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Abstract 

In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode 

resource-constrained project scheduling problem (MRCPSP) with minimization of project 

makespan as the objective subject to resource and precedence constraints. A random key and the 

related mode list (ML) representation scheme are used as encoding schemes and the multi-mode 

serial schedule generation scheme (MSSGS) is considered as the decoding procedure. In this 

paper, a simple, efficient fitness function is proposed which has a better performance compared to 

the other fitness functions in the literature. Defining a new mutation operator for ML is the other 

contribution of the current study. Comparing the results of the proposed GA with other approaches 

using the well-known benchmark sets in PSPLIB validates the effectiveness of the proposed 

algorithm to solve the MRCPSP. 

 

Keywords: Combinatorial optimization; Multi-mode project scheduling; Resource constraints; 

Genetic algorithm; Random key representation. 

 

1. Introduction 

Project scheduling, as one of the main branches of the project planning, has been considerably 

employed by researchers in recent years (Chaleshtari and Shadokh 2014). Project scheduling is a 

troublesome duty due to resource and precedence constraints (Qi et al. 2014). The 

resource-constrained project scheduling problem (RCPSP) and its extended version, the 

Multi-mode RCPSP (MRCPSP), are important problems in this context, and the latter problem is 

more related to the real world (Hartmann and Briskorn 2009). 
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The aims of MRCPSP are finding an execution mode and a feasible start time for each activity, 

such that makespan of the project is minimized under the resource and precedence constraints. 

  

There are three methods for solving the MRCPSP: exact procedures, heuristic, and meta-heuristic 

approaches. In the exact methods, the first optimal procedure was a linear programming approach 

proposed by Slowinski (1980). In 1982, Talbot suggested an enumeration scheme which was 

improved by Patterson et al. (1989). Then, Sprecher (1994) reduced the computational effort of 

Talbot’s enumeration scheme using some dominance criteria and a border bound. Speranza and 

Vercellis (1993) suggested a depth-first branch-and-bound algorithm; however, Hartmann and 

Sprecher (1996) demonstrated that if there are two or more renewable resources, their algorithm 

may be unable to find the optimal solution. Afterwards, different methods of branch and bound are 

proposed by Hartmann and Drexl (1998), Sprecher and Drexl (1998). And finally, Zhu et al. 

(2006) presented a branch-and-cut algorithm. Exact methods solve the problems optimally; 

however, they are unable to solve problems with more than 20 activities in an acceptable 

computational time (Sprecher and Drexl 1998). Thus, researchers make use of heuristic and 

meta-heuristic approaches to obtain reasonable project schedules with short computational time. 

In the heuristic methods, Talbot (1982), and Sprecher and Drexl (1998) suggested applying a time 

limit on their exact branch-and-bound algorithms for solving large-sized problems. A stochastic 

scheduling procedure was proposed by Drexl and Gruenewald (1993). The single-pass and a 

multi-pass approach were suggested by Slowinski et al. (1994). Lova et al. (2006) proposed 

several multi-pass heuristics based on the priority rules. 

Meta-heuristic approaches are the new generations of heuristic methods which have been used 

successfully for solving the MRCPSP over the last fifteen years. In 2004, Kolisch and Hartmann 

showed that the meta-heuristic approaches outperform the heuristic methods (Glover and 

Greenberg, 1989). In these methods, authors such as Mori and Tseng (1997), Özdamar (1999), 

Hartmann (2001), Alcaraz et al. (2003) and Lova et al. (2009) used Genetic Algorithms (GAs) to 

solve the MRCPSP. Jo´zefowska et al. (2001) presented a Simulated Annealing (SA) algorithm 

with and without the penalty function. Peteghem and Vanhoucke (2009) applied the Artificial 

Immune System (AIS) to solve the MRCPSP. Using the extended serial schedule generation 

scheme, Peteghem and Vanhoucke (2010) also applied a genetic algorithm to solve the preemptive 

MRCPSP. Ant colony optimization was presented by Zhang (2012). Damak et al. (2009) utilized 

the Differential Evolution (DE) algorithm for solving the MRCPSP and analyzed the effect of 

population size on improvement of the solutions. A multi-agent learning approach was provided 

by Wauters et al. (2009). Elloumi and Fortemps (2010) employed a hybrid rank-based 

evolutionary algorithm, which transformed the MRCPSP to a bi-objective problem. Wang and 

Fang (2011) proposed an effective Shuffled Frog-Leaping Algorithm (SFLA). They presented a 

new representation scheme as the encoding scheme and used the Taguchi method of Design Of 

Experiment (DOE) to determine a set of suitable parameters for the SFLA. Wang and Fang (2012) 

also presented an effective Estimation of Distribution Algorithm (EDA). In their algorithm, the 

activity-mode list (AML) was adopted as the encoding scheme, and parameters of their algorithm 

were settled based on DOE tests. Peteghem and Vanhoucke (2014) evaluated different 

meta-heuristic algorithms for solving the MRCPSP and proposed new benchmark instances for 
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this problem. Hao et al (2014) presented an effective Estimation Distribution Algorithm (EDA) 

for solving the MRCPSP in an uncertain environment with considering uncertain durations for 

activities. Cheng et al (2015) solved MRCPSP in three different conditions: with and without 

activity splitting, as well as preemption using an exact method. However, initial solutions were 

developed using the heuristic methods. Their results presented that when we permit the activities 

to have splitting or preemptions, better results are obtained. Beşikci et al (2015) proposed a 

genetic algorithm for solving the MRCPSP in multi-project environment.  

In the present study, a new GA is proposed for solving the MRCPSP. A random key (RK) and the 

related mode assignment representation scheme are used as encoding scheme and multi-mode 

serial schedule generation scheme (MSSGS) is considered as the decoding procedure. 

A simple, efficient fitness function is also introduced, thereby, average deviation from the optimal 

solution is reduced. Defining a new mutation operator for ML is the other contribution of the 

current study. 

The remainder of the current study is organized as follows: In section 2, the MRCPSP is described; 

section 3 deals with the definition of the new proposed GA for solving the MRCPCP; in section 4, 

the results of our GA in solving the MRCPSP are reported, and finally, in section 5, concluding 

remarks are drawn out. 

2. Problem description  

In the MRCPSP, a project has J+2 activities with multiple execution modes with precedence 

relations among some of the activities. In this paper, these precedence relations are finish-start 

relations without time lags. The initial mode m, m∈{1,..,Mj}, of activity j (j=0,…,J+1) cannot be 

changed and the preemption is not allowed for the activities (Damak et al., 2009). Each mode 

requires one or several types of renewable or non-renewable resources. The availability of 

renewable resources k (k=1,…,R) and of non-renewable resources l (l=1,…,N) are Rk and Nl, 

respectively. If activity j is conducted with mode m, its duration, its required amount of renewable 

resources k (k=1,…,R), and its required amount of non-renewable resources l (l=1,…,N) are 

presented with djm, rjmk, and njml, respectively. The Start and end activities of the project are 

considered to be dummy activities without any durations and resource requirements. Under the 

above-mentioned conditions, the aims of the MRCPSP are to assign a feasible start time and a 

mode to each activity such that makespan of the project is minimized. 

3. Presentation of new genetic algorithm in order to solve the MRCPSP 

GA was suggested by Holland (Lee and El-Sharkawi 2008) for solving optimization problems. 

The initial population of this algorithm is developed randomly or by using heuristic methods, and 

the population evolves based on the following three sequential and iterative operators. 

a) Selection operator  

b) Crossover operator 

c) Mutation operator (Lee and El-Sharkawi 2008) 

 

In this research, after the preprocessing procedure, the initial population of GA is developed 
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randomly to diverse the search space and to find the promising regions (Lee and El-Sharkawi 

2008). In the remainder of this section, the proposed GA for solving the MRCPSP is described in 

detail. 

3.1 Preprocessing procedure 

Before starting with GA, the preprocessing approach is employed for reducing the search space 

and the computational effort. For the first time, Sprecher et al. (1997) used it in branch and bound 

algorithm. Based on this preprocessing procedure, on the one hand, non-efficient and 

non-excusable modes are eliminated and, on the other hand, redundant non-renewable resources 

are omitted (for more information, see Sprecher et al. (1997). 

3.2 Representation scheme 

The issue of selecting an appropriate representation is crucial for the search (Lee and El-Sharkawi 

2008). Based on RCPSP literature, the RK representation and activity list (AL) representation are 

the most popular ones.  By using RK representation, many of the precedence feasibility issues 

are moved into the fitness function evaluation. In addition, in this representation scheme, the 

generation and evolution of the population are independent of the schedule generation schemes. 

After considering the above-mentioned advantages, we decided to use the RK representation and 

the related mode list (ML) as encoding schemes. Therefore, each solution I is presented by two 

vectors λ and μ (I= (λ, μ)), where λ and μ present the RK and the ML, respectively.  

3.3 Fitness function 

Evaluation of each chromosome is necessary for the evolution of the population, which is 

obtained through a fitness function. Determination of an appropriate fitness function is important 

for the correct operation of the GA. Crossover and mutation are general operators of GA which do 

not consider the feasibility of solutions. Thus, infeasible offsprings are frequently developed, 

which must be penalized. For this purpose, owing to the lack of information about an optimal 

solution, fitness function methods consider the distance of the feasible area. These methods are 

based on the number of violations. In the MRCPSP literature, several fitness functions have been 

proposed, in which the fitness function of Lova et al. (2009) (Eq.1) is the most recent one. In this 

last fitness function (Eq.1), infeasible solutions are penalized by ERR (μ), which presents the 

non-renewable infeasible degree of ML (Eq. 2). Obviously, when ERR(μ) is 0, the individual I is a 

feasible solution.  

  

 

 

(1) 

 

(2) 

 

Where mak(I) is the makespan of the individual I and max_mak(P) gives the maximal makespan 

of feasible solutions related to individuals of the current generation. min_CP gives the minimal 

critical path of the project using the minimal duration of activities. 

Lova et al. (2009) demonstrated that their fitness function gives better results than others and 
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removes their faults. However, in this paper, another fitness function is presented which is simple 

and efficient (Eq. 3). 

 

 

(3) 

 

Where T is the upper bound on the project’s makespan given by the sum of the maximal durations 

of activities and mak(I) gives the makespan of the individual I. 

The benchmark sets of J10, J12, J14, J16, J18, and J20 are selected from the Project Scheduling 

Problem Library (PSPLIB) as standard instances for testing the fitness functions. The halting 

criterion considered here is the generation of 5000 schedules. 

Considering Table 1, the acquired results show that the CPU times resulted from using the 

proposed fitness function are approximately equal to those of using Lova et al’s, but, the obtained 

average deviations indicate that, for all of the benchmark sets except for J12, the fitness function 

of this paper outperforms Lova et al’s one.  

Table 1. Comparison of performance of the fitness functions 

 
Fitness function 

Set of instances 

 J10 J12 J14 J16 J18 J20 

Average deviation 

(%) 

Current study 0.03 0.08 0.15 0.30 0.30 0.45 

Lova et al. [23] 0.04 0.07 0.16 0.30 0.32 0.46 

Percentage of 

solving optimally 

Current study 98 94 90 80 81 75 

Lova et al. [23] 96 94 90 81 79 73 

CPU time 

(seconds) 

Current study 0.11 0.14 0.17 0.19 0.20 0.22 

Lova et al. [23] 0.11 0.14 0.18 0. 19 0. 20 0.23 

 

After the evaluation of an individual by the fitness function, the corresponding fitness value is 

attributed to that individual. 

3.4 Selection operator 

In the current study, based on the fitness of individuals, some of the best individuals (TOP 

individuals in Figure1) are copied from the current generation to the next generation. This strategy 

is called elicit strategy. The drawback of the mentioned strategy is its convergence to a local 

minimum, which is controlled in this paper by two operators. These operators are crossover and 

new efficient mutation operators which are introduced in the following subsections. In parent 

selection, the father and mother are randomly selected from the best individuals’ pool (TOP 

individuals in Fig. 1) and total individuals of the current population, respectively (see Fig. 1). This 

type of selection operator was applied in a GA on the RCPSP by Mendes et al. (2009) and the 

promising results were obtained.  
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Figure 1. Selection operator in the proposed GA of the current study 

 

3.5 Crossover operator 

Spears and De Jong (1991) investigated different crossovers and indicated that uniform crossover 

gives the best results. Based on their study, performance of the uniform crossover is independent 

of the chromosomes length. Unlike the one and two point crossovers, the uniform crossover can 

develop offspring in each point of space. Furthermore, it has been proven that the uniform 

crossover has more exploratory power than the n-point crossover (Eschelman et al., 1989). The 

uniform crossover was also used for solving the RCPSP by Mendes et al (2009) and the promising 

results were acquired. Therefore, the selection of crossover is advisable and used in this paper. 

In the uniform crossover, a number from interval [0,1] is considered as the Crossover Probability 

(CProb). Then, a random vector containing numbers between [0,1] is generated. After comparing 

the crossover probability and the numbers of random vector, the genes are determined to be 

transferred from father and mother to offspring. When the random number is smaller than the 

crossover probability, the related gene in the father is transferred to the son offspring and the 

related gene in the mother is transferred to the daughter offspring; otherwise, the exchange of 

genes is from mother to son and father to daughter (see Figure2). Production of the daughter 

offspring is important to avoid the convergence to a local minimum. In the example of Figure 2, 

0.7 is considered to be the crossover probability.  
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Chromosome 1 0.8 0.750.550.6

Chromosome 2 0.37 0.550.680.72

Random number 0.92 0.440.450.67

Relation to cross over 
probabibility of 0.7 > <<<

Son offspring 0.37 0.750.550.6

Daughter offspring 0.8 0.550.680.72

Crossover

0.43

0.77

0.71

>

0.77

0.43

2 131 2

1 232 1

1 131 1

2 232 2

 

Figure 2. An example for Crossover operator in the proposed GA (crossover probability= 0.7) 

3.6 Mutation operator 

The mutation operator is an important tool to maintain diversity within the population in order to 

prevent the premature convergence (Lee and El-Sharkawi 2008). In this study, in order to apply 

mutation on activities priority, several activities in different or similar solutions are selected 

randomly and their priorities are also changed randomly. In order to change the mode for the 

chosen activity, a new mutation operator is defined. This new mutation operator acts differently on 

feasible and infeasible solutions. For the feasible solution and a randomly selected activity, if the 

new mode list stays feasible and η (μ) in Eq.4 increases, the previous mode of that activity is 

replaced with the new one; otherwise, no change is made. Obviously, the value of η (μ) for the 

feasible solution is negative or zero and with the help of Eq. 4, it exploits non-renewable 

resources. 

(4) 

 

For the infeasible solution and a randomly selected activity, if ERR (μ) of the new mode list 

reduces, the new mode of that activity is replaced with the previous one; otherwise no change is 

made. The proposed mutation operator is repeated until the pre-specified mutation rate is reached. 

3.7 Schedule generation scheme (decoding procedure) 

Schedule generation scheme (SGS), as an efficient method, transforms a representation solution of 

the RCPSP to a schedule (Lova et al. 2009). There are two types of SGS: serial SGS and parallel 

SGS. Since the parallel SGS cannot always find the optimal solution (Lova et al. 2009), we make 

use of the serial SGS. In the MRCPSP, the serial SGS must be modified in order to deal with 
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nonrenewable resources. In fact, two important issues must be considered: first, the 

transformation of infeasible solutions to feasible ones as far as possible, and second, full 

exploitation of non-renewable resources in the feasible solutions. For these two purposes, we use 

both infeasible and feasible tackling procedures. These procedures are the extended versions of 

the serial SGS, namely multi-mode serial schedule generation scheme (MSSGS). 

    3.7.1 Infeasible tackling procedure 

In case of infeasible solutions, the best technique is the application of repairing procedure for 

some of them (Lee and El-Sharkawi 2008).  Thus, in this research, after generating the initial 

population and employing the preprocessing procedure, the infeasible tackling approach is 

employed to transform some of the infeasible solutions into the feasible ones. In this procedure, 

an activity is selected randomly and its mode is changed to a new mode. If the resulted ERR (μ) is 

less than the previous ERR(μ), the previous mode is replaced with the new one. This procedure 

continues until all the infeasible solutions are transformed into feasible ones or the pre-specified 

maximum number of iterations for SGS (SGS_adj) is equal to the number of non-dummy 

activities, J. After the mentioned procedure, only feasible solutions are allowed to enter the 

multi-mode forward-backward iteration (MM-FBI) method, which is described in the following 

subsection. The feasible tackling procedure is applied in the MM-FBI. 

     3.7.2 Multi- mode forward-backward iteration (MM-FBI) method 

In the RCPSP, Forward–Backward iteration (FBI) is an efficient technique to improve the 

solutions’ quality (Lova et al. 2009). This idea was extended by Lova et al. (2009) for the 

MRCPSP, namely multi- mode forward-backward iteration (MM-FBI) method. If this approach 

applies to one activity, using only mode change of that activity, its finish time will reduce. 

As a drawback for the MM-FBI, the activities scheduled earlier have a greater chance for more 

occupation of non-renewable resources. For overcoming this weakness, the mode improvement 

procedure is randomly applied on some of the activities and the SGS_Pper specifies the 

percentage of total non-dummy activities selected for the mode improvement procedure. 

Consequently, it is guaranteed that all of the activities have equal opportunity for the occupation 

of non-renewable resources (Lova et al. 2009).  

The MM-FBI is repeated until no further improvement in the makespan is achievable. Here, an 

illustrative simple instance is provided to present the effectiveness of the Lova et al’s mode 

improvement procedure as follows: 

Consider a project with 9 non-dummy activities and 2 dummy activities, one renewable resource 

type and one non-renewable resource type. In this project, each activity has two modes. Start and 

end activities are dummy activities with only one mode, zero durations and no consumption of 

resources. The availability of renewable and non-renewable resources are 2 and 28, respectively. 

The complete information and precedence constraints of this project are presented in Table 2 and 

Figure 3, respectively.  
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Table 2. Data for activities in the example project 

Activity 

No. 

 Mode 1  Mode 2 

 rj1k nj1l d1j  rj2k nj2l d2j 

0  0 0 0  0 0 0 

1  2 4 2  1 2 3 

2  1 5 2  1 2 4 

3  1 3 2  1 1 3 

4  1 2 1  1 1 2 

5  2 5 2  2 3 4 

6  1 4 2  1 3 3 

7  2 2 1  2 1 2 

8  2 3 1  1 2 3 

9  1 3 4  1 1 6 

10  0 0 0  0 0 0 
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4

3

2

6

8

9

10

7

 

Figure 3. Activity network of an example of the MRCPSP 

 

In the above example, consider solution A which is given in Figure 4. 

 

Solution A λ= 0.00 0.65 0.90 0.55 0.80 0.75 0.50 0.40 0.45 0.35 0.00 

 μ= 1 1 1 2 2 1 1 2 2 1 1 

Figure 4. An example of a particle representing a solution for the MRCPSP. 

 

A resource graph of solution A is developed by SSGS procedure, which is presented in Figure5-a 

(3.2 means activity 3 with mode 2). 

The MM-FBI starts with backward scheduling on the existing schedule which is presented in Fig. 

5-a. For this purpose, the finish times of activities in the existing schedule (Figure5-a) are 

considered as the activities priority, and the mode improvement procedure is applied over the 

generation of this schedule on some of the activities specified randomly. Suppose activities 5 and 

7 are selected randomly for this purpose. 

As it can be seen in Figure5-b, the mode improvement procedure has reduced the duration of 

activity 5 by 2 periods and the duration of activity 7 by 1 periods. From these changes, the 

required non-renewable resource has changed from 25 to 28 (i.e., the availability of 

non-renewable resource). A single iteration of the MM-FBI is completed with the forward 



Sebt, Afshar and Alipouri 
 

914 

 

scheduling. For the forward scheduling, start times of activities in the existing backward schedule 

are used for the activities priority. If the availability of non-renewable resources is not used 

completely, the mode improvement procedure is also applied in this direction. 

In solution A, as the availability of non-renewable resources is used completely for the above 

backward schedule, the mode improvement procedure is not applied in the forward scheduling. 

After finishing this single iteration of MM-FBI, makespan of the project is reduced from 18 to 12 

(see Figure5-c).  

Non-renewable Resources consumption (NRC)=25 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 40
0

2.1

4.
1

5.2

1.2

3.1

8.2

6.1

7.2

9.1

1

2

 

(a) 

NRC=28 
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(b) 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 40
0

1

2

2.1
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6.1
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1

9.1

 

 (c) 

 

Figure 5. A single iteration step of the MM-FBI and non-renewable resource consumed (NRC); a) existing 

schedule b) backward scheduling c) forward scheduling. 

4. Computational experiments 

In this section, the performance of the proposed GA to solve the MRCPSP is investigated. The 

proposed GA was programmed with Matlab R2012a, and the tests were accomplished on a laptop 

with an Intel® core 2 T9300 2.5 GHz processor. 

In the literature, the CPU time and the number of generated schedules are used as the stopping 

criteria for the comparison of different proposed algorithms. Since “5000 generated schedules” 

halting criterion has been used more than the other halting criteria by the researchers for the 

comparison, it is also used in the current study. 

To illustrate the effectiveness of the proposed GA, the well-known benchmark sets of J10, J12, 

J14, J16, J18, J20, and J30 generated by the project generator ProGen for the MRCPSP and 
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available at http://129.187.106.231/psplib/ have been used . These sets contain instances with 10, 

12, 14, 16, 18, 20, and 30 non-dummy activities, respectively. Each of these sets has 640 instances, 

some of which are infeasible instances. 

Therefore, we exclude these infeasible instances from the experiments. In each instance, an 

activity can be performed in one out of three modes with specific duration between 1 and 10 

periods of time.  Each instance contains two renewable resource types and two non-renewable 

resource types. 

For all of the mentioned benchmark sets, with the exception of J30, the optimal makespans of all 

feasible instances are known. In fact, the optimal values for J30 have not been found so far. 

4.1. Parameter setting 

Taguchi method of design of experiment (DOE) (Montgomery, 2005) has been used for parameter 

setting of the proposed GA. For this purpose, data set of J20 is selected as the most difficult 

standard MRCPSP data set. The aim of this subsection is to determine the appropriate values for 

four key parameters of the proposed GA: Population Size (Pop_Size), the best individuals (TOP), 

Crossover Probability (CProb), and Mutation rate. Different test values of these parameters are 

presented in Table 3. In this table, Pop_size is the initial population size and other parameters 

have been described in different sections of the current study. Based on the number of parameters 

and the number of factor levels, the orthogonal array L16(4
4
) is developed in Table 4. 

Table 3.Combinations of parameter values 

Parameters 
Factor level 

1 2 3 4 

Pop_size 2`J 3J 4J 5J 

Top 0.05 0.10 0.15 0.20 

CProb 0.65 0.70 0.75 0.80 

Mutation rate 0.05 0.10 0.15 0.20 

 

In order to find the best combination, different combinations of parameter values in Table 4 were 

tested using the set J20 and then the average response variable (ARV) value (Eq. 7) of each 

combination was calculated and presented in the sixth column of Table 4. In this section, 5000 

generated schedules have been also considered as the halting criterion. 

 

 

(7) 

 

where Makespani is the makespan of each instance of J20 which was obtained by the proposed 

GA, OPTi is the optimum makespan of each instance of J20 which exists in the PSBLIB, and N is 

the number of feasible instances of set J20 which contains 554 instances. 

According to the obtained ARV values from different combination of parameter values in Table 4, 

the trend of each factor level is demonstrated in Fig. 6. The relevant results are listed in Table 5. 
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As it can be observed in Fig. 6, the population size has the most significant impact on the 

performance of the proposed GA such that with increasing the population size, solution quality 

improves. Based on these trends, the best combination of values is listed in Table 6. 

 

Table 4. Orthogonal table for the proposed GA. 

Test number 
factors  ARV 

Pop_size Top CProb Mutation rate  5000 scheduling 

1 1 1 1 1  0.036557 

2 1 2 2 2  0.014197 

3 1 3 3 3  0.050063 

4 1 4 4 4  0.014557 

5 2 1 2 3  0.021634 

6 2 2 3 4  0.028676 

7 2 3 4 1  0.033184 

8 2 4 1 2  0.014206 

9 3 1 3 1  0.027619 

10 3 2 4 2  0.015499 

11 3 3 1 3  0.031665 

12 3 4 2 4  0.014135 

13 4 1 4 3  0.014266 

14 4 2 1 4  0.014127 

15 4 3 2 1  0.017260 

16 4 4 3 2  0.013747 
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Figure 6. Factors’ level trend with 5000 schedules. 

 

 

Table 5. Response table for ARV with 5000 schedules. 

Level POP_size TOP CProb Mutation rate 

1 0.028844 0.025019 0.024139 0.028655 

2 0.024425 0.018125 0.016807 0.014412 

3 0.02223 0.0333043 0.030026 0.029407 

4 0.01485 0.014161 0.019377 0.017874 

 

 

Table 6. The best combination of parameters for the proposed GA. 

Level POP_size TOP CProb Mutation rate 

5000 schedules 5J 0.20 0.70 0.10 

 

 

4.2. Comparison with existing algorithms 

Our statistical results are presented in Table 7. Average deviation from the optimal makespans (in 

the case of set J30, from the lower bounds), percentage of optimally solved instances, and the 

average CPU time in seconds are used for the comparison. Optimal values for sets of J10-20 and 

the best-known solutions (BKS) till now (Results on the PSPLIB-server on 18 September 2015) 

for set J30 are considered as the base for calculating the average deviations. Accordingly, our 
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results are compared with the existing state-of-the-art methods for solving the MRCPSP such as 

the GA and the AIS presented by Peteghem and Vanhoucke (2010, 2009) denoted respectively as 

VPVGA and VPVAIS, EDA and SFLA presented by Wang and Fang (2012, 2011) denoted 

respectively as LCEDA and LCSFLA, the hybrid genetic algorithm developed by Lova et al. 

(2009) denoted as LHGA, the hybrid rank-based evolutionary algorithm proposed by Elloumi and 

Fortemps (2010) denoted as EFEA, the hybrid scatter search developed by Ranjbar et al. (2009) 

denoted as RSS, the genetic algorithm developed by Alcaraz et al. (2003) denoted as AGA, the 

two-phase genetic local search algorithm applied by Tseng and Chen (2009) denoted as TCGLS 

and the simulated annealing proposed by Jo´zefowska et al. (2001) denoted as JSA. 

 

Table 7. Performance of the proposed GA on solving benchmark sets. 

Benchmark 

set 

Feasible 

solutions 

Number of 

schedules 
Average deviation (%) 

Optimal 

rate (%) 

CPU-time(s) 

 

J10 536 1000 0.13 94.44 0.03 

  3000 0.04 96.97 0.06 

  5000 0.03 98 0.10 

J12 547 1000 0.37 85 0.03 

  3000 0.15 92 0.07 

  5000 0.07 95 0.13 

J14 551 1000 0.52 74 0.04 

  3000 0.23 86 0.10 

  5000 0.21 85 0.15 

J16 550 1000 0.96 55 0.04 

  3000 0.49 72 0.12 

  5000 0.32 74 0.17 

J18 552 1000 0.89 59 0.05 

  3000 0.54 73 0.12 

  5000 0.40 76 0.17 

J20 554 1000 1.50 47 0.06 

  3000 0.72 64 0.13 

  5000 0.56 67 0.19 

 

A comparison of average deviations can be made using Table 8. As it can be seen, in the set of J10, 

only VPVGA and VAVAIS perform better than our GA. While, increasing the number of activities, 

in the sets of J14, J16, J18, and J20, our proposed GA performs better than the other proposed 

algorithms and the trend of solution quality is improved. This implies that the proposed GA can 

outperform other algorithms by increasing the complexity. A comparison of our GA with VPVGA 

in Table 9, with regard to set J30, may also confirm this statement. The third and fourth columns 

of Table 9, present the percentage of instances that their results are equal or inferior to that of the 

best-known solutions. 

It is worth mentioning that no improvement is made in the best-known solutions for set J30, which is 

analogous to VPVGA. 



Int J Supply Oper Manage (IJSOM)  
 

919 

 

Table 8. Average deviations (%) from optimal makespans (5000 generated schedules 

as the stopping condition). 

Algorithm J10 J12 J14 J16 J18 J20 

Proposed GA 0.03 0.07 0.21 0.32 0.40 0.56 

VPVGA 0.01 0.09 0.22 0.32 0.42 0.57 

VPVAIS 0.02 0.07 0.20 0.39 0.52 0.70 

LCEDA 0.12 0.14 0.43 0.59 0.90 1.28 

LHGA 0.06 0.17 0.32 0.44 0.63 0.87 

LCSFLA 0.10 0.21 0.46 0.58 0.94 1.40 

EFEA 0.14 0.24 0.77 0.91 1.30 1.62 

RSS 0.18 0.65 0.89 0.95 1.21 1.64 

AGA 0.24 0.73 1.00 1.12 1.43 1.91 

TCGLS 0.33 0.52 0.93 1.081 1.32 1.69 

JSA 1.16 1.73 2.60 4.07 5.52 6.74 

 

Table 9. Average deviation (%) from the lower bounds of instances in set J30 (5000 

generated schedules as the stopping condition). 

Algorithm Dev. BKS (%) CPU time (s) equal Worth 

Proposed GA 1.05 0.27
a
 55.6 44.4 

VPVGA 1.08 0.24
b
 71.0 29 

a
 T9300 2.5 GHz. 

b 
Pentium 2.80 GHz 

 

 

A comparison of CPU time must be drawn based on computing power. In fact, computers with 

powerful processors process a program in a short time. Comparing CPU time in Table 10 and 

considering the lower computational power of this study compared to that of others, the CPU time 

of proposed algorithm can be considered satisfactory. 

 

Table 10. Comparison with other proposed algorithms considering the average 

CPU time (5000 generated schedules as the stopping condition). 

Algorithm J10 J12 J14 J16 J18 J20 

Proposed GA
a
 0.10 0.13 0.15 0.17 0.17 0.19 

VPVGA
b
 0.12 0.13 0.14 0.15 0.16 0.17 

LHGA
c
 0.08 0.10 0.11 0.12 0.13 0.15 

LCSFLA
d
 0.07 0.09 0.13 0.15 0.19 0.27 

a
 T9300 2.5 GHz. 

b 
Pentium 2.80 GHz.

 

c 
Pentium 3GHz. 

d 
T7500 2.2 GHz. 
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Table 11 presents the comparison of the optimal rates. As it can be seen, the optimal rates of the 

proposed algorithm are better than JSA, but not as good as the other proposed algorithms. 

However, the results of the proposed GA present that most of the solutions found are close to the 

optimum ones. For example, in set J10, our algorithm solved 525 out of 536 problems to 

optimality, and in all other instances, the solutions are close to the optimum. Therefore, this 

algorithm worked well on all of the problems of set J10. Similarly, it worked well on 99% of the 

problems of J12, 97% of the problems of J14, 95% of the problems of J16 and J18, and 93% of 

the problems of J20. It is worth mentioning that in this paper, the performance of a solution with 

the maximum deviation of 2 periods from optimality is considered to be well. All comparisons 

indicate the effectiveness of the proposed GA. 

 

Table 11. Comparison with other proposed algorithms considering optimal rates 

Algorithm J10 J12 J14 J16 J18 J20 

Proposed GA 98 95 85 74 76 67 

VPVGA 99.63 98.17 94.56 92.00 88.95 85.74 

LHGA 98.51 96.53 92.92 90.00 84.96 80.32 

LCSFLA 97.93 95.98 90.86 86.49 79.44 72.84 

JSA 85.60 80.30 66.40 54.7 43.50 35.70 

 

5. Conclusion  

In the current study, a new GA was proposed to solve the MRCPSP. A random key and the related 

mode list representation are used as encoding and MSSGS was considered as the decoding 

procedure. In the feasible tackling procedure, we employed Lova et al’s mode improvement 

procedure. One of the contributions of this paper was to define a new mutation operator for 

feasible and infeasible solutions. We also presented a new fitness function, which was simple and 

effective. The well-known benchmark sets J10, J12, J14, J16, J18, J20, and J30 in PSPLIB were 

used for testing the proposed GA. The performance comparisons indicated that the proposed GA 

is among the most competitive algorithms, particularly when the complexity increases. 
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