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Abstract 

In some industries as foundries, it is not technically feasible to interrupt a processor between 

jobs. This restriction gives rise to a scheduling problem called no-idle scheduling. This paper 

deals with scheduling of no-idle open shops to minimize maximum completion time of jobs, 

called makespan. The problem is first mathematically formulated by three different mixed 

integer linear programming models. Since open shop scheduling problems are NP-hard, only 

small instances can be solved to optimality using these models. Thus, to solve large instances, 

two meta-heuristics based on simulated annealing and genetic algorithms are developed. A 

complete numerical experiment is conducted and the developed models and algorithms are 

compared. The results show that genetic algorithm outperforms simulated annealing. 

Keywords: Scheduling, Open shop, No idle time, mixed integer linear programming, 

Simulated annealing, Genetic algorithm. 

1. Introduction 

The problem of shop scheduling can be described as follows. There are a set of 𝑛 jobs and a 

set of 𝑚  machines. The jobs are going to be processed by each of the machines. The 

processing route of jobs on machines can be either fixed beforehand or determined by 

decision makers. If the processing route is fixed and identical for all jobs, the problem turns 

into a flow shop scheduling. If it is fixed yet unique for each job, the problem is job shop 

scheduling. If it is not fixed, the problem becomes open shop scheduling. In other words, 

unlike the flow and job shops, the jobs in the open shop can visit machines in any order. The 
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decision dimension of the flow and job shops is to sequence jobs on machines. Yet, in the 

open shop, the decision of planner is not only to sequence jobs on machines but also to 

sequence machines in the processing route of each job. 

In the literature, researchers commonly extend the open shop so as to be more fit for a 

practical situation. Goldansaz et al. (2013) consider multi-processor open shop scheduling 

problems with independent setup time and sequence dependent removal time. Chernykh et al. 

(2013) investigate the routing open shop problem which is a generalization of two problems 

of the open shop and the metric traveling salesman problems. Chen et al. (2013) study the 

parallel open shop scheduling problem where each job has two independent non-preemptive 

operations. Dong et al. (2013) consider the problem of scheduling batch and delivery 

coordination. Jobs are processed in a two-machine open shop, and then are delivered to a 

common customer by only one vehicle. Abdelmaguid et al. (2014) study the multiprocessor 

open shop scheduling problem where there is a set of processing centers each of which has 

one or more parallel identical machines. 

In production industries with capital-intensive machines, it is not desirable to keep such 

machines idle. Even, in some industries with less expensive machines, it might not be 

demanding to stop machines between jobs. For example, one can refer the reader to the 

furnace in the fiberglass industry. Since heating the furnace up to the necessary temperature is 

both time-consuming and expensive, it always stays on when it starts working. Among other 

applications of this behavior (i.e., as it might be technically infeasible or uneconomical to 

interrupt a machine in between jobs) are foundries, production of integrated circuits and the 

steel making industry (Pan and Ruiz, 2014). These practical situations raise a scheduling 

environment, called no-idle scheduling. In no-idle scheduling, idle time on a machine is not 

allowed. In other words, each machine must continuously process jobs from the start of 

processing the first job to the end of the last job. To fulfill this restriction, the start of 

processing the first job on a given machine might be delayed. 

The literature of no-idle scheduling mainly focuses on flow shop problems. Kalczynski and 

Kamburowski (2005) deal with no-idle flow shops. They propose a constructive heuristic for 

solving it that significantly outperforms heuristics. Deng and Gu (2012) present a hybrid 

discrete differential evolution algorithm for the no-idle permutation flowshop scheduling 

problem with makespan criterion.  

Tasgetiren et al. (2013) study the no-idle permutation flowshop scheduling problem with the 

total tardiness criterion and propose a discrete artificial bee colony algorithm for this problem. 

Tasgetiren et al. (2013) study the same problem with Tasgetiren et al., (2013) and present a 

variable iterated greedy algorithm with differential evolution. The traditional iterated greedy 

and a variable iterated greedy from the literature are also re-implemented. Pan and Wang 

(2008) consider the no-idle permutation flow shop scheduling problems with the criterion to 

minimize makespan. They propose two simple approaches to calculate the makespan, a speed-

up method and a discrete particle swarm optimization algorithm which is superior to two 

heuristics of Tasgetiren et al. (2013)  and Kalczynski and Kamburowski (2005). 

El Houda Saadani et al. (2005) investigate no-idle flowshop problems with the objective to 

minimize the makespan. Based on the idea that this problem can be modeled as a travelling 

salesman problem, an adaptation of the well-known nearest insertion rule is proposed to solve 

the problem. Baraz and Mosheiov (2008) study makespan minimization on no idle flowshops. 

They also introduce a greedy algorithm. Goncharov and Sevastyanov (2009) propose several 
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polynomial time heuristics based on a geometrical approach for the general case and for 

special cases of 3 and 4 machines. Moreover, they present a comprehensive review of relevant 

results. 

Pan and Ruiz (2014) study mixed no-idle flow shops where not all machines require no-idle 

restriction. They first mathematically formulate the problem and propose an iterated greedy 

algorithm enhanced by a speed-up feature. As reviewed, all the papers in the literature of no-

idle scheduling consider the flow shop problem. 

In this paper, we first formulate the problem by three mixed integer linear programming 

models. Using these models, the small instances of the problem are solved to optimality. 

Since the problem under consideration is NP-hard, the best solution method is metaheuristic. 

There are two different metaheuristic types, single-individual and multi-individual 

(population-based) ones. To find out what type of metaheuristic performs well for this 

problem, we have decided to develop one single- and one multi-individual metaheuristic. 

Among different single-individual alternatives, simulated annealing has shown high 

performance in different scheduling problems (Andersen et al. 2008). And also, among 

different multi-individual alternatives, genetic algorithm seems the best one regarding the 

literature (Dai et al., 2013). Thus, two metaheuristics, based on simulated annealing and 

genetic algorithm are also developed to solve large instances. Two numerical experiments are 

conducted to evaluate and compare the models and algorithms. 

The rest of the paper is organized as follows. Section 2 formulates the problem by three 

different mathematical models. Section 3 develops two metaheuristics. Section 4 evaluates 

both the models and metaheuristics. Section 5 concludes the paper. 

2. Problem formulation 

To illustrate the problem, we first present a numerical example. Consider a problem with 𝑛 =
4 and 𝑚 = 3. The processing times are shown in Table 1. One possible solution for this 

problem is presented by Figure 1. As can be seen, there is no interruption when a machine 

starts processing jobs from the first to the last. The value of makespan becomes 21. 

 
Table 1. Processing times of the example 

Jobs 
Machines 

1 2 3 

1 2 6 6 

2 4 5 4 

3 4 4 2 

4 5 3 2 
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Figure 1. Gantt chart of a feasible solution for the example. 

 

Scheduling problems are commonly formulated as mixed integer linear programming models. 

The problem under consideration is modeled by three different mathematical models. Before 

presenting the models, we establish the following parameters and sets. 

Parameters: 

𝑛 The number of jobs 

𝑘, 𝑗, 𝑒 The index for jobs {1,2, 𝑛𝑑𝑛} 

𝑚 The number of machines 

𝑖, 𝑙, 𝑟 The index for jobs {1,2, 𝑛𝑑𝑚} 

𝑀 A large positive number  

Sets 

𝑝𝑗,𝑖 The processing time of job j on machine i  

 

For the first model, we have 

Decision variables: 

𝑋𝑗,𝑖,𝑙 Binary variable taking value 1 if Oji is processed immediately after Ojl, and 0 

otherwise. l  ai 

𝑌𝑗,𝑖,𝑘 Binary variable taking value 1 if Oji is processed immediately after Oki, and 0 

otherwise. k  aj 

𝐶𝑗,𝑖 Continuous variable for the completion time of job j on machine i. 

𝑆𝑖 Continuous variable for the starting time of machine i. 

𝐹𝑖 Continuous variable for the finishing time of machine i. 

 

The first model, called Model 1, is as follows. 

 

Min 𝐶𝑚𝑎𝑥 

Subject to: 
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Where 𝐶𝑗,0 = 𝐶0,𝑖 = 0. 

Constraint sets (1) and (2) specifies that each operation is performed once. Constraint sets (3) 

and (4) assure that each operation have at most one succeeding operation. Constraint sets (5) 

and (6) state that dummy job 0 and machine 0 have exactly one successor. Constraint sets (7), 

(8) and (9) ensure that no-idle restrictions are met. Constraint set (10) ensures each job can be 

processed by at most one machine at a time. Constraint set (11) specifies each machine can 

process at most one job at a time. Constraint set (12) calculates makespan. Finally, Constraint 

sets (13) and (14) define the decision variables. 

 

In the second model, the following decision variables are defined. 

Decision variables: 

𝑋𝑗,𝑖,𝑘 Binary variable taking value 1 if Oji occupies k-th position in job j’s sequence, and 

0 otherwise.  

𝑌𝑗,𝑖,𝑙 Binary variable taking value 1 if job j occupies l-th position of machine i, and 0 

otherwise. 

𝐶𝑗,𝑖 Continuous variable for the completion time of Oji. 

𝑆𝑖 Continuous variable for the starting time of machine i. 

𝐹𝑖 Continuous variable for the finishing time of machine i. 

 

The second model, called Model 2, becomes as such. 

 

∑ 𝑌𝑗,𝑖,𝑘 ≤ 1

𝑛

𝑗=1,𝑗≠𝑘

  ∀𝑖,𝑘ϵ{1,2,..,𝑛} (3) 

∑ 𝑋𝑗,𝑖,𝑙 ≤ 1

𝑚

𝑖=1,𝑖≠𝑙

 ∀𝑗,𝑙ϵ{1,2,..,𝑚} (4) 

∑ 𝑌𝑗,𝑖,0 = 1

𝑛

𝑗=1

 ∀𝑖 (5) 

∑ 𝑋𝑗,𝑖,0 = 1

𝑚

𝑖=1

 ∀𝑗 (6) 

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑃𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (7) 

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑃𝑗,𝑖 ∀𝑗,𝑖 (8) 

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (9) 

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑙 + 𝑃𝑗,𝑖 − (1 − 𝑋𝑗,𝑖,𝑙) × 𝑀  ∀𝑗,𝑖,𝑙≠𝑖 (10) 

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 − (1 − 𝑌𝑗,𝑖,𝑘) × 𝑀 ∀𝑗,𝑖,𝑘≠𝑗 

 

(11) 

 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖 ∀𝑗,𝑖 (12) 

𝑋𝑗,𝑖,𝑙 ∈ {0, 1}    ∀𝑗,𝑖,𝑙≠𝑖 (13) 

𝑌𝑗,𝑖,𝑘 ∈ {0, 1} ∀𝑗,𝑖,𝑘≠𝑗 (14) 
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Min 𝐶𝑚𝑎𝑥 

Subject to: 

 

 

Constraint sets (15) and (16) assure that each operation occupy exactly one position. 

Constraint set (17) and (18) are to ensure that each position of processing route of each job 

and each position of job sequence of each machine is assigned once. Constraint sets (19), (20) 

and (21) are to meet no-idle restriction. Constraint set (22) assures that each job cannot be 

processed by more than one machine and Constraint set (23) is to ensure that each machine 

cannot process more than one job at a time. Constraint set (24) computes makespan, and 

Constraint sets (25) and (26) define the decision variables.  

 

The third model includes the following decision variables. 

Decision variables: 

𝑋𝑗,𝑖,𝑙 Binary variable for taking value 1 if Oji is processed after Ojl, and 0 otherwise. i 

∈ {1, 2, …, m−1}, l > i 

𝑌𝑗,𝑖,𝑘 Binary variable for taking value 1 if Oji is processed after Oki, and 0 otherwise. j 

∈ {1, 2, …, n−1},  k > j 

𝐶𝑗,𝑖 Continuous variable for the completion time of job j on machine i 

𝑆𝑖 Continuous variable for the starting time of machine i. 

𝐹𝑖 Continuous variable for the finishing time of machine i. 

∑ 𝑋𝑗,𝑖,𝑘 =

𝑚

𝑘=1

1 ∀𝑗,𝑖 (15) 

∑ 𝑌𝑗,𝑖,𝑙 = 1

𝑛

𝑙=1

 ∀𝑗,𝑖 (16) 

∑ 𝑋𝑗,𝑖,𝑘

𝑚

𝑖=1

= 1 ∀𝑗,𝑘 (17) 

∑ 𝑌𝑗,𝑖,𝑙

𝑛

𝑗=1

= 1 ∀𝑖,𝑙 (18) 

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑃𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (19) 

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑃𝑗,𝑖 ∀𝑗,𝑖 
(20) 

 

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (21) 

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑟 + 𝑃𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑘) − 𝑀 (1 − ∑ 𝑋𝑗,𝑟,𝑡

𝑘−1

𝑡=1

) ∀𝑗,𝑖,𝑟,𝑘>1 (22) 

𝐶𝑗,𝑖 ≥ 𝐶𝑒,𝑖 + 𝑃𝑗,𝑖 − 𝑀(1 − 𝑌𝑗,𝑖,𝑙) − 𝑀 (1 − ∑ 𝑌𝑒,𝑖,𝑡

𝑙−1

𝑡=1

) ∀𝑗,𝑖,𝑒,𝑙>1 (23) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖  ∀𝑖,𝑗 (24) 

𝑋𝑗,𝑖,𝑘 ∈ {0, 1}    ∀𝑗,𝑖,𝑘 (25) 

𝑌𝑗,𝑖,𝑙 ∈ {0, 1} ∀𝑗,𝑖,𝑙 (26) 
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The third model, Model 3, is as follows. 

 

Min 𝐶𝑚𝑎𝑥 

Subject to: 

 

Constraint sets (27), (28) and (29) specify the no-idle restriction. Constraint sets (30) and (31) 

together assure that each job can be processed at most one machine at a time. While 

Constraint sets (32) and (33) together ensure that each machine can process no more than one 

job at a time. Constraint set (34) calculates makespan. Constraint sets (35) and (36) define the 

decision variables. 

3. Developed metaheuristics 

In this paper, we develop two metaheuristics of simulated annealing and genetic algorithm to 

solve large instances of the problem. The proposed algorithms are based on permutation 

encoding scheme. The permutation scheme is a sorted list of all the operations being 

processed. By considering the permutation from left to right, the relative sequence of 

operations is determined. For the sake of simplicity, let us describe the permutation scheme 

by an example. Suppose we have a problem with 𝑛 = 3  and 𝑚 = 2 , summing up to 6 

operations. In the case of permutation list, {O22, O11, O32, O21, O11, O31}   is one possible 

permutation. An encoded solution is decoded so as to end up with a feasible solution 

regarding no-idle restriction. Later on, the simulated annealing and genetic algorithm are 

described in detail. 

3.1. Simulated annealing 

The simulated annealing (SA) is a metaheuristic known as a local search based one. It is 

inspired from the annealing process (1999). SA is equipped with a mechanism, called 

acceptance criterion, which enables it to partially avoid getting trapped in local optima. The 

acceptance mechanism is to decide if a new generated solution is accepted or rejected. In this 

mechanism, even worse solutions have a chance to be accepted. Among different successful 

applications of SA, papers (Naderi et al., 2009a; Zhang et al. 2010) can be pointed out. Naderi 

et al. (2009a)  develop a SA to solve hybrid flow shop scheduling problems. Zhang et al. 

(2010) propose a SA to solve a high school course timetabling problem. 

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑝𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (27) 

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑝𝑗,𝑖 ∀𝑗,𝑖 (28) 

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (29) 

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑙 + 𝑝𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑙) ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙>𝑖 (30) 

𝐶𝑗,𝑙 ≥ 𝐶𝑗,𝑖 + 𝑝𝑗,𝑙 − 𝑀𝑋𝑗,𝑖,𝑙 ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙>𝑖 (31) 

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑝𝑗,𝑖 − 𝑀(1 − 𝑌𝑗,𝑖,𝑘)  ∀𝑖,𝑗∈ {1,2,tom𝑛−1},𝑘>𝑗 (32) 

𝐶𝑘,𝑖 ≥ 𝐶𝑗,𝑖 + 𝑝𝑘,𝑖 − 𝑀𝑌𝑗,𝑖,𝑘 ∀𝑖,𝑗∈ {1,2,tom𝑛−1},𝑘>𝑗 (33) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖 ∀𝑗,𝑖 (34) 

𝑋𝑗,𝑖,𝑙 ∈ {0, 1}    ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙 > 𝑖 (35) 

𝑌𝑗,𝑖,𝑘 ∈ {0, 1} ∀𝑖,𝑗 ∈ {1,2,tom𝑛−1},𝑘 > 𝑗 (36) 
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3.1.1. The structure and acceptance criterion 

 

The simulated annealing starts from an initial solution. It iteratively makes a series of moves 

until a stopping criterion is fulfilled. The basic principle of SAs is to produce a new solution s 

by a mechanism, called move operator, from the neighborhood of the current solution x. This 

new solution can be either accepted or rejected by another mechanism, known as acceptance 

mechanism. A parameter t, called the temperature, controls the acceptance rule. The variation 

between objective values of two candidate solutions is computed Δ = fit(s) – fit(x). If Δ≤0, the 

new solution s is accepted, and the search continues from it. Otherwise, the new solution 𝑠 is 

accepted with probability equal to exp(Δ/ti). In other words, the better new solution is always 

accepted while the worse new solution might be accepted. The probability of acceptance 

depends on both parameter t and the inferiority size. 

At each temperature ti, a fixed number of neighborhood moves are made. Then, temperature is 

gradually decreased. We use exponential cooling schedule, ti =α .ti-1 (where α ∈ (0, 1) is 

temperature decrease rate). After having an initial experiment, the initial temperature is set to 

be 50 and α = 0.97. 

 
The procedure: the proposed SA 

Initialization mechanism 

While the stopping criterion is not met do 

Move operator 

Acceptance mechanism 

Temperature reduction 

Endwhile 

Figure 2. The outline of the proposed SA 

 

3.1.2. The move operator 

In this research, to generate a new solution from the current solution the following procedure 

is used. To generate a neighbor solution 𝑣 from the current solution 𝑥, this paper considers 

shift operator which is designed based on insertion operator (Naderi et al. 2009b). It works as 

follows: one randomly selected operation is randomly relocated into a new position in the 

permutation.  

For example consider a problem with 𝑛 = 3 and 𝑚 = 2. Therefore, there are 6 operations. One 

of the possible permutations is  

{𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31} 

To apply shift operator, suppose the randomly selected operation becomes operation 𝑂21 and 

randomly selected position becomes position 2. In this case, the neighbor solution is  

{𝑂22, 𝑂21, 𝑂11, 𝑂32, 𝑂12, 𝑂31}. 

3.2.Genetic algorithm 

Genetic algorithm (GA) is designed to deal with some problems of industry that were difficult 

to solve with conventional methods. Todays, GA is a well-known population based 

evolutionary algorithm tackling both discrete and continuous optimization problems. The idea 

behind GA comes from Darwin’s ‘‘survival of the fittest’’ concept, meaning that good parents 

produce better offsprings. Many hard optimization problems have been successfully solved by 
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GA (Wang, 2002; Toledo et al., 2013; Balakrishnan et al., 2003). Wang (2002) solves teacher 

assignment problems by GA. Toledo et al. (2013) develops a GA to tackle lot sizing 

problems. Balakrishnan et al. (2003) also solve dynamic layout problem by GA. 

 

3.2.1. General structure 

GA searches a solution space with a population of chromosomes each of which represents an 

encoded solution. A fitness value is assigned to each chromosome according to its 

performance. The better the chromosome is, the higher this value becomes. The population 

evolves by a set of operators until some stopping criterion is visited. A typical iteration of a 

GA, generation, proceeds as follows. The best chromosomes of current population are directly 

copied to next generation (reproduction). A selection mechanism chooses chromosomes of the 

current population so as to give higher chance to chromosomes with the higher fitness value. 

The selected chromosomes are crossed to generate new offspring. After crossing process, 

each offspring might mutate by another mechanism called mutation. Afterwards, the new 

population is evaluated again and the whole process is repeated. The outline of the proposed 

GA is shown in Figure 3. 

 

 
The procedure: the proposed GA 

Initialization mechanism 

While the stopping criterion is not met do 

Selection mechanism 

Crossover mechanism 

Mutation mechanism 

Endwhile 

Figure 3. The outline of the proposed GA 

 

3.2.2. The initialization and selection mechanisms 

GA starts with a number of chromosomes each of which represents a possible solution. The 

number of chromosomes is the population size indicated by pop, set to 50. The initial 

chromosomes are randomly generated from the feasible solutions.  

After initializing the algorithms, each chromosome is evaluated and its fitness (i.e., objective 

function) is determined. The chance of chromosome 𝑘 to be selected for crossover mechanism 

is as follows. 

𝑝𝑘 =
𝑓𝑖𝑡(𝑘)

∑ 𝑓𝑖𝑡(ℎ)𝑝𝑜𝑝
ℎ=1

 

 

where 𝑓𝑖𝑡(𝑘) is the fitness of chromosome 𝑘. 

3.2.3. Crossover and mutation mechanisms 

New solutions are produced by crossing two other solutions already selected by selection 

mechanism. These two solutions are called parents. The operator of combining parent are 

called crossover. The purpose of this combining is to generate better offsprings. To move the 

search towards better areas, we define a new solution that inherits from both parents. In fact, 

we combine two parents to form a new solution. In this research, this is done through an 

operator with the following steps. 
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Two randomly cut points are selected. Then, the operations between these cut points from 

Parent 1 are copied to offspring in the same positions. The remaining operations are put into 

the empty positions of the offspring from Parent 2. The order of the remaining operations is 

determined by their relative order in Parent 2. For example consider a problem with 𝑛 = 3 and 

𝑚 = 2. Suppose two parents are  

Parent 1: {𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31} 

Parent 2: {𝑂32, 𝑂12, 𝑂31, 𝑂21, 𝑂22, 𝑂11} 
Suppose the two randomly selected cut points are 2 and 4. In this case, the operations from 

position 2 to position 4 are copied into the same position in the offspring. 

offespring: {−, 𝑂11, 𝑂32, 𝑂21, −, −} 

The remaining operations are 𝑂22, 𝑂12 and 𝑂31. These operations are copied into offspring 

according to Parent 2. Thus, the complete offspring becomes 

offespring: {𝑂12, 𝑂11, 𝑂32, 𝑂21, 𝑂31, 𝑂22} 

After crossover, each solution is changed by the mutation operator. The main purpose of 

applying mutation is to avoid convergence to a local optimum and diversify the population. 

We use the swap mutation operator which works as follows. Two positions are randomly 

selected and the operations of these two positions are swapped. For example consider a 

problem with 𝑛 = 3 and 𝑚 = 2. Suppose the encoded solution is  

 {𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31} 

The two randomly selected positions are 3 and 6. By swapping the corresponding operations, 

we have 

{𝑂22, 𝑂11, 𝑂31, 𝑂21, 𝑂12, 𝑂32} 

4. Computational evaluation 

First, the efficiency of the proposed MILP models is evaluated on a computational experiment 

including small-sized instances. Afterwards, we assess the general performance of the 

proposed metaheuristics (i.e., GA and SA) against the optimal solutions obtained by the 

models. We use a performance measure named relative percentage deviation (RPD) obtained 

by the following formula: 

 

𝑅𝑃𝐷 =
𝐴𝑙𝑔𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑖𝑛𝑠𝑜𝑙
∙ 100  

where  𝑀𝑖𝑛𝑠𝑜𝑙  and 𝐴𝑙𝑔𝑠𝑜𝑙 are is the lowest 𝐶𝑚𝑎𝑥  for a given instance obtained by any of 

algorithms and the solution obtained by a given algorithm. We implement the MILP models 

in LINGO 10 and the other algorithms in Borland C++ and run on a PC with 2.0 GHz Intel 

Core 2 Duo and 2 GB of RAM memory. The stopping criterion used when testing all 

instances with the metaheuristics is set to a computational time limit fixed to 𝑛 × 𝑚 × 0.5 

seconds. This stopping criterion permits for more time as the number of jobs or machines 

increases. 

 

4.1.Evaluation on small-sized instances 

This subsection first compares the efficiency of the MILP models to solve the problem under 

consideration. We generate a set of different instances as follows. We have 6 problem sizes 

ranging from (𝑛 × 𝑚)= (3×3), up to (5×4). The processing times are randomly distributed 

over (1, 99). For each problem size, we generate 2 instances.  Therefore, it sums up to 12 

instances. The MILP models are allowed a maximum of 1000 seconds of computational time. 
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Table 2 shows the results obtained by different models. It shows the average computational 

time required by the corresponding model in each size. For example, the first instance of 

problem size (4×3) is solved by Model 1 in 5.07 seconds. The performance of Models 1 and 2 

are similar to each other and solve the problem up to (4×4). It might be interesting to state that 

Model 1 is slightly faster than Model 2 on average. Obviously, the best performing MILP is 

Model 3 which solves the instances up to size (5×4). 

 
Table 2. Models’ results (computational time in seconds) 

𝑛 × 𝑚 
Models   

Model 1 Model 2 Model 3 

3×3 0.05 0.04 0.02 

3×4 1.21 3.86 0.07 

4×3 2.75 5.07 0.11 

4×4 230.51 563.24 1.01 

5×3 - - 13.73 

5×4 - - 58.19 

 

We are going to evaluate the algorithms (i.e. GA and SA) against the optimal solutions 

obtained by the models in the previous small instances. Table 3 shows the results. The best 

performing algorithm is GA by optimally solving 11 instances out of 12 instances. SA finds 

optimal solutions of 9 instances. 

4.2.Evaluation on large-sized instances 

After having investigated the general performance of the metaheuristics, we intend to further 

compare the proposed algorithms against a set of large instances. We consider the following 

combinations of 𝑛 and 𝑚. 

{(5,5), (10,10), (15,15), (20,20)} 
For each combination, we generate 10 random instances by producing random processing 

times from a uniform distribution over (1, 99). We use the RPD measure to compare the 

algorithms. Table 4 summarizes the results of the experiments averaged for each combination 

of 𝑛 and 𝑚. GA still is the best performing algorithm with RPD of 1.58%. SA yields average 

RPD of 2.86%.  

 
Table 3. Algorithm’ results on small instances 

𝑛 × 𝑚 
Algorithm (gap)  

GA SA 

3×3 0.00 0.00 

3×4 0.00 0.00 

4×3 0.00 0.00 

4×4 0.00 0.96 

5×3 1.04 3.41 

5×4 0.00 2.42 

Average 0.17 1.13 

Table 4. Algorithm’ results on small instances 

𝑛 × 𝑚 
Algorithm (gap)  

GA SA 

5×5 0.81 1.37 

10×10 1.96 2.73 

15×15 2.18 3.61 

20×20 1.39 4.05 

Average 1.58 2.94 
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To further statistically analyze the results, we carry out an analysis of variance test or 

ANOVA. The results demonstrate that there are significant differences between the 

algorithms with p-value very close to 0. Figure 4 shows the means plot and least significant 

difference or LSD intervals at 95% confidence level for the different algorithms. 

 

 
Figure 4. The average RPD and LSD interval of the algorithms 

 

It is also interesting to plot the performance of the algorithms versus the problem size. Figure 

5 shows the means obtained by the algorithms in the different problem sizes. In all the four 

problem sizes, GA outperforms SA. The performance of SA and GA are almost the same in 

the smallest size of 𝑛 = 𝑚 = 5. There is a clear trend that GA works better in larger sizes. 

 

 

 
Figure 5. The average RPD of the algorithms versus the problem size. 

 

5. Conclusion and future study 

This paper considered no-idle open shop problems. Under no-idle restriction, no idle time on 

machine is allowed. Therefore, when a machine starts its processing, it has to process job 

continuously from the first to the last. Since this problem was not studied in the literature, 

there is no mathematical model for the problem. We first formulated the problem by three 
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mathematical models. The models were in the form of mixed integer linear programs. The 

problems up to 𝑛 = 5 and 𝑚 = 4 are solved to optimality.  

Since the problem is NP-hard, larger problems cannot be solved by the models. In this case, 

we developed two metaheuristics based on simulated annealing and genetic algorithm. Two 

computational experiments were conducted to evaluate the performances of models and 

metaheuristics. In the first experiment, we used small instances by which we compared the 

mathematical models and evaluated general performance of the proposed metaheuristics. In 

the second experiment, two metaheuristics were compared on large instances. All the results 

supported that the models and metaheuristics effectively solve the no-idle open shop problem. 

The results showed that genetic algorithm outperformed simulated annealing. 

One interesting future research direction is to develop other metaheuristics for this problem. 

In real cases, some machines, not all, have the no-idle constraint. Hence, it is also worthy to 

consider mixed no idle open shops. Moreover, it is impressive to study the multi-objective 

version of the problem under consideration. 
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