International Journal of Supply and Operations Management

February 2016, Volume 2, Issue 4, pp. 1064-1078 ISSN-Print: 2383-1359 ISSN-Online: 2383-2525 www.ijsom.com

Inventory model for deteriorating items with quadratic time dependent demand under trade credits

R.P. Tripathi^{a,1}, D. Singh^b, Tushita Mishra^b

^a Department of Mathematics, Graphic Era University, Dehradun (UK) India ^b Department of Mathematics, S.G.R.R. PG College, Dehradun (UK) India

Abstract

In this study, EOQ model is developed for a deteriorating item with quadratic time dependent demand rate under trade credit. Mathematical models are also derived under two different situations i.e. Case I; the credit period is less than the cycle time for settling the account and Case II; the credit period is greater than or equal to the cycle time for settling the account. The numerical examples are also given to validate the proposed model. Sensitivity analysis is given to study the effect of various parameters on ordering policy and optimal total profit. Mathematica 7.1 software is used to find optimal numerical solutions.

Keywords: Quadratic time-dependent demand; inventory; trade credits; deterioration; time dependent.

1. Introduction

In real life situation, supplier offers a delay period to the buyer to buy more items. Most of the inventory models are considered with infinite replenishment rate. The classical EOQ model was developed in 1995, the demand rate of an item was considered as constant. In reality, demand for physical goods or items may be time-dependent, stock-dependent and price-dependent.

In last few decades, inventory problems for deteriorating items have been widely studied. Maximum physical goods undergo decay or lose their originality over time. It is a major factor to control and maintain the inventories of deteriorating items for any business transaction. Many researchers have paid attention to time dependent demand rate. Silver and Meal (1969) first suggested a simple modification of the problem of inventory replenishment with linearly

^{*} Corresponding author email addresses: tripathi_rp0231@rediffmail.com

time-dependent demand. Recently Khanna *et al.* (2011) developed an EOQ model for deteriorating item having time-dependent demand when delay in payment is permissible. Donaldon (1977) was the first who gave fully analytical solution to the problem of inventory replenishment with a linearly time-dependent demand. Many researchers like Mitra *et al.* (1984), Rilchie (1985) made valuable and significant contributors in this deviation. Teng *et al.* (1985) developed inventory model for linear non-decreasing demand under trade credits. In this In this direction the work of Dave and Patel (1981), Bahari and Kashani (1989), Hariga (1995), Jalan *et al.* (1996), Giri and Chaudhuri (1996), Lin *et al.* (2000), Jalan and Chaudhari (1999), Chung and Teng (1993) are worth mentioning. Wee (1995) and Jalan and Chaudhary (1999)presented their model taking exponentially time dependent demand rate.

Inventory model with trade credits was first developed by Goyal (1985), Chu *et al.* (1998) and Chung *et al.* (2001) also Goyal's (1985) model, for deteriorating items . Many researchers like Aggarwal & Jaggi (1995), Chung and Liao (2004), Mandal and Phanjdar (1989), Chung *et al.* (2001), Davis and Gaither (1985) developed inventory model taking trade credit. Chang and Huang (2003) developed an economic production quantity model (EPQ) for a retailer where the supplier offers a permissible delay in payment. Huang (2003) presented a model by extending Goyal's model to develop an EOQ model in which the supplier offers the retailer a permissible delay period M and the retailer in turn provides the trade credit period N (N \leq M) to its customers. Shah and Shah (1992) established the effect of uncertain demand under the condition of permissible delay in payment.

In this paper, an attempt is made to formulate the mathematical model for inventory system with quadratic time-dependent demand rate under trade credit. Demand rate is considered to be an increasing function of time. The objective function to be optimized is considered as the total relevant profit of an inventory system. The effect of parameters on the objective function is developed numerically.

The rest of paper organized as follows: Notations and assumptions are given in section 2 followed by mathematical model in section 3. Then optimal solutions are provided for both cases in section 4. Numerical examples are given in section 5. Sensitivity analysis is provided for variation of various parameters to illustrate the proposed model. In the last section, we discuss concluding remarks and suggestion for future studies.

2. Notations and Assumptions

The following notations and assumptions are used:

 $\mathbf{R} \equiv \mathbf{R}(t) \equiv a + bt + ct^2$: $a > 0, 0 < b < 1, 0 \le c \le l$; the annual demand

θ: deterioration rate *A*: the ordering cost per order *C*: the unit purchase cost *p*: the unit selling price *M*: the permissible credit period offered by the supplier to the retailer for settling the account

- I_c : interest rate at which the interest is charged
- I_e : interest rate at which the interest is earned
- *Q*: the order quantity

I(t): inventory level at any instant of time

T: replenishment cycle time

 $K_i(T)$: total profit per time unit; i = 1, 2.

 Q_i^* : optimal order quantity; i = 1, 2 for Case I and II respectively

 T_i^* : optimal replenishment cycle time; i = 1, 2.

 $K_i(T_i^*)$: optimal profit per time unit; i = 1, 2

Assumptions

(a) The inventory system under consideration deals with the single item.

(b) The planning horizon is infinite

(c) The demand of the product is a quadratic increasing function of time.

(d) Shortage is not allowed.

(e) Lead time is zero.

(f)The retailer can deposit generated sales revenue in an interest bearing account during the permissible credit period. At the end of this period, the retailer settles the account for all the units sold keeping the difference for day to day expenditure and paying the interest charges on the unsold items in the stock.

3. Mathematical Model

The inventory level I (t) depletes to meet the demand and deterioration. The differential equation governing the rate of change of inventory at any time t is given by

$$\frac{dI(t)}{dt} + \theta \mathbf{I}(t) = -\mathbf{R}(t) \qquad ; \quad 0 \le t \le T$$
(1)

With the initial condition I(0) = Q and boundary condition I(T) = 0 (2) The solution of equation (1) is given by

$$I(t) = \frac{1}{\theta} \left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) \left(e^{\theta(T-t)} - 1 \right) + \frac{1}{\theta} \left(b - \frac{2c}{\theta} \right) \left(T e^{\theta(T-t)} - t \right) + \frac{c}{\theta} \left(T^2 e^{\theta(T-t)} - t^2 \right)$$
(3)

And the order quantity Q is given by

$$Q = \frac{1}{\theta} \left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) (e^{\theta T} - 1) + \frac{1}{\theta} \left(b - \frac{2c}{\theta} \right) T e^{\theta T} + \frac{c}{\theta} T^2 e^{\theta T}$$
(4)

The total profit per time unit of inventory system consists of the following:

1. Ordering cost
$$OC = \frac{A}{T}$$
 (5)

2. Sales Revenue
$$SR = \frac{p}{T} \int_{0}^{T} R(t) dt = p \left(a + \frac{bT}{2} + \frac{cT^2}{3} \right)$$
 (6)

Inventory model for deteriorating items with quadratic time ...

3. Deterioration Cost

$$DC = \frac{C}{T} \left[Q - \int_{0}^{T} R(t) dt \right] = \frac{C}{T} \left\{ \frac{1}{\theta} \left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) \left(e^{\theta T} - 1 \right) + \frac{1}{\theta} \left(b - \frac{2c}{\theta} \right) T e^{\theta T} + \frac{c}{\theta} T^2 e^{\theta T} - aT - \frac{bT^2}{2} - \frac{cT^3}{3} \right\}$$
(7)

4. Holding Cost

$$HC = \frac{h}{T} \int_{0}^{T} I(t) dt$$

$$= \frac{h}{\theta T} \left\{ \left(a - \frac{b}{\theta} + \frac{2c}{\theta^{2}} \right) \left(\frac{e^{\theta T} - 1}{\theta} - T \right) + \left(b - \frac{2c}{\theta} \right) T \left(\frac{e^{\theta T} - 1}{\theta} - \frac{T}{2} \right) + cT^{2} \left(\frac{e^{\theta T} - 1}{\theta} - \frac{T}{3} \right) \right\}$$
(8)

Now two cases arise by considering interest charged and interest earned based on length of T and M.

Case I : M < T

5. The interest charged per time unit for above case is

$$IC = \frac{CI_c}{T} \int_M^T I(t)dt$$

= $\frac{CI_c}{\theta T} \left[\left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) \left(\frac{e^{\theta(T-M)} - 1}{\theta} \right) + \left(b - \frac{2c}{\theta} \right) T \left(\frac{e^{\theta(T-M)} - 1}{\theta} \right) + cT^2 \left(\frac{e^{\theta(T-M)} - 1}{\theta} \right) - \left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) (T-M) - \left(b - \frac{2c}{\theta} \right) \left(\frac{T^2 - M^2}{2} \right) - c \left(\frac{T^3 - M^3}{3} \right) \right]$ (9)

6. During [0, M] retailer sells the product and deposits the revenue into an interest earning account at the rate I_e per unit per year. Therefore, the interest earned, IE_1 per time unit is given by

$$IE_{1} = \frac{pI_{e}}{T} \int_{0}^{M} R(t)dt = \frac{pIe}{T} \left\{ \frac{a}{2} + \frac{bM}{3} + \frac{cM^{2}}{4} \right\} M^{2}$$
(10)

Hence the total profit K₁(T) of an inventory system per time unit is

 $K_1(T) = SR + IE_1 - OC - DC - HC - IC$ (11)
Putting the values of SR, IE, OC, DC, HC, IC from respective equations and solving by using

Truncated Taylor's Series for approximating the exponential function i.e. $e^{\theta T} \approx 1 + \theta T + \frac{\theta^2 T^2}{2}$, etc., we get

$$K_{1}(T) = ap + \left(\frac{bp}{2} - \frac{aC\theta}{2} - \frac{cC}{\theta} - \frac{ah}{2} - \frac{aCI_{c}}{2} + \frac{2bCIc}{\theta} - \frac{2cCI_{c}}{\theta^{2}}\right)T + \left(\frac{cp}{3} - \frac{bC\theta}{2} + \frac{cC}{2} - \frac{bh}{2} + \frac{ch}{3\theta} - \frac{bCI_{c}}{2} + \frac{cI_{c}C}{3\theta}\right)T^{2} - \frac{c}{2}(h + C\theta)T^{3} + \frac{aM^{2}}{2T}\left(pI_{e} - CI_{c}\right) + \frac{1}{3}\left(bpI_{e} - \frac{cI_{c}C}{\theta}\right)\frac{M^{3}}{T} + \frac{cpI_{e}}{4}\frac{M^{4}}{T} - \frac{A}{T} + C\left(aI_{c} - \frac{2cI_{c}}{\theta^{2}} + 2cI_{c}\right)M + CI_{c}\left(\frac{cI_{c}}{\theta} - \frac{bI_{c}}{2}\right)M^{2} + cI_{c}CMT^{2} + CI_{c}\left(b - \frac{c}{\theta}\right)MT - \frac{cI_{c}C}{2}M^{2}T$$

$$(12)$$

Case II: $T \leq M$.

Hence the retailer sells R(T)T-units in all by the end of the cycle time and has CR(T)T to pay the supplier in full by the end of the credit period M, Hence interest charges 5) IC = 0

- 5) IC = 0
- 6) The interest earned per time unit is

$$IE_{2} = \frac{pI_{e}}{T} \left\{ \int_{0}^{T} R(t)tdt + R(T)T(M - T) \right\}$$

$$= pI_{e} \left\{ M \left(a + bT + cT^{2} \right) - T \left(\frac{a}{2} + \frac{2bT}{3} - \frac{3cT^{2}}{4} \right) \right\}$$
(13)

Hence the total profit K(T) of an inventory system per time unit is

$$K_2(T) = SR + IE_2 + -OC - DC - HC - IC$$

Putting the values of SR, IE, OC, DC, HC, and IC from respective equations and solving by using Truncated Taylor's Series for approximating the exponential function, we get

$$K_{2}(T) = ap + \left(\frac{bp}{2} - \frac{aC\theta}{2} - \frac{cC}{\theta} - \frac{ah}{2} - \frac{apI_{e}}{2}\right)T + \left(\frac{cp}{3} - \frac{bC\theta}{2} + \frac{cC}{3} - \frac{bh}{2} + \frac{ch}{3\theta} - \frac{2bpI_{e}}{3}\right)T^{2} + \left(\frac{cp}{3} - \frac{bC\theta}{2} + \frac{cC}{3} - \frac{bh}{2} + \frac{ch}{3\theta} - \frac{2bpI_{e}}{3}\right)T^{2} - c\left(\frac{3pI_{e}}{4} + \frac{C\theta}{2} + \frac{h}{2}\right)T^{3} - \frac{A}{T} + pI_{e}M\left(a + bT + cT^{2}\right)$$
(14)

4. Determination of optimal solution

To find the optimal solution for the problem, we maximize K(T) for Case I and Case II respectively and then compare them to obtain maximum value. Our aim is to find maximum average profit per time unit for both cases i.e. Case I and II respectively with respect to T. The necessary and sufficient condition to maximise K(T); i=1,2 for given values of T are respectively

$$\frac{dK_1}{dT} = 0, \frac{dK_2}{dT} = 0, \text{ and } \frac{d^2K_1}{dT^2} < 0, \frac{d^2K_2}{dT^2} < 0.$$

Differentiating (12) and (14) two times with respect to T, we get

$$9c\theta^{2}(C\theta + h)T^{4} - \theta \left(4cp\theta - 6bC\theta^{2} + 4cC\theta - 6bh\theta + 4ch - 6bCI_{c}\theta + 4cCI_{c}\right)T^{3}$$

$$-12cCIcMT^{3} - (3bp\theta^{2} - 3aC\theta^{3} - 6cC\theta - 3ah\theta^{2} - 3aCI_{c}\theta^{2} + 12cCIc)T^{2}$$

$$-b\theta \left(6CI_{c}\theta + cCI_{c}\right)MT^{2} + 3cCIc\theta^{2}M^{2}T^{2} + 3a\theta^{2}(pI_{e} - CI_{c})M^{2}$$

$$+2\theta (bpIe\theta - cCIc)M^{3} + 1.5cpIe\theta^{2}M^{4} - 6A\theta^{2} = 0,$$

(15)

$$9c\theta(1.5p\mathrm{Ie}+C\theta+h)T^{4} - (4cp\theta-8bp\mathrm{Ie}\theta-6bC\theta^{2}+4cC\theta-6bh\theta+4ch)T^{3} - (3bp\theta-3ap\mathrm{I}_{\mathrm{e}}\theta-3aC\theta^{2}-6cC-3ah\theta)T^{2} - 12cp\theta MT^{3} - 6bp\mathrm{Ie}\theta MT^{2} - 6A\theta = 0.$$
(16)

$$\frac{d^{2}K_{1}}{dT^{2}} = \frac{2cp}{3} - bC\theta + cC - bh + \frac{2ch}{3\theta} - bCI_{c} + \frac{2cI_{c}C}{3\theta} - 3c(C\theta + h)T - \frac{aM^{2}}{2T^{2}}(pI_{e} - CI_{c}) - \frac{M^{3}}{3T^{2}}(bpI_{e} - \frac{cCI_{c}}{\theta}) - \frac{cpI_{e}}{4}\frac{M^{4}}{T^{2}} + \frac{A}{T^{2}} + 2cCI_{c}M < 0$$

$$(17)$$

$$\frac{d^2 K_2}{dT^2} = -\frac{1}{3} \left\{ 3bC\theta + 3bh + 4bpI_e - 2c\left(\frac{h}{\theta} + p\right) \right\} - 3c\left(1.5p\text{Ie} + C\theta + h\right)T + \frac{A}{T^2} + 2cp\text{IeM} < 0$$
(18)

5. Numerical Example

Example 1. Case I. a = 1000, b = 0.2, c = 0.2, M = 30/365, $\theta = 0.1$, h = 1, p = 40, C = 20, A = 250, $I_c = 0.12$, $I_e = 0.09$, in appropriate units. Optimal cycle time $T = T_1 * = 0.305009$ year, optimal total relevant profit $K_1(T) = K_1 * (T_1 *) = \$$ 86354.9, and optimal order quantity $Q = Q_1 * = 309.67$ units . **Example 2. Case II.** a = 600, b = 0.1, c = 0.1, M = 60/365, $\theta = 0.2$, h = 1, p = 35, C = 30, A = 50, $I_e = 0.09$, in appropriate units. Optimal cycle time $T = T_2 * = 0.127874$ year, optimal total relevant profit $K_2(T) = K_2 * (T_2 *) = \20528.6 , and optimal order quantity $Q = Q_2 * = 77.7063$ units.

6. Sensitivity Analysis

To find sensitivity analysis, the effects of parameters a, *b*, *c*, *h*, *p*, θ , *M*, *I*_e, *I*_c, *A* and *C* on the optimal solution. Let us take the set of values a = 500, 700, 1200, 1500, 1700, 2000, b = 0.05, 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, c = 0.05, 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, h = 0.5, 5, 10, 15, p = 10, 20, 30, 50, 60, 70, θ = 0.5, 0.15, 0.20, 0.25, 0.30, 0.35, M = 20/365, 40/365, 50/365, 60/365, *I*_g = 0.01, 0.05, 1.0, 1.5, *I*_c = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, A = 100, 150, 200, 300, 350, 400, C = 5, 10, 15, 25, 30, 35, 40, 45 in appropriate units for case I.

And, let us take , the set of values $a = 400,500, 800, 1000, 1500, 2000, b = 0.05, 0.15, 0.25, 0.30, 0.35, 0.40, c = 0.05, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, h = 0.5, 5, 10, 15, 20,25, p = 10, 15, 20, 25, 45, 55, <math>\theta = 0.5,0.10, 0.15, 0.25, 0.30, 0.35, 0.40, M = 50/365, 70/365, 80/365, 100/365,150/365, I_e = 0.01, 0.05, 0.1, 0.5, 1.0. A = 10, 20, 30, 40, 60, 100, C = 20, 40, 50, 60, 80, 100, in appropriate units (For Case II).$

The result of sensitivity analysis is given in Tables 1.

Tripathi, Singh and Mishra

Table 1(A). Variation of 'a' keeping all parameters same as in given example 1.						
a	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
500	0.438227	223.933	27259.4			
700	0.367250	261.809	46215.8			
1200	0.277460	337.579	122111			
1500	0.247102	375.239	191067			
1700	0.231530	398.163	248228			
2000	0.212725	429.980	352316			
Table 1(B). Variation of 'b' keeping all	parameters same as in given e	xample 1.			
b	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
0.05	0.304848	309.497	86379.3			
0.10	0.304901	309.554	86371.3			
0.15	0.304955	309.612	86363.1			
0.25	0.305063	309.728	86346.8			
0.30	0.305116	309.785	86338.6			
0.35	0.305170	309.843	86330.6			
0.40	0.305224	309.901	86322.5			
0.45	0.305278	309.959	86314.3			
0.50	0.305332	310.017	86306.2			
Table 1(C). Variation of ' <i>C</i> ' keeping all parameters same as in given example 1.						
С	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
0.05	0.302759	307.351	86704.8			
0.10	0.303503	308.118	86588.6			
0.15	0.304253	308.891	86471.9			
0.25	0.305771	310.455	86237.6			
0.30	0.306539	311.247	86119.9			
0.35	0.307313	312.247	86002.0			
0.40	0.308094	312.849	86123.5			
Table 1(D): Variation of 'h' keeping all parameters same as in given example 1.						
h	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
0.5	0.325490	330.798	59646.9			
5	0.230127	232.780	124127			
10	0.185543	187.268	173395			
15	0.159695	160.973	234746			

Case I:

	Table I(E): Valiation of p kee	philg all parameters same as it	i given example 1.		
p	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$		
10	0.310369	315.195	20302.8		
20	0.308595	313.366	42180.1		
30	0.306808	311.524	64196.2		
50	0.303197	307.803	108660		
60	0.301371	305.921	131117		
70	0.299532	304.027	153729		
	Table 1(F). Variation of θ kee	eping all parameters same as in	n given example 1.		
θ	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$		
0.05	0.360355	363.614	79236.8		
0.15	0.277983	283.786	90848.3		
0.20	0.258028	264.692	94767.6		
0.25	0.242039	249.368	98373.5		
0.30	0.228756	236.611	101752		
0.35	0.217465	225.746	104948		
	Table 1(G). Variation of 'M' ke	eping all parameters same as i	n given example 1.		
M (in days)	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$		
20	0.306355	311.057	59646.9		
40	0.303093	307.695	124127		
50	0.300596	305.123	173395		
60	0.297503	301.937	234746		
Table 1(H). Variation of 'I _e ' keeping all parameters same as in given example 1.					
Ie	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$		
0.01	0.311646	316.512	43759.2		
0.05	0.308345	313.108	64826.4		
1.0	0.215625	217.954	789622		
1.5	0.144729	145.778	1716760		
Table 1(I). Variation of ' I_c ' keeping all parameters same as in given example 1.					
I_c	$T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$		
0.05	0.347678	353.734	56134.8		
0.10	0.315420	320.404	77101.3		
0.15	0.291335	295.587	101071		
0.20	0.272506	276.226	127630		
0.25	0.257289	260.605	156467		
0.30	0.244679	247.678	187338		

Table 1(E). Variation of 'p' keeping all parameters same as in given example 1

Int J Supply Oper Manage (IJSOM), Vol.2, No.4

0.35	0.234021	247.678	220045			
Table 1(J). Variation of 'A' keeping all parameters same as in given example 1.						
	$A T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
10	00 0.19042	8 192.245	115710			
15	0.23489	9 237.663	100986			
20	0.27221	4 275.926	92284.5			
30	0.33461	4 340.223	81773.5			
35	0.36181	3 368.371	78553.5			
Table 1	I (K). Variation of 'C' keeping	all parameters same as in given	example 1.			
	$C T = T_1 *$	$Q = Q_1 *$	$K_1(T_1^*)$			
	5 0.48262) 494.289	46581.9			
1	0 0.39279	6 400.526	57396.8			
1	.5 0.34034	5 346.148	70812.6			
2	0.27917	2 283.077	103722			
3	0.25924	8 262.625	122698			
Table	2(A). Variation of 'a' keeping a $T = T_2 *$	Il parameters same as in given e $Q = Q_2 *$	example 2. $K_2(T_2^*)$			
10	0.15645	-	125 (7.0			
40	00 0.15645	4 63.5619	13567.9			
50	00 0.14002	2 70.9923	17044.7			
80	0 0.110/9	9 89.6219	2/511./			
100	0.09913	5 100.116	52041.8			
130	0.08097	122.447	52041.8			
	0.07014	141.207	09009.9			
Table 2(B). variation of b keeping all parameters same as in given example 2.						
	$T = T_2 *$	$Q = Q_2 *$	$K_2(T_2^*)$			
0.0	0.12785	7 77.6955	20528.5			
0.1	.5 0.12789	2 77.7178	20528.7			
0.2	0.12790	9 77.7287	20528.9			
0.2	0.12792	5 77.7395	20529.0			
0.3	0.12794	4 77.7510	20529.1			
0.3	35 0.12796	1 77.7691	20529.2			
0.4	0 0.12797	8 77.7728	20529.3			

Tripathi, Singh and Mishra

	Table 2(0). Variation of C Reeping an parameters same as in given example 2.							
С	$T = T_2 *$		$Q = Q_2 *$		$K_{2}(T_{2}^{*})$			
0.05	0.128025		77.7992		20529.6			
0.15	0.127724		77.6140		20527.7			
0.20	0.127574		77.5217		20526.8			
0.25	0.127424		77.4294		20525.8			
0.30	0.127275		77.3377		20524.9			
0.35	0.127127		77.2467		20523.9			
0.40	0.126979		77.1556		20523.0			
0.45	0.126832		77.0652		20522.1			
0.50	0.126685		76.9747		20521.1			
	Table 2(D).	of 'h' keeping all	parameters sam	e as in given ex	cample 2.			
	h	$T = T_2 *$		$Q = Q_2 *$		$K_{2}(T_{2}^{*})$		
	0.50	0.1311310		50.1511		20548.1		
	5.00	0.1083670		47.7316		20387.9		
	10.0	0.0931882		36.0378		20237.6		
	15.0	0.0830017		29.0566		20105.9		
	20.0	0.0755600		25.0060		19987.2		
	25.0	0.0698172		22.2813		19878.3		
	Table 2(E).	tion of 'p' keeping	g all parameters	s same in examp	ole 2.			
р	$T = T_2 *$		$Q = Q_2 *$		$K_{2}(T_{2}^{*})$			
10	0.144815		88.1483		5398.21			
15	0.140890		85.7260		8423.35			
20	0.137267		83.4971		11449.0			
25	0.133910		81.4228		14475.1			
45	0.122587		74.4546		26583.7			
55	0.117906		71.5784		32640.1			
Table 2(F). Variation of ' θ ' keeping all parameters same in given example 2.								
	heta	$T = T_2 *$		$Q = Q_2 *$		$K_2(T_2^*)$		
	0.10	0.151704		91.7140		20651.5		
	0.15	0.138338		83.8649		20587.8		
	0.25	0.119441		72.7353		20437.4		
	0.30	0.112468		68.6198		20421.5		
	0.35	0.106583		65.1432		20371.4		
	0.40	0.101530		62.1555		20325.7		

Table 2(C). Variation of 'c' keeping all parameters same as in given example 2

Tripathi, Singh and Mishra

	M (in days)		$T = T_{a} *$		$Q = Q_{2} *$		$K_{2}(T_{2}^{*})$
			2				
	50		0.127874		77.7063		20476.9
	70		0.127875		77.7069		20580.4
	80		0.127875		77.7069		20632.2
	90		0.127875		77.7069		20684.0
	100		0.127875		77.7069		20735.8
	150		0.127876		77.7076		20994.7
	Table 2(H	I). Variation of	''Ie' keeping all	parameters sar	ne as in given e	xample 2.	
Ie		$T = T_2 *$		$Q = Q_2 *$		$K_{2}(T_{2}^{*})$	
0.01		0.1501540		91.4463		20368.5	
0.05		0.1376800		83.7463		20446.2	
0.1		0.1257340		76.3897		20549.8	
0.5		0.0824068		49.8519		21512.5	
1.0		0.0629624		38.0155		22863.8	
	Tabl	e 2(I). Variation	n of 'A' keeping	g all parameters	s same in examp	ole 2.	
	Α		$T = T_2 *$		$Q = Q_2 *$		$K_2(T_2^*)$
	10		0.0571849		34.5073		20960.9
	20		0.0808728		48.9194		20816.1
	30		0.0990495		60.0188		20704.9
	40		0114373		69.4093		20611.2
	60		0.14008		85.2263		20454.0
	70		0.151308		92.1577		20385.4
Table 2(J). Variation of 'C' keeping all parameters same in example 2.							
С		$T = T_2 *$		$Q = Q_2 *$		$K_2(T_2^*)$	
20		0.142776		86.8897		20610.3	
40		0.116837		70.9219		20454.8	
50		0.108240		65.6475		20386.8	
60		0.101298		61.3950		20323.5	
80		0.0906645		54.8923		20207.7	
100		0.0828023		50.0931		20103.0	

Table 2(G). Variation of 'M' keeping all parameters same as in given example 2.

All the above observations from Table 1 to 19 sum up as follows:

Case I

• From Table 1(A): It is observed that, increase of '*a*' results decrease in optimal cycle time $T = T_1^*$, increase in optimal order quantity $Q = Q_1^*$ and optimal total relevant profit K_1 (T_1^*) .

- From Table 1(B): It is observed that, increase of 'b' results slight increase in optimal cycle time $T = T_1^*$, optimal order quantity, optimal order quantity $Q = Q_1^*$ and optimal total relevant profit $K_1(T_1^*)$.
- From Table 1(C): We see that, increase of 'c' results slight increase in optimal order quantity $T = T_1^*$, $Q = Q_1^*$, and decrease in optimal total relevant profit $K_l(T_1^*)$.
- From Table 1(D): We see that, increase of holding cost 'h' results in decrease in optimal cycle time $T = T_1$ *, optimal order quantity $Q = Q_1$ * and increase in optimal relevant profit $K_1(T_1^*)$..
- From Table 1(E), we see that, increase of unit selling price 'p' results slight decrease in optimal cycle time $T = T_1$ ', and optimal order quantity $Q = Q_1$ ' and increase in optimal total relevant profit $K_1(T_1)$.
- From Table 1(F), we wee that, increase of deterioration rate ' θ ' results decrease in optimal cycle time $T = T_1$ *, and optimal order quantity $Q = Q_1$ * and increase in optimal total relevant profit $K_1(T_1^*)$.
- From Table 1(G), we see that, increase of credit period 'M' results decrease in optimal cycle time $T = T_1$ *, and optimal order quantity $Q = Q_1$ * and increase in optimal total relevant profit $K_1(T_1^*)$.
- From Table 1(H), we see that, increase of interest earned ' I_e ' results decrease in optimal cycle time $T = T_1$ *, and optimal order quantity $Q = Q_1$ * and increase in optimal total relevant profit $K_1(T_1^*)$.
- From Table 1(I), we see that, increase of interest charged ' I_c ' results decrease in optimal cycle time $T = T_1$ *, and optimal order quantity $Q = Q_1$ * and increase in optimal total relevant profit $K_1(T_1^*)$.
- From Table 1(J), we see that increase of ordering cost 'A' results increase in optimal cycle time $T = T_1$ *, and optimal order quantity $Q = Q_1$ * and decrease in optimal total relevant profit $K_1(T_1^*)$.
- From Table1(*K*), we see that, increase of purchase cost '*C*' results decrease in optimal cycle time $T = T_1^*$, and optimal order quantity $Q = Q_1^*$ and increase in optimal total relevant profit $K_1(T_1^*)$.

Case II

- From Table 2(A), we see that increase of parameter 'a' results decrease in optimal cycle time $T = T_2^*$, increase in optimal order quantity $Q = Q_2^*$ and optimal total relevant profit $K_2(T_2^*)$.
- From Table 2(B), we see that, increase of parameter 'b' results slight increase in optimal cycle time $T = T_2$ *, optimal order quantity $Q = Q_2$ * and optimal total relevant profit $K_2(T_2*)$.
- From Table 2(C), we see that, increase of parameter 'c' results slight decrease in optimal cycle time $T = T_2^*$, optimal order quantity $Q = Q_2^*$ and optimal total relevant profit $K_2(T_2^*)$.
- From Table 2(D), we see that, increase of holding cost 'h' results decrease in optimal cycle time $T = T_2^*$, optimal order quantity $Q = Q_2^*$ and optimal total relevant profit $K_2(T_2^*)$.
- From Table 2 (*E*), we see that, increase of unit selling price 'p' results decrease in optimal cycle time $T = T_2^*$, optimal order quantity $Q = Q_2^*$ and increase in optimal total relevant profit $K_2(T_2^*)$.
- From Table 2(F), we see that, increase of deterioration rate ' θ ' results decrease in optimal cycle time $T = T_2$ *, optimal order quantity $Q = Q_2$ * and optimal total relevant profit $K_2(T_2^*)$.

- From Table 2(G), we see that, increase of credit period '*M*' results slight increase in optimal cycle time $T = T_2$ *, optimal order quantity $Q = Q_2$ * and increase in optimal total relevant profit $K_2(T_2*)$.
- From Table 2(H), we see that, increase of interest earned I_{e} results decrease in optimal cycle time $T = T_{2}^{*}$, optimal order quantity $Q = Q_{2}^{*}$ and increase in optimal total relevant profit $K_{2}(T_{2}^{*})$.
- From Table 2(I), we see that ,increase ordering cost 'A' results increase in optimal cycle time $T = T_2^*$, optimal order quantity $Q = Q_2^*$ and optimal total relevant profit $K_2(T_2^*)$.
- From Table 2(J), we see that, increase of 'C' results decrease in optimal cycle time $T = T_2^*$, optimal order quantity $Q = Q_2^*$ and optimal total relevant profit $K_2(T_2^*)$.

7. Conclusion and Suggestion for Future Studies

In this paper, we develop an EOQ model for deteriorating items with quadratic demand rate. We provide numerical solution to find the optimal cycle time, optimal order quantity and total relevant profit. From the sensitivity analysis we conclude that the results are quite sensitive with respect to variation of different parameters. Truncated Taylor's series expansion is used for finding closed form optimal solutions. This paper can be extended in different ways. We would like to consider the deteriorating items as time varying deterioration rate and demand rate as stock level dependent demand rate.

Acknowledgements

We would like to thank the editor and the referees for the valuable and constructive comments that have led to a significant improvement in the original paper.

References

Aggarwal,S.P. and Jagg,C.K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of Operational Research Society, 36,658-662.

Bahari, Kashani, H. (1989). Replenishment schedule for deteriorating items with timeproportion demand. Journal of Operational Research Society, 40, 75-81.

Chang,H.J., Hung,C.H. and Dye,C.Y. (2001). An inventory model for deteriorating items with linear trend in demand under conditions of permissible delay in payments. Production, Planning and Control, 12, 272-282.

Chung,K.O. and Huang,Y.F. (2003). The optimal cycle time for EPQ inventory model under permissible delay in payments. International Journal of Production Economics, 84, 307-318.

Chung,K.J., Lin,J.J. (2004). Lot sizing decisions under trade credit depending on the ordering quantity. *Computer and Operations Research*, 31,909-928.

Chu,P., Chung,K.J. and Pan,S.P. (1998). Economic order quantity of deteriorating items under permissible delay in payments. Computer and Operations Research, 25,817-824.

Chung,K.J., Chang,S.L. and Yang,W.D. (2001). The optimal cycle time for exponentially

deteriorating products under trade credit financing. The Engineering Economist, 46, 232-242.

Chung,K.J. and Teng,P.S. (1993). A heuristic for replenishment of deteriorating items with a linear trend in demand. Journal of Operational Research Society, 44(12), 1235-1241.

Dave, U. And Patel, L.K. $(T, {}^{S_i})$ (1981). Policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 32, 137-142.

Davis,R.A. and Gaither,N. (1985). Optimal ordering policies under condition of extended payment privileges. Management Science, 31, 499-509.

Donaldson, W.A. (1977). A simple inventory replenishment decision rule for on linear trend in demand. Journal of Operational Research Society, 28, 663-670.

Giri,B.C. and Chaudhuri, K.S. (1996). An EOQ model for deteriorating item with time varying demand and costs. Journal of Operational Research Society, 47, 1398-1405.

Goyal,S.K. (1985). EOQ under condition of permissible delay in payments. Journal of Operational Research Society, 36,335-338.

Jalan,A.K. and Chaudhuri,K.S. (1999). An EOQ model for deteriorating items in a declining market with SFI policy. Korean Journal of Computational and Applied Mathematics, 6(2), 437-449.

Hariga, M. (1995). An EOQ model for deteriorating items with shortages and time-varrying demand. Journal of Operational Research Society, 46,398-404.

Huang,Y.F. (2003). Optimal retailer's ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54, 1011-1015.

Jalan, A.K., Chaudhary, K.S. (1999). Structured properties of an inventory system with deterioration and trended demand. International Journal of System Science, 30(6), 627-633.

Jalan, A.K., Giri, R.R. and Chaudhuri, K.S. (1996). EOQ model for item with Weibull distribution deterioration, shortages and trended demand. International Journal of System Science, 27(9), 851-855.

Khanna, S.Ghosh, S.K. and Chaudhuri, K.S. (2011). An EOQ model for a deteriorating item with time-dependent demand under permissible delay in payment. Applied Mathematics and Computation, 218, 1-9.

Lin,C., Tan, B. And Lee,W.C. (2000). An EOQ model for deteriorating items with time-varying demand and shortages. International Journal of System Science, 31(3), 391-400.

Mandal,B.N. and Phanjdar,S. (1989). Some EOQ models under conditions of permissible delay in payments. Journal of Management Sciences, 5(2), 99-108.

Mitra, A., Fox, J.F. and Jesser (1984). A note on determining order qualities with a linear trend in demand. Journal of Operational Research Society, 35, 141-144.

Rilchie, E. (1985). Stock replenishment qualities for unbounded linear increasing demand: an

interesting consequence of the optimal policy. Journal of Operational Research Society, 36, 737-739.

Shah,N.H. AND Shah,Y.K. (1992). A probabilistic order level system when delay in payments is permissible. Presented at Operational Research Society of India, 25, India.

Silver, E.A. and Meal, H.C. (1969). A simple modification of the EOQ for the case of a varying demand rate. Production and Inventory Management, 10(4), 52-65.

Teng, J. T., Min, J. And Pan,Q. (2012). Economic order quantity model with trade credit financing for non-decreasing demand. Omega, 40, 328-335.

Wee,H.M. (1995). A deterministic lot size inventory model for deteriorating items with shortages and a declining market, Computer and Operations Research, 22(3), 345-356.