials in the presence of 

different qualitative and quantitative criteria which are often in conflict together (Torabi and Shokr, 

2015). It is noteworthy to mention that, criteria whose higher performance measures are preferable 

(i.e. quality) are known as positive criteria and criteria whose smaller values are desirable (i.e. cost) 

are called negative criteria. Criteria are often in conflict together. Therefore, it is vital to develop an 

efficient approach to determine the best material in engineering (Deng and Edwards, 2007) and 

production design stages (Cicek et al., 2010). 

Multi-criteria decision making (MCDM) methods are widely-used techniques which can be applied 

as part of engineering design processes especially in material selection problems (Jahan and 

Edwards, 2015). Due to the simplicity and ease of applicability, MCDM techniques are often 

preferred to other methods for selecting the most proper material. A typical multi-attribute decision 

making (MADM) problem encompasses a number of alternatives and criteria both qualitative and 

quantitative. Alternatives should be evaluated after recognizing weight of criteria. Several MADM 

methods have been suggested by researchers to cope with material selection problems. Each of the 

MADM methods has some advantages and disadvantages and decision maker should select the best 

one case by case.  

Jahan et el. (2011) proposed a new version of VIKOR method and applied it to material selection 

problems. They stated that their method could enhance the exactness of material selection results. 

Jeya and Vinodh (2012) applied fuzzy VIKOR for a material selection problem. As performance 

measures could be incomplete because of receiving in a linguistic manner from the decision maker, 

they used fuzzy numbers to overcome this difficulty. Jahan and Edwards (2012) studied the problem 

of material selection when a range of values for alternatives existed for each of criterion. For 

overcoming this difficulty they presented a VIKOR method with the ability of considering interval 

data. Jee and Kang (2000) exploited TOPSIS in order to obtain the most appropriate material for a 

flywheel material selection problem. Shanian and Savadago (2006.b) utilized Oidinary and Blok 

TOPSIS to enhance efficiency of their proposed method in a material selection problem. Rao and 

Davim (2008) utilized TOPSIS and AHP methods to present a procedure which is able to consider 

infinite number of qualitative and quantitative criteria in material selection problems. Chatterjee et 

al. (2009) utilized ELECTRE and VIKOR on the flywheel and the sailing boat material selection 
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problems. Notably, ELECTRE and VIKOR belong to the outranking and compromising methods, 

respectively. Milani and Shanian (2006) employed ELECTRE III for the gear problem with 

consideration of incomplete data tradeoff and designers’ preferences. Also, ELECTRE IV is applied 

by Shanian and Savadogo (2006.c) as a non-compensatory comprised solution to a material 

selection problem. ANP is utilized by Milati et al. (2013) on a case study to show how inner and 

outer dependencies among criteria and alternatives could affect the final ranking. Milani et al. (2005) 

investigated on the effect of different normalization techniques on the final rankings. Also, they 

exploited from Entropy and TOPSIS on a gear for power transmission material selection problem. 

Jahan et al. (2012) presented a new normalization method in addition to extending TOPSIS method. 

Their proposed method is able to find the best material where the current TOPSIS is deficient in 

ranking. Athawale et al. (2011) proposed a Utility Additive Method (UTA) as a mathematical 

programming in order to solve flywheel and sailboat material selection problems. Maniya and Bhatt 

(2010) developed preference selection index (PSI) method and represented its applicability on 

material selection problems. Mayyas et al. (2011) utilized a combination of quality function 

deployment (QFD) and AHP to find the best material in a vehicular structure material selection 

problem. QFD is exploited to collect customer needs and AHP is used to select the best material. 

Also, a combination of QFD and VIKOR is applied by Cavallini et al. (2013) to a material selection 

problem. Kumar and Singal (2015) employed AHP, TOPSIS, and a modified TOPSIS method in 

penstock and mild steel material selection problems. Chatterjee et al. (2011) proposed complex 

proportional assessment (COPRAS) and evaluation of mixed data (EVAMIX) as novel methods in 

MCDM. Applicability of the adopted methods is represented on material selection problems as well. 

Chatterjee and Chakraborty (2011) applied extended PROMETHEE II, COPRAS with gray 

relations, ORESTE, and operational competitiveness rating analysis (OCRA) as four MCDM 

methods on gear material problem. Chauhan and Vaish (2012) utilized Shannon’s entropy method to 

find the weight of criteria and a combination of VIKOR and TOPSIS methods to determine the best 

material in a magnetic material selection problem. Extended TODIM, OCRA, ARS, and EVAMIX 

as MCDM methods are utilized by Dajri and Rao (2014.a) to find the best material in the sugar 

industry. Dajri and Rao (2014b) extended their previous work and compared four MCDM methods 

in the pipe material selection in the sugar industry in which Fuzzy AHP (FAHP) and TOPSIS, FAHP 

and VIKOR, FAHP and ELECTRE, and finally FAHP and PROMETHEE were applied. Liu et al. 

(2014) proposed a novel hybrid MCDM model with target based criteria consisting of a hybrid 

DEMATEL-ANP (DANP) and modified VIKOR. They showed that DEMATEL is a useful tool to 

model such problems when there are dependencies among the criteria in material selection 

problems. 

Data Envelopment Analysis (DEA) is a well-known linear programming method which is able to 

calculate the efficiency of different decision making units (DMUs). There are several DEA-like 

models presented in the literature to evaluate DMU’s efficiency scores in existence of exact or 

imprecise data (Cook et al., 1993; Cook et al., 1996; Zhu, 2003). Zhou et al. (2007) proposed a 

mathematical model which is able to produce the most favorable score for each DMU, but it has a 

poor discriminating power while assessing DMUs’ efficiencies (Torabi and Hatefi, 2010). Torabi 

and Hatefi (2010) proposed a common weight DEA method with more discriminating power for 

evaluating DMUs’ efficiencies. The proposed method by Torabi and Hatefi (2010) is not able to 

deal with qualitative criteria. Hatefi et al. (2014) proposed a new weighted linear optimization 
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which is capable to cope with qualitative criteria as well as quantitative criteria. 

In spite of several efforts to solve material selection problems, it is still necessary to develop 

appropriate methods to cope with qualitative criteria more precisely. Most of the reviewed MCDM 

methods on the material selection problems are not precise enough to deal with qualitative criteria. 

Typically Likert scale was used by previous reviewed methods to quantify the qualitative criteria. 

Likert scale is a simple method by which decision makers assign 1 to 9 to qualitative criteria in 

order to quantify them. Notably, evaluating DMUs with involving qualitative criteria more precisely 

is an important issue, especially in the material selection process in high-tech industries such as 

aircrafts, while improper material selection may lead to crisis for end-users.  

Hatefi et al. (2014) proposed a weighted linear optimization method (WLOM) in the class of 

DEA-like models for evaluating efficiency of DMUs which is able to cope with qualitative criteria 

more precisely than other methods. Also, it requires less subjective data from decision makers (i.e. 

weight of each criterion) and is able to compute the weight of criteria with solving a mathematical 

model. Torabi and Shokr (2015) demonstrated that the WLOM (Hatefi et al., 2014) may be deficient 

with poor discriminating power in some cases of material selection problems in which full ranking 

vector might be not produced. Therefore, in this paper the WLOM model is modified to augment its 

discriminating power to be more efficient and practical. Table (1) represents the most important 

reviewed researches in the field of material selection problems. 

Table 1. The most important reviewed methods 

Author Problem 
Quali-

tative 

Quant-

itative 
Quantifying 

Weighting 

method 

Assessing 

method 

Khabbaz et al. 

(2009) 

Spar of aircraft, 

Sailing boat 
  

Fuzzy 

linguistic 

Fuzzy 

linguistic 
Fuzzy logic 

Athawale et al. 

(2011) 

Spar of aircraft, 

Sailing boat 
  Likert Scale Likert Scale 

Mathematical 

programming 

Rao et al. 

(2008) 

Metallic bipolar 

plate 
   

Comparison 

matrix 
VIKOR 

Chatterjee et 

al. (2009) 

Flywheel, Sailing 

boat 
  Likert Scale 

Comparison 

matrix 

VIKOR, 

ELECTRE II 

Jahan et al. 

(2011) 

Metallic bipolar 

plate 
  Likert Scale Delphi method VIKOR 

Jahan et al. 

(2010) 

Flywheel, Spar of 

aircraft 
  Likert Scale 

Comparison 

matrix 

Linear 

assignment 

Rao and 

Davim (2008). 

Cryogenic 

storage tank 
  Likert Scale 

Comparison 

matrix 
AHP 

Jee and Kang 

(2000) 
Flywheel   Likert Scale Subjective TOPSIS 

Shanian et al. 

(2006.b) 
A bipolar plate    Simos method TOPSIS 

Proposed 

ACWDEA 

Spar of aircraft, 

Sailing boat 
  

Mathematical 

concept 

Mathematical 

programming 

Mathematical 

programming 

 

Importance of material selection is described earlier. Every material has its own quantitative and 

qualitative characteristic which should be considered during assessing materials. On other hand 

quantifying qualitative criteria is an arguable issue in literature. Most of the reviewed methods used 

from Likert scale, judgmental data, and comparison matrices in order to quantify the qualitative 
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criteria. Using these methods are not enough precise due to bias subjective data. On the other hand 

using methods such as comparison matrices increase complexity of problem, significantly. Thus, it 

is vital to use an efficient method which deals with qualitative criteria as precise as quantitative with 

fewer complexities. For this purpose the WLOM method (Hatefi et al., 2014) can be helpful. As it is 

shown in this paper the WLOM has poor discriminating power while ranking materials. For this 

purpose, WLOM is modified and the ACWDEA method is presented. Less computational 

complexity and stronger discriminating power are two main advantages of the proposed method. 

Also, any judgmental data are not necessary for weighting criteria in ACWDEA. Weights of criteria 

will be determined through solving model in a common weight approach. 

The remainder of this paper is organized as follows. The proposed ACWDEA model with 

discussing on the WLOM model is presented in Section 2. In Section 3, two material selection 

problems borrowed from the literature are discussed. The robustness and effectiveness of the 

proposed ACWDEA are provided in Section 4 and finally concluding remarks are performed in 

Section 5. 

2. Proposed MCDM method 

As mentioned in previous section, the WLOM (Hatefi et al., 2014) has shortcoming in producing 

full ranking vector especially on material selection problems. In this section the WLOM is modified 

to eliminate its deficiency. Notably in this paper, exploited efficiency measures are not specific to a 

certain DMU, but common to all DMUs for utilizing common weights approach. Also, our 

presented method requires less computation complexity and is able to determine the efficiency of 

DMUs with one time running while the WLOM needs to be run multiple times. The presented 

ACWDEA can be categorized in common weight data envelopment analysis methods, which is 

named augmented common weight data envelopment analysis (ACWDEA) in this paper. Therefore, 

proposed ACWDEA has two main advantages: (i) improving the discriminating power among 

DMUs with unity efficiency in order to produce a full ranking vector and (ii) decreasing the number 

of times which the model should be solved.  

Hatefi et al. (2014) assumed that there are 2M  qualitative criteria besides 1M  quantitative criteria, 

and proposed the following WLOM for evaluating efficiencies of N DMUs. Following notations are 

used to develop WLOM: 

Indices: 

n Index of DMUs (n ∈ A={1, 2, …, N})  

i Index of linear programming (LP) model which should be solved (1≤ i≤ N) 

j Index of quantitative criteria (j = 1,2, …, M1) 

r Index of qualitative criteria (r= 1, 2, …, M2) 

l Index of level for r-th qualitative criterion (l= 1,2, …, Lr ) 

A Set of DMUs  
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Parameters: 

ynj Performance measure of j-th quantitative criterion for n-th DMU  

zri(n) Indicator for place of r-th qualitative criterion performance for item n 

ε The first discriminating parameter 

Variables: 

vij weight of r-th quantitative criterion when LP i runs 

wi
rl weight of l-th level for r-th qualitative criterion when LP i is runs 

 
1 2

1 1 1

 

M M L
i i

ij ij rl rl

j r l

f Max v y w z i
  

                                     (1) 

 
1 2

1 1 1

1 ,
M M L

ij nj rl rl

j r l

i nv y w z n
  

                                     (2) 

   1
,, 1,2, , 1r

i i
rl r l

r lw w L


                                       (3) 

,i
rL rw                                     (4) 

,ij jv                                     (5) 

 

The i-th WLOM model should be solved to determine the efficiency score of DMU i (1≤ i≤ N). Also, 

yrl(n) is defined as follows: 

 
if item   is rated in the  -th level in respect to  the  -th criteri1

0 otherwi

a

serl

n l r
y n





   
              

(6) 

 

Qualitative criteria can be classified into L levels. For instance, assume that price for materials as 

the first qualitative criterion is classified into three levels: low, medium and high. In this example L 

is equal to 3. Furthermore, assume that the performance measure of price with respect to item 4 is 

medium. Then we have  11 4 0y  ,  12 4 1y  , and  13 4 0y  . In model, i
rLw  signifies the weight of 

r-th criterion at l-th level for i-th.  Equation (2) denotes that DMUs efficiencies should be less than 

unity. Equations (3) and (4) denote and guarantee the acceptable set of weights for qualitative 

criteria and Equations (5) guarantees the lower bound for quantitative criteria. Also, ε is a 

discrimination parameter which sets a lower bound for weight of criteria. Determining the proper 

value for ε as the most discriminating power which maintains the model feasible is important. 

Hatefi et al. (2014) proposed using max  instead of ε so that it generates the most strength 

discrimination when ranking DMUs. They suggested using formulas (6) and (7) to calculate max : 
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1
,  1,2, ,max

n

min n N


  
 
  

     (7) 

 
1 2

1 1

    1r

M M

n nj nr

j r

y L I
 

       (8) 

In Equation (8), n  must be calculated for each DMU and nrI  represents the place of r-th 

qualitative criterion performance for item n. Thus we have y r(I w) (n) =1 according to Equation (6).  

A greater value for the objective function denotes a better performance. So, the efficiency value 1 

will be assigned to the best DMU. As mentioned previously, considering qualitative criteria in 

parallel to quantitative criteria as precise as possible is the WLOP’s advantage. It is able to calculate 

the weight of each criterion via solving model (1)-(5) and extra methods, such as AHP and 

comparative matrices, are not required to determine the criteria weights. In other words, fewer 

subjective and objective opinions are needed in comparison with other MCDM methods such as 

AHP, ANP, and TOPSIS for weightings. 

Despite advantages, the proposed method by Hatefi et al. (2014) has two deficiencies. First, it is not 

able to produce a full ranking vector in some cases, which is shown in Section 3. Second, the 

current model needs to be solved for each alternative, separately. For instance, if a decision making 

problem contains N alternatives, it is required that the model be solved N times. To alleviate these 

deficiencies, an augmented common weight data envelopment analysis (ACWDEA) is proposed as 

follows. 

Suppose that there are N entities as DMUs, M1 quantitative criteria (i.e. Price), and M2 qualitative 

criteria (i.e. Quality). Let nd  indicates the deviation of DMU n from unity. To develop the 

ACWDEA following notations are defined in addition to previous defined sets and parameters. 

 

Parameters: 
  The second discriminating parameter 

Variables: 

dn Deviation of i-th DMU from unity 

Vj Common weight of j-th quantitative criterion 

Wrl Common weight of l-th level for r-th qualitative criterion  

 

Accordingly, model (1)-(5) is reformulated as follows: 

n
nf Mind   (9) 

 
1 2

1 1 1

1,   

M M L

j nj nrl rl

j r l

V y W z n d n
  

       (10) 

( 1) ,     1,2, , 2 ;  1,2, , 1rrl r lW W r M l L      

 
(11) 
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,         1,2, , 2
rrLW r M  

 
(12) 

,            1,2, , 1jV j M  

 
(13) 

As defined with Equation (6),  rly n is equal to 1 if the DMU n is rated in level l for r-th qualitative 

criterion; otherwise is equal to 0. Also,   is a discriminating power and Equations (7) and (8) can 

be used to determine its value. Notably, efficiency of DMU n is equal to 1-dn which will be obtained 

after solving the model. The model (9)-(13) finds the minimum deviation for the DMU n from unity. 

In other words, it aims to maximize the efficiency of the DMU n. Spirit of the model (9)-(13) is 

similar to the WLOM, but its discriminating power is not enhanced yet. Using above model still 

needs to be run for N times to find DMUs’ efficiencies. For overcoming these difficulties, the 

minimax approach is exploited to minimize the maximum deviations from unity among DMUs. 

Thus, the above model is reformulated again as follows: 

Min    (14) 

1,...,,
n

d n N  

  

(15) 

(10)-(13)
 

 

It is assumed that { }
n

Max d  is equal to α. The modified model is able to determine the DMUs’ 

efficiencies with one attempt of running the last model. Hereby, the computation complexity of 

WLOM is resolved, but this model might determine more than one efficient (i.e. the best) DMU 

with unity efficiency. In other words, it might not result in a full ranking vector. For overcoming 

this difficulty, the above model is reformulated as follows: 

n

n EF

Min d 


    
(16) 

1,...,,
n

d n N  

  

(17) 

(10)-(13)
 

 

EF signifies the set of DMUs which their efficiencies are calculated as 1 after solving the model 

(10)-(15).   is the second a discriminating parameter which can tolerate between 0 and 1 

( [0,1]  ). The above model can obtain a full ranking vector with involving the discriminating 

parameter (  ). Decision maker can change   from 0 to 1 with a preset step size (i.e. 0.1) until it 

coverage to a full ranking vector. Finally, the proposed ACWDEA method is as follows: 
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 
1 2

1 1 1

( 1) 2

2

1

1,

1,...,

1,.  

,    1, 2, ,  ;  1, 2, , 1

,        1, 2, ,

,            1, 2, ,

..,

,

r

n

n EF

M M L

j nj rl rl n

j r l

rl r l

rL

j

n

r

d n N

n N

Min d

V y W z n d
ACWD

W W r M

EA

l L

W r M

V j M

 











  



 



  

      






 

  
















 

 

(18) 

To avoid any scaling problem we suggest normalizing the input data (i.e. Performance measures of 

each DMU) before applying the proposed ACWDEA method. In this way, the following 

normalization methods known as linear max-min approach are recommended (Milani et al., 2005; 

Jahan and Edwards, 2015): 

 
   

1,2, ,

1,2, , 1,2, ,

  1,2, ,          1,2, ., 1

ij iji N

ij

ij iji N i N

y min y
R

max y min y

for i m and j M

 

   






   

  (19) 

 
   
1,2, ,

1,2, , 1,2, ,

  1,2, ,          1,2, ., 1

ij iji N

ij

ij iji N i N

max y y
R

max y min y

for i m and j M

 

   






     

(20) 

 

Equation (19) and (20) should be used for beneficial and non-beneficial criteria, respectively. The 

following algorithm is presented to solve the ACWDEA model in order to evaluate the efficiency of 

materials and even any other type DMUs in MCDM problems: 

 

Normalize the performance measures using Equations (19)-(20). 

0  , 0.05 0.1StepSize or  , false    

While false do 

 Solve ACWDEA using model (18) 

 If full ranking vector obtained 

  Report the obtained results as final efficiency scores of DMUs 

true  

 Else 
  StepSize    

End while 

 

Figure (1) represents the flowchart for solving the proposed ACWDEA and achieving a full ranking 

vector. 



Shokr, Amalnick and Torabi 

 

  

Int J Supply Oper Manage (IJSOM), Vol.3, No.2 1243 

 

Start

Set ξ=0

Solve the ACWDEA 

model

Is full ranking 

obtained?

Stop

Yes

ξ=ξ+StepSize

No

Normalize 

performance measures

Adjust the StepSize

 

Figure 1. Flowchart for applying the ACWDEA method 

3. Verification of the proposed ACWDEA method 

Two case studies are borrowed from the literature to represent the applicability of the proposed 

ACWDEA method. Case studies are selected from high tech industries such as aircraft and shipping 

which is vital to select proper material in their manufacturing processes. The Spar of an aircraft`s 

wing and sailing boat material selection problems are two studied problems in this paper which the 

improper selected material might result in crisis for end-users.  

 

3.1 The first case study: Spar of an aircraft`s wing material selection 

The material selection problem for spar of an aircraft wing is borrowed from the literature 

(Mahmudi et al., 2000). Spar is one of the most important elements of a wing in aircrafts which act 

as a beam. Spar tolerates all aero dynamics and static loads which could be applied to the wing 

directly or indirectly. Selecting the appropriate material is a vital decision due to limitation of 

allowed weight in ultra-light structure of aircrafts (Khabbaz et al., 2009). The material properties 

are provided in Table (2). Lower values for price and density are favorable. Hence, price and 

density criteria are non-beneficial while the others are beneficial.  

Mahmudi et al. (2000) concluded that attributes like tensile strength (MPa), young`s modulus 

(GPa), compressive strength (MPa) and density are the most favorable properties which should be 

considered in the spar material selection procedure. Khabbaz et al. (2009) suggested adding the 

price and the creep resistance to the problem. It is worth mentioning that the creep resistance is a 
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qualitative criterion and the WLOM proposed by Hatefi et al. (2014), which accounts for both 

quantitative and qualitative criteria, can be useful in ranking the materials . 

The WLOM (Hatefi et al., 2014) is applied to solve the Spar of an aircraft`s wing problem. Efficiency 

of each DMU while using WLOM is reported in Table (3). 

It can be concluded from Table (3) that, WLOM is not able to obtain a full ranking vector even with 

applying normalization methods and DMUs M4 and M12 are determined as unity efficiency.  

When the WLOM is not able to produce a full ranking vector, Torabi and Shokr (2015) suggested 

solving the problem under different normalization methods to alleviate obtaining non-full ranking 

vector on some problems. In our case, a full ranking vector is not obtained when the problem is solved 

with WLOM under normalized performance measures as it is obvious from Table (3). 

Table 2. Performance measures for the Spar of an aircraft`s wing problem 

No. Name Price 

Tensile 

strength 

(MPa) 

Young’s 

modulus 

(GPa) 

Density 

(gr/cm3) 

Compressiv

e strength 

(MPa) 

Creep 

resistance 

(25 °C) 

M1 Al 7075-T6 3.5 581 70 2.6 581 Good 

M2 Al 2024-T4 3.5 425 72.5 2.6 425 Good 

M3 Ti–6Al–4V 21 1008 112 4.4 1008 Excellent 

M4 Ti–2Fe–3Al–10V 22 1295 120 4.5 1295 Excellent 

M5 E-glass73%-Epoxy 2.6 1642 55.9 2.17 410 Average 

M6 E-glass56%-Epoxy 2.5 1028 42.8 1.97 290 Weak 

M7 E-glass65%-Polyester 2.5 340 19.6 1.8 90 Weak 

M8 
S-glass70%-Epoxy 

continuous fibers 
9 2100 62.3 2.11 550 Average 

M9 
S-glass70%-Epoxy 

fabric 
8 680 22 2.11 180 Average 

M10 Carbon 63%-Epoxy 45 1725 158.7 1.61 900 Average 

M11 Aramid 62%-Epoxy 20 1311 82.7 1.38 300 Average 

M12 Balsa 6 28.5 7 0.22 17.5 Average 

 

 

Table 3. Results of WLOM method for the Spar of an aircraft’s wing problem 

No. M4 M12 M3 M1 M10 M2 

WLOM 1 1 0.937 0.775 0.761 0.747 

No. M5 M8 M11 M6 M9 M7 

WLOM 0.715 0.662 0.605 0.498 0.475 0.405 
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Table 4. Compared results between ACWDEA and that of WLOM 

No. WLOM (Hatefi et al., 2014) 
ACWDEA 

 =0  =0.1 

M4 1 1 1 

M12 1 1 0.5270284 

M3 0.936817 0.9368167 0.9362642 

M1 0.774748 0.7747484 0.7569822 

M10 0.760717 0.7607169 0.7170768 

M2 0.746555 0.7465546 0.7287884 

M5 0.715277 0.7152768 0.6891727 

M8 0.662474 0.6624741 0.6349363 

M11 0.604845 0.6048447 0.5498793 

M6 0.498333 0.4983331 0.4671105 

M9 0.474868 0.4748683 0.4473305 

M7 0.405331 0.4053312 0.3688638 

 

 

Table 5. Comparative results with previous researchers for the Spar of an aircraft’s wing problem 

 
ACWDEA 

Torabi and Shokr 

(2015) method 

Khabbaz et al. 

(2009) method  

Mahmudi et al. 

(2000) method  

Rank 1 M4 M4 M10 M10 

Rank 2 M3 M3 M3 M4 

Rank 3 M1 M1 M4 M3 

Rank 4 M2 M2 M8 M8 

Rank 5 M10 M10 M5 M5 

Rank 6 M5 M5 M1 M1 

Rank 7 M8 M8 M2 M11 

Rank 8 M11 M12 M11 M2 

Rank 9 M12 M11 M6 M6 

Rank 10 M6 M6 M9 M9 

Rank 11 M9 M9 M12 M12 

Rank 12 M7 M7 M7 M7 

 

To remove this deficiency, the proposed ACWDEA is applied to the problem. Results are reported in 

Table (4). The second discriminating parameter (  ) is set to 0 at the first step of flowchart provided in 

Figure (1). In other words, first the problem should be solved without considering the second 

discriminating parameter into model (  ). When the problem solved using ACWDEA with ξ=0, full 

ranking vector was not obtained similar to the results of WLOM. It is assumed pre step-size is equal 

to 0.05 in our example. Thus, the second discriminating parameter (  ) will be increased in next 

iterations with this step-size. As can be seen from Table (4), full ranking vector is obtained after two 

iterations (ξ=0.1).  
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As can be seen from Table (4) the proposed ACWDEA method is able to produce full ranking vector 

in two steps while the WLOM is not. Also, the obtained results are compared to the previous 

researchers’ results reported in Table (5). Also, as our applied method weights the qualitative criteria 

more precisely than the methods used by previous researches, therefore ACWDEA can perform better 

than other methods. Notably, the proposed method calculates the weights of criteria in parallel to 

solving the model and finding DMUs ranking. Thus, any judgmental data are not required for 

weighting criteria in ACWDEA, but previous researches weight the criteria with judgmental data. 

Hence the ACWDEA enable decision makers to rank DMUs more precisely without any biased 

subjective data. 

3.2 The second case study: Sailing boat material selection 

The problem which is provided by Khabbaz et al. (2009) is to select the most appropriate material in 

sailing boat mast in the form of length 1000mm, which should have a total compressive axial force of 

153 KN. At this application, it is a major issue to consider low specific density because of weight 

limitations in addition to have high yield strength and high elastic modulus to resist the plastic 

yielding and local and global buckling. The performance measures for each alternative are 

summarized in Table (6). The problem is solved by WLOM and results are reported in Table (7). 

As it is obvious from the Table (7), the WLOM method is not able to produce full ranking vector in 

this case. Thus, the proposed ACWDEA method is applied to solve the problem. At first step the 

discriminating parameter (ξ) is set to 0 and the problem is solved again. As can be seen from Table 

(8), full ranking vector is not obtained at the first step (ξ=0). Thus, the step size is selected to be 

0.05 and the model is solved again according to the proposed algorithm in Section (2). Note, that 

the second discriminating power (ξ) will be increased with the step size 0.05 until the full ranking 

vector obtains. 

As can be concluded, a full ranking vector is obtained by ACWDEA method in two iterations. Also, 

It is worth mentioning that, ACWDEA method has produced results with more discriminating 

power than that of WLOM method with  =0 in this case. Comparative results are provided in 

Table (9). 

Table 6. The sailing boat material selection problem (Khabbaz et al., 2009) 

No Material 

Specific 

strength 

(MPa) 

Specific 

modulus 

(GPa) 

Corrosion 

resistance 

Cost 

category 

M1 AISI-1020 35.9 26.9 Poor very low 

M2 AISI-1040 51.3 26.9 Poor very low 

M3 ASTM A242 type1 42.3 27.2 Poor very low 

M4 AISI 4130 194.9 27.2 very good moderate 

M5 AISI 316 25.6 25.1 very good moderate 

M6 AISI 416 (heat treated) 57.1 28.1 very good moderate 

M7 AISI 431(heat treated) 71.4 28.1 very good moderate 

M8 AA 6061 T6 101.9 25.8 good low 

M9 AA 2024 T6 141.9 26.1 good low 
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Table 6. Continued 

 

 

 

 

 

 

 

 

Table 7. Results when WLOM is applied to the sailing boat material selection problem 

No. M2 M4 M11 M12 M3 M1 M10 M9 

WLOM 1 1 1 1 0.998 0.996 0.991 0.990 

No. M8 M7 M6 M13 M5 M4 M5  

WLOM 0.979 0.971 0.967 0.950 0.948 0.891 0.799  

 

 

Table 8. Comparison between the results of ACWDEA and that of WLOM 

No. WLOM (Hatefi et al., 2014) ACWDEA 

   =0  =0.05 

M2 1 0.9704837 0.9617771 

M4 1 1 1 

M11 1 1 0.9912933 

M12 1 1 0.8470452 

M3 0.9988214 0.9693052 0.9605985 

M1 0.9960237 0.9665074 0.9578008 

M10 0.9913042 0.9913042 0.9825975 

M9 0.9908228 0.9908228 0.9821161 

M8 0.9793495 0.9793495 0.9706428 

M7 0.9715479 0.9715479 0.9715479 

M6 0.9678556 0.9678556 0.9678556 

M13 0.9508457 0.9508457 0.9508457 

M5 0.9482698 0.9482698 0.9482698 

M14 0.8910782 0.8910782 0.8910782 

M15 0.7993868 0.7993868 0.7993868 

 

Table 9. Comparison between the results of ACWDEA and those previous researchers 

 
ACWDEA 

Athawale et al. (2011) 

method [22] 

Khabbaz et al. (2009) 

method [7] 

Rank 1 M4 M14 M14 

Rank 2 M11 M15 M13 

Rank 3 M10 M13 M15 

No Material 

Specific 

strength 

(MPa) 

Specific 

modulus 

(GPa) 

Corrosion 

resistance 

Cost 

category 

M10 AA 2014 T6 148.2 25.8 good Low 

M11 AA 7075 T6 180.4 25.9 good low 

M12 Ti-6Al-4V 208.7 27.6 excellent very high 

M13 Epoxy-70%glass fabric 604.8 28 very good high 

M14 Epoxy-63% carbon 

fabric 
416.2 66.5 very good very high 

M15 Epoxy-62% aramid 

fabric 
637.7 27.5 very good very high 
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Table 9. Continued 

 
ACWDEA 

Athawale et al. (2011) 

method [22] 

Khabbaz et al. (2009) 

method [7] 

 

Rank 4 M9 M4 M4 

Rank 5 M7 M11 M11 

Rank 6 M8 M10 M9 

Rank 7 M6 M9 M10 

Rank 8 M2 M8 M8 

Rank 9 M3 M12 M12 

Rank 10 M1 M7 M7 

Rank 11 M13 M6 M6 

Rank 12 M5 M5 M5 

Rank 13 M14 M2 M2 

Rank 14 M12 M3 M3 

Rank 15 M15 M1 M1 

 

As can be seen from Table (9), there is a deviation between the results of ACWDEA and that of 

previous researchers. ACWDEA determined M4 as the best material, but Athawale et al. (2011) 

method and Khabbaz et al. (2009) method reported M14 as the best one. The previous methods 

utilized from the Likert scale to quantify the qualitative criteria which is not as precise as the 

proposed ACWDEA method. It means 0 to 9 scores will be assigned to qualitative criteria in order 

to quantify them in previous methods, but ACWDEA does not need to receive judgmental views to 

weight criteria and weights of criteria will be calculated with solving the model.  

 

4. Discussion 

To verify the proposed model, the robustness and effectiveness of the ACWDEA method is assessed. 

The Spearman’s correlation test is applied, which readers may refer to (Sheskin, 2003) for more 

details. The Spearman’s correlation test shows whether or not there is a positive correlation between 

the obtained results of ACWDEA and that of WLOM. For this purpose the Following hypothesis is 

tested: 

0

1

: 0

: 0

H r

H r









 

The null hypothesis (H0) indicates that there is no any correlation (r) between the results of the two 

methods and alternative (H1) indicates that there is a positive correlation between them. 

The Spearman’s rank correlation coefficient for the first example is equal to 0.9999. Since the number 

of DMUs in both of the example is greater than 10, t-test is exploited. T-test follows from a normal 

distribution with mean 0: 

2

( 2)

(1 ) / ( 2)

r
t T n

r n

 

 
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Which r is the correlation coefficient of data and n is the number of data (DMUs). Thus, the value of 

the observant t is 223.59 (tobs) and the critical value of t distribution at the confidence level 0.999 is 

equal to 4.144 (tcrit). Since tcrit< tobs, the null hypothesis is rejected. 

Also, The Spearman’s rank correlation coefficient for the second example is equal to 0.91332 and the 

H0 is rejected in a similar way with the confidence level 0.999. Thus, there is a high correlation of 

ranks between the proposed ACWDEA and the WLOM. According to the results, the robustness of 

the proposed ACWDEA method is verified. 

5. Concluding remarks 

Material selection is a challenging issue in production processes and manufacturing environments, 

especially in high-tech industries such as aircraft and shipping. Each material has its own 

performances in the presence of qualitative and quantitative criteria. Quantifying qualitative criteria 

is an arguable problem in MCDM literatures. Most of the previous methods quantify the qualitative 

criteria with using Liker scale which is not precise enough. Therefore, evaluating material with an 

efficient approach in the presence of qualitative criteria is vital. 

Hatefi et al. (2014) proposed WLOM which can determine efficiency of DMUs in presence of 

qualitative and quantitative criteria in an effective way through solving a mathematical model. Torabi 

and Shokr (2015) demonstrated how WLOM can be deficient in some material selection problems 

where it is not able to produce full ranking vector and determine the best material. For overcoming 

this difficulty, we have modified the WLOM and converted it to a common weight DEA-like model. 

The discriminating power is enhanced to produce a full ranking vector with fewer computational 

complexities. In summary, the proposed augmented common weight DEA (ACWDEA) has the 

following merits: 

(1) It is capable to produce full ranking vectors where other DEA likes model such as WLOM 

(Hatefi, et al., 2014) are deficient in producing a full ranking vector. In other words, the 

proposed ACWDEA has more discriminating power than WLOM and will coverage to a single 

best DMU. 

(2) The presented ACWDEA finds the efficiency of DMUs in just one time running, but the 

WLOM needs to be run N times. N is the number of DMUs. 

(3) ACWDEA is able to determine weight of qualitative and quantitative criteria through solving 

the model and extra subjective data are not required from decision makers. It calculates weight 

of qualitative and quantitative criteria with a common weight approach. 

(4) The presented method involves all of the criteria in evaluation process while some previous 

DEA-like models may ignore some criteria by calculating the weight of zero for them. In 

ACWDEA all of the common weights are greater than  ( ;
j

V j  ; ;
rl

W r  ).  

(5) The proposed ACWDEA method can be applied on any other decision making problems as well 

as material selection problems where it is essential to consider qualitative criteria precisely. 

To demonstrate the applicability of the proposed ACWDEA, two material selection problems are 

borrowed from the literature and represented that the WLOM is not able to produce full ranking 

vectors. Thus, the presented ACWDEA method is applied to demonstrate that it is able to obtain full 
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ranking vector where the WLOM is not. Finally the robustness and effectiveness of the presented 

ACWDEA method are evaluated and verified by the Spearman’s rank correlation coefficient test.  
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