
54

International Journal of Supply and Operations Management

IJSOM

May 2014, Volume 1, Issue 1, pp. 54-68
ISSN-Print: 2383-1359

ISSN-Online: 2383-2525
ccc.mosww.www

No-idle time Scheduling of Open shops: Modeling and Meta-heuristic

Solution Methods

Bahman Naderia, Vahid Roshanaeib

aDepartment of Industrial Engineering, Kharazmi University, Tehran, Iran

bDepartment of Industrial Engineering, University of Toronto, Toronto, Canada

Abstract

In some industries as foundries, it is not technically feasible to interrupt a processor between

jobs. This restriction gives rise to a scheduling problem called no-idle scheduling. This paper

deals with scheduling of no-idle open shops to minimize maximum completion time of jobs,

called makespan. The problem is first mathematically formulated by three different mixed

integer linear programming models. Since open shop scheduling problems are NP-hard, only

small instances can be solved to optimality using these models. Thus, to solve large instances,

two meta-heuristics based on simulated annealing and genetic algorithms are developed. A

complete numerical experiment is conducted and the developed models and algorithms are

compared. The results show that genetic algorithm outperforms simulated annealing.

Keywords: Scheduling, Open shop, No idle time, mixed integer linear programming,

Simulated annealing, Genetic algorithm.

1. Introduction

The problem of shop scheduling can be described as follows. There are a set of 𝑛 jobs and a

set of 𝑚 machines. The jobs are going to be processed by each of the machines. The

processing route of jobs on machines can be either fixed beforehand or determined by

decision makers. If the processing route is fixed and identical for all jobs, the problem turns

into a flow shop scheduling. If it is fixed yet unique for each job, the problem is job shop

scheduling. If it is not fixed, the problem becomes open shop scheduling. In other words,

unlike the flow and job shops, the jobs in the open shop can visit machines in any order. The

 Corresponding email address: bahman_naderi62@yahoo.com

http://www.ijsom.com/

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 55

decision dimension of the flow and job shops is to sequence jobs on machines. Yet, in the

open shop, the decision of planner is not only to sequence jobs on machines but also to

sequence machines in the processing route of each job.

In the literature, researchers commonly extend the open shop so as to be more fit for a

practical situation. Goldansaz et al. (2013) consider multi-processor open shop scheduling

problems with independent setup time and sequence dependent removal time. Chernykh et al.

(2013) investigate the routing open shop problem which is a generalization of two problems

of the open shop and the metric traveling salesman problems. Chen et al. (2013) study the

parallel open shop scheduling problem where each job has two independent non-preemptive

operations. Dong et al. (2013) consider the problem of scheduling batch and delivery

coordination. Jobs are processed in a two-machine open shop, and then are delivered to a

common customer by only one vehicle. Abdelmaguid et al. (2014) study the multiprocessor

open shop scheduling problem where there is a set of processing centers each of which has

one or more parallel identical machines.

In production industries with capital-intensive machines, it is not desirable to keep such

machines idle. Even, in some industries with less expensive machines, it might not be

demanding to stop machines between jobs. For example, one can refer the reader to the

furnace in the fiberglass industry. Since heating the furnace up to the necessary temperature is

both time-consuming and expensive, it always stays on when it starts working. Among other

applications of this behavior (i.e., as it might be technically infeasible or uneconomical to

interrupt a machine in between jobs) are foundries, production of integrated circuits and the

steel making industry (Pan and Ruiz, 2014). These practical situations raise a scheduling

environment, called no-idle scheduling. In no-idle scheduling, idle time on a machine is not

allowed. In other words, each machine must continuously process jobs from the start of

processing the first job to the end of the last job. To fulfill this restriction, the start of

processing the first job on a given machine might be delayed.

The literature of no-idle scheduling mainly focuses on flow shop problems. Kalczynski and

Kamburowski (2005) deal with no-idle flow shops. They propose a constructive heuristic for

solving it that significantly outperforms heuristics. Deng and Gu (2012) present a hybrid

discrete differential evolution algorithm for the no-idle permutation flowshop scheduling

problem with makespan criterion.

Tasgetiren et al. (2013) study the no-idle permutation flowshop scheduling problem with the

total tardiness criterion and propose a discrete artificial bee colony algorithm for this problem.

Tasgetiren et al. (2013) study the same problem with Tasgetiren et al., (2013) and present a

variable iterated greedy algorithm with differential evolution. The traditional iterated greedy

and a variable iterated greedy from the literature are also re-implemented. Pan and Wang

(2008) consider the no-idle permutation flow shop scheduling problems with the criterion to

minimize makespan. They propose two simple approaches to calculate the makespan, a speed-

up method and a discrete particle swarm optimization algorithm which is superior to two

heuristics of Tasgetiren et al. (2013) and Kalczynski and Kamburowski (2005).

El Houda Saadani et al. (2005) investigate no-idle flowshop problems with the objective to

minimize the makespan. Based on the idea that this problem can be modeled as a travelling

salesman problem, an adaptation of the well-known nearest insertion rule is proposed to solve

the problem. Baraz and Mosheiov (2008) study makespan minimization on no idle flowshops.

They also introduce a greedy algorithm. Goncharov and Sevastyanov (2009) propose several

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 56

polynomial time heuristics based on a geometrical approach for the general case and for

special cases of 3 and 4 machines. Moreover, they present a comprehensive review of relevant

results.

Pan and Ruiz (2014) study mixed no-idle flow shops where not all machines require no-idle

restriction. They first mathematically formulate the problem and propose an iterated greedy

algorithm enhanced by a speed-up feature. As reviewed, all the papers in the literature of no-

idle scheduling consider the flow shop problem.

In this paper, we first formulate the problem by three mixed integer linear programming

models. Using these models, the small instances of the problem are solved to optimality.

Since the problem under consideration is NP-hard, the best solution method is metaheuristic.

There are two different metaheuristic types, single-individual and multi-individual

(population-based) ones. To find out what type of metaheuristic performs well for this

problem, we have decided to develop one single- and one multi-individual metaheuristic.

Among different single-individual alternatives, simulated annealing has shown high

performance in different scheduling problems (Andersen et al. 2008). And also, among

different multi-individual alternatives, genetic algorithm seems the best one regarding the

literature (Dai et al., 2013). Thus, two metaheuristics, based on simulated annealing and

genetic algorithm are also developed to solve large instances. Two numerical experiments are

conducted to evaluate and compare the models and algorithms.

The rest of the paper is organized as follows. Section 2 formulates the problem by three

different mathematical models. Section 3 develops two metaheuristics. Section 4 evaluates

both the models and metaheuristics. Section 5 concludes the paper.

2. Problem formulation

To illustrate the problem, we first present a numerical example. Consider a problem with 𝑛 =
4 and 𝑚 = 3. The processing times are shown in Table 1. One possible solution for this

problem is presented by Figure 1. As can be seen, there is no interruption when a machine

starts processing jobs from the first to the last. The value of makespan becomes 21.

Table 1. Processing times of the example

Jobs
Machines

1 2 3

1 2 6 6

2 4 5 4

3 4 4 2

4 5 3 2

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 57

Figure 1. Gantt chart of a feasible solution for the example.

Scheduling problems are commonly formulated as mixed integer linear programming models.

The problem under consideration is modeled by three different mathematical models. Before

presenting the models, we establish the following parameters and sets.

Parameters:

𝑛 The number of jobs

𝑘, 𝑗, 𝑒 The index for jobs {1,2, 𝑛𝑑𝑛}

𝑚 The number of machines

𝑖, 𝑙, 𝑟 The index for jobs {1,2, 𝑛𝑑𝑚}

𝑀 A large positive number

Sets

𝑝𝑗,𝑖 The processing time of job j on machine i

For the first model, we have

Decision variables:

𝑋𝑗,𝑖,𝑙 Binary variable taking value 1 if Oji is processed immediately after Ojl, and 0

otherwise. l ai

𝑌𝑗,𝑖,𝑘 Binary variable taking value 1 if Oji is processed immediately after Oki, and 0

otherwise. k aj

𝐶𝑗,𝑖 Continuous variable for the completion time of job j on machine i.

𝑆𝑖 Continuous variable for the starting time of machine i.

𝐹𝑖 Continuous variable for the finishing time of machine i.

The first model, called Model 1, is as follows.

Min 𝐶𝑚𝑎𝑥

Subject to:

J1

J4

J2

J3

J1

J1

J2

J3

J3

J4

J2

J4

0 2 4 6 8 10 12 14 16 18 20 22

1

2

3

Time

M
a

ch
in

es

∑ 𝑌𝑗,𝑖,𝑘 =

𝑛

𝑘=0,𝑘≠𝑗

1 ∀𝑗,𝑖

(1)

∑ 𝑋𝑗,𝑖,𝑙

𝑚

𝑙=0,𝑙≠𝑖

= 1 ∀𝑗,𝑖 (2)

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 58

Where 𝐶𝑗,0 = 𝐶0,𝑖 = 0.

Constraint sets (1) and (2) specifies that each operation is performed once. Constraint sets (3)

and (4) assure that each operation have at most one succeeding operation. Constraint sets (5)

and (6) state that dummy job 0 and machine 0 have exactly one successor. Constraint sets (7),

(8) and (9) ensure that no-idle restrictions are met. Constraint set (10) ensures each job can be

processed by at most one machine at a time. Constraint set (11) specifies each machine can

process at most one job at a time. Constraint set (12) calculates makespan. Finally, Constraint

sets (13) and (14) define the decision variables.

In the second model, the following decision variables are defined.

Decision variables:

𝑋𝑗,𝑖,𝑘 Binary variable taking value 1 if Oji occupies k-th position in job j’s sequence, and

0 otherwise.

𝑌𝑗,𝑖,𝑙 Binary variable taking value 1 if job j occupies l-th position of machine i, and 0

otherwise.

𝐶𝑗,𝑖 Continuous variable for the completion time of Oji.

𝑆𝑖 Continuous variable for the starting time of machine i.

𝐹𝑖 Continuous variable for the finishing time of machine i.

The second model, called Model 2, becomes as such.

∑ 𝑌𝑗,𝑖,𝑘 ≤ 1

𝑛

𝑗=1,𝑗≠𝑘

 ∀𝑖,𝑘ϵ{1,2,..,𝑛} (3)

∑ 𝑋𝑗,𝑖,𝑙 ≤ 1

𝑚

𝑖=1,𝑖≠𝑙

 ∀𝑗,𝑙ϵ{1,2,..,𝑚} (4)

∑ 𝑌𝑗,𝑖,0 = 1

𝑛

𝑗=1

 ∀𝑖 (5)

∑ 𝑋𝑗,𝑖,0 = 1

𝑚

𝑖=1

 ∀𝑗 (6)

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑃𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (7)

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑃𝑗,𝑖 ∀𝑗,𝑖 (8)

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (9)

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑙 + 𝑃𝑗,𝑖 − (1 − 𝑋𝑗,𝑖,𝑙) × 𝑀 ∀𝑗,𝑖,𝑙≠𝑖 (10)

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 − (1 − 𝑌𝑗,𝑖,𝑘) × 𝑀 ∀𝑗,𝑖,𝑘≠𝑗

(11)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖 ∀𝑗,𝑖 (12)

𝑋𝑗,𝑖,𝑙 ∈ {0, 1} ∀𝑗,𝑖,𝑙≠𝑖 (13)

𝑌𝑗,𝑖,𝑘 ∈ {0, 1} ∀𝑗,𝑖,𝑘≠𝑗 (14)

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 59

Min 𝐶𝑚𝑎𝑥

Subject to:

Constraint sets (15) and (16) assure that each operation occupy exactly one position.

Constraint set (17) and (18) are to ensure that each position of processing route of each job

and each position of job sequence of each machine is assigned once. Constraint sets (19), (20)

and (21) are to meet no-idle restriction. Constraint set (22) assures that each job cannot be

processed by more than one machine and Constraint set (23) is to ensure that each machine

cannot process more than one job at a time. Constraint set (24) computes makespan, and

Constraint sets (25) and (26) define the decision variables.

The third model includes the following decision variables.

Decision variables:

𝑋𝑗,𝑖,𝑙 Binary variable for taking value 1 if Oji is processed after Ojl, and 0 otherwise. i

∈ {1, 2, …, m−1}, l > i

𝑌𝑗,𝑖,𝑘 Binary variable for taking value 1 if Oji is processed after Oki, and 0 otherwise. j

∈ {1, 2, …, n−1}, k > j

𝐶𝑗,𝑖 Continuous variable for the completion time of job j on machine i

𝑆𝑖 Continuous variable for the starting time of machine i.

𝐹𝑖 Continuous variable for the finishing time of machine i.

∑ 𝑋𝑗,𝑖,𝑘 =

𝑚

𝑘=1

1 ∀𝑗,𝑖 (15)

∑ 𝑌𝑗,𝑖,𝑙 = 1

𝑛

𝑙=1

 ∀𝑗,𝑖 (16)

∑ 𝑋𝑗,𝑖,𝑘

𝑚

𝑖=1

= 1 ∀𝑗,𝑘 (17)

∑ 𝑌𝑗,𝑖,𝑙

𝑛

𝑗=1

= 1 ∀𝑖,𝑙 (18)

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑃𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (19)

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑃𝑗,𝑖 ∀𝑗,𝑖
(20)

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (21)

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑟 + 𝑃𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑘) − 𝑀 (1 − ∑ 𝑋𝑗,𝑟,𝑡

𝑘−1

𝑡=1

) ∀𝑗,𝑖,𝑟,𝑘>1 (22)

𝐶𝑗,𝑖 ≥ 𝐶𝑒,𝑖 + 𝑃𝑗,𝑖 − 𝑀(1 − 𝑌𝑗,𝑖,𝑙) − 𝑀 (1 − ∑ 𝑌𝑒,𝑖,𝑡

𝑙−1

𝑡=1

) ∀𝑗,𝑖,𝑒,𝑙>1 (23)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖 ∀𝑖,𝑗 (24)

𝑋𝑗,𝑖,𝑘 ∈ {0, 1} ∀𝑗,𝑖,𝑘 (25)

𝑌𝑗,𝑖,𝑙 ∈ {0, 1} ∀𝑗,𝑖,𝑙 (26)

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 60

The third model, Model 3, is as follows.

Min 𝐶𝑚𝑎𝑥

Subject to:

Constraint sets (27), (28) and (29) specify the no-idle restriction. Constraint sets (30) and (31)

together assure that each job can be processed at most one machine at a time. While

Constraint sets (32) and (33) together ensure that each machine can process no more than one

job at a time. Constraint set (34) calculates makespan. Constraint sets (35) and (36) define the

decision variables.

3. Developed metaheuristics

In this paper, we develop two metaheuristics of simulated annealing and genetic algorithm to

solve large instances of the problem. The proposed algorithms are based on permutation

encoding scheme. The permutation scheme is a sorted list of all the operations being

processed. By considering the permutation from left to right, the relative sequence of

operations is determined. For the sake of simplicity, let us describe the permutation scheme

by an example. Suppose we have a problem with 𝑛 = 3 and 𝑚 = 2 , summing up to 6

operations. In the case of permutation list, {O22, O11, O32, O21, O11, O31} is one possible

permutation. An encoded solution is decoded so as to end up with a feasible solution

regarding no-idle restriction. Later on, the simulated annealing and genetic algorithm are

described in detail.

3.1. Simulated annealing

The simulated annealing (SA) is a metaheuristic known as a local search based one. It is

inspired from the annealing process (1999). SA is equipped with a mechanism, called

acceptance criterion, which enables it to partially avoid getting trapped in local optima. The

acceptance mechanism is to decide if a new generated solution is accepted or rejected. In this

mechanism, even worse solutions have a chance to be accepted. Among different successful

applications of SA, papers (Naderi et al., 2009a; Zhang et al. 2010) can be pointed out. Naderi

et al. (2009a) develop a SA to solve hybrid flow shop scheduling problems. Zhang et al.

(2010) propose a SA to solve a high school course timetabling problem.

𝐹𝑖 = 𝑆𝑖 + ∑ 𝑝𝑗,𝑖

𝑛

𝑗=1

 ∀𝑖 (27)

𝐶𝑗,𝑖 ≥ 𝑆𝑖 + 𝑝𝑗,𝑖 ∀𝑗,𝑖 (28)

𝐶𝑗,𝑖 ≤ 𝐹𝑖 ∀𝑗,𝑖 (29)

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑙 + 𝑝𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑙) ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙>𝑖 (30)

𝐶𝑗,𝑙 ≥ 𝐶𝑗,𝑖 + 𝑝𝑗,𝑙 − 𝑀𝑋𝑗,𝑖,𝑙 ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙>𝑖 (31)

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑝𝑗,𝑖 − 𝑀(1 − 𝑌𝑗,𝑖,𝑘) ∀𝑖,𝑗∈ {1,2,tom𝑛−1},𝑘>𝑗 (32)

𝐶𝑘,𝑖 ≥ 𝐶𝑗,𝑖 + 𝑝𝑘,𝑖 − 𝑀𝑌𝑗,𝑖,𝑘 ∀𝑖,𝑗∈ {1,2,tom𝑛−1},𝑘>𝑗 (33)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑖 ∀𝑗,𝑖 (34)

𝑋𝑗,𝑖,𝑙 ∈ {0, 1} ∀𝑗,𝑖 ∈ {1,2,tom𝑚−1},𝑙 > 𝑖 (35)

𝑌𝑗,𝑖,𝑘 ∈ {0, 1} ∀𝑖,𝑗 ∈ {1,2,tom𝑛−1},𝑘 > 𝑗 (36)

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 61

3.1.1. The structure and acceptance criterion

The simulated annealing starts from an initial solution. It iteratively makes a series of moves

until a stopping criterion is fulfilled. The basic principle of SAs is to produce a new solution s

by a mechanism, called move operator, from the neighborhood of the current solution x. This

new solution can be either accepted or rejected by another mechanism, known as acceptance

mechanism. A parameter t, called the temperature, controls the acceptance rule. The variation

between objective values of two candidate solutions is computed Δ = fit(s) – fit(x). If Δ≤0, the

new solution s is accepted, and the search continues from it. Otherwise, the new solution 𝑠 is

accepted with probability equal to exp(Δ/ti). In other words, the better new solution is always

accepted while the worse new solution might be accepted. The probability of acceptance

depends on both parameter t and the inferiority size.

At each temperature ti, a fixed number of neighborhood moves are made. Then, temperature is

gradually decreased. We use exponential cooling schedule, ti =α .ti-1 (where α ∈ (0, 1) is

temperature decrease rate). After having an initial experiment, the initial temperature is set to

be 50 and α = 0.97.

The procedure: the proposed SA

Initialization mechanism

While the stopping criterion is not met do

Move operator

Acceptance mechanism

Temperature reduction

Endwhile

Figure 2. The outline of the proposed SA

3.1.2. The move operator

In this research, to generate a new solution from the current solution the following procedure

is used. To generate a neighbor solution 𝑣 from the current solution 𝑥, this paper considers

shift operator which is designed based on insertion operator (Naderi et al. 2009b). It works as

follows: one randomly selected operation is randomly relocated into a new position in the

permutation.

For example consider a problem with 𝑛 = 3 and 𝑚 = 2. Therefore, there are 6 operations. One

of the possible permutations is

{𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31}

To apply shift operator, suppose the randomly selected operation becomes operation 𝑂21 and

randomly selected position becomes position 2. In this case, the neighbor solution is

{𝑂22, 𝑂21, 𝑂11, 𝑂32, 𝑂12, 𝑂31}.

3.2.Genetic algorithm

Genetic algorithm (GA) is designed to deal with some problems of industry that were difficult

to solve with conventional methods. Todays, GA is a well-known population based

evolutionary algorithm tackling both discrete and continuous optimization problems. The idea

behind GA comes from Darwin’s ‘‘survival of the fittest’’ concept, meaning that good parents

produce better offsprings. Many hard optimization problems have been successfully solved by

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 62

GA (Wang, 2002; Toledo et al., 2013; Balakrishnan et al., 2003). Wang (2002) solves teacher

assignment problems by GA. Toledo et al. (2013) develops a GA to tackle lot sizing

problems. Balakrishnan et al. (2003) also solve dynamic layout problem by GA.

3.2.1. General structure

GA searches a solution space with a population of chromosomes each of which represents an

encoded solution. A fitness value is assigned to each chromosome according to its

performance. The better the chromosome is, the higher this value becomes. The population

evolves by a set of operators until some stopping criterion is visited. A typical iteration of a

GA, generation, proceeds as follows. The best chromosomes of current population are directly

copied to next generation (reproduction). A selection mechanism chooses chromosomes of the

current population so as to give higher chance to chromosomes with the higher fitness value.

The selected chromosomes are crossed to generate new offspring. After crossing process,

each offspring might mutate by another mechanism called mutation. Afterwards, the new

population is evaluated again and the whole process is repeated. The outline of the proposed

GA is shown in Figure 3.

The procedure: the proposed GA

Initialization mechanism

While the stopping criterion is not met do

Selection mechanism

Crossover mechanism

Mutation mechanism

Endwhile

Figure 3. The outline of the proposed GA

3.2.2. The initialization and selection mechanisms

GA starts with a number of chromosomes each of which represents a possible solution. The

number of chromosomes is the population size indicated by pop, set to 50. The initial

chromosomes are randomly generated from the feasible solutions.

After initializing the algorithms, each chromosome is evaluated and its fitness (i.e., objective

function) is determined. The chance of chromosome 𝑘 to be selected for crossover mechanism

is as follows.

𝑝𝑘 =
𝑓𝑖𝑡(𝑘)

∑ 𝑓𝑖𝑡(ℎ)𝑝𝑜𝑝
ℎ=1

where 𝑓𝑖𝑡(𝑘) is the fitness of chromosome 𝑘.

3.2.3. Crossover and mutation mechanisms

New solutions are produced by crossing two other solutions already selected by selection

mechanism. These two solutions are called parents. The operator of combining parent are

called crossover. The purpose of this combining is to generate better offsprings. To move the

search towards better areas, we define a new solution that inherits from both parents. In fact,

we combine two parents to form a new solution. In this research, this is done through an

operator with the following steps.

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 63

Two randomly cut points are selected. Then, the operations between these cut points from

Parent 1 are copied to offspring in the same positions. The remaining operations are put into

the empty positions of the offspring from Parent 2. The order of the remaining operations is

determined by their relative order in Parent 2. For example consider a problem with 𝑛 = 3 and

𝑚 = 2. Suppose two parents are

Parent 1: {𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31}

Parent 2: {𝑂32, 𝑂12, 𝑂31, 𝑂21, 𝑂22, 𝑂11}
Suppose the two randomly selected cut points are 2 and 4. In this case, the operations from

position 2 to position 4 are copied into the same position in the offspring.

offespring: {−, 𝑂11, 𝑂32, 𝑂21, −, −}

The remaining operations are 𝑂22, 𝑂12 and 𝑂31. These operations are copied into offspring

according to Parent 2. Thus, the complete offspring becomes

offespring: {𝑂12, 𝑂11, 𝑂32, 𝑂21, 𝑂31, 𝑂22}

After crossover, each solution is changed by the mutation operator. The main purpose of

applying mutation is to avoid convergence to a local optimum and diversify the population.

We use the swap mutation operator which works as follows. Two positions are randomly

selected and the operations of these two positions are swapped. For example consider a

problem with 𝑛 = 3 and 𝑚 = 2. Suppose the encoded solution is

 {𝑂22, 𝑂11, 𝑂32, 𝑂21, 𝑂12, 𝑂31}

The two randomly selected positions are 3 and 6. By swapping the corresponding operations,

we have

{𝑂22, 𝑂11, 𝑂31, 𝑂21, 𝑂12, 𝑂32}

4. Computational evaluation

First, the efficiency of the proposed MILP models is evaluated on a computational experiment

including small-sized instances. Afterwards, we assess the general performance of the

proposed metaheuristics (i.e., GA and SA) against the optimal solutions obtained by the

models. We use a performance measure named relative percentage deviation (RPD) obtained

by the following formula:

𝑅𝑃𝐷 =
𝐴𝑙𝑔𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑖𝑛𝑠𝑜𝑙
∙ 100

where 𝑀𝑖𝑛𝑠𝑜𝑙 and 𝐴𝑙𝑔𝑠𝑜𝑙 are is the lowest 𝐶𝑚𝑎𝑥 for a given instance obtained by any of

algorithms and the solution obtained by a given algorithm. We implement the MILP models

in LINGO 10 and the other algorithms in Borland C++ and run on a PC with 2.0 GHz Intel

Core 2 Duo and 2 GB of RAM memory. The stopping criterion used when testing all

instances with the metaheuristics is set to a computational time limit fixed to 𝑛 × 𝑚 × 0.5

seconds. This stopping criterion permits for more time as the number of jobs or machines

increases.

4.1.Evaluation on small-sized instances

This subsection first compares the efficiency of the MILP models to solve the problem under

consideration. We generate a set of different instances as follows. We have 6 problem sizes

ranging from (𝑛 × 𝑚)= (3×3), up to (5×4). The processing times are randomly distributed

over (1, 99). For each problem size, we generate 2 instances. Therefore, it sums up to 12

instances. The MILP models are allowed a maximum of 1000 seconds of computational time.

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 64

Table 2 shows the results obtained by different models. It shows the average computational

time required by the corresponding model in each size. For example, the first instance of

problem size (4×3) is solved by Model 1 in 5.07 seconds. The performance of Models 1 and 2

are similar to each other and solve the problem up to (4×4). It might be interesting to state that

Model 1 is slightly faster than Model 2 on average. Obviously, the best performing MILP is

Model 3 which solves the instances up to size (5×4).

Table 2. Models’ results (computational time in seconds)

𝑛 × 𝑚
Models

Model 1 Model 2 Model 3

3×3 0.05 0.04 0.02

3×4 1.21 3.86 0.07

4×3 2.75 5.07 0.11

4×4 230.51 563.24 1.01

5×3 - - 13.73

5×4 - - 58.19

We are going to evaluate the algorithms (i.e. GA and SA) against the optimal solutions

obtained by the models in the previous small instances. Table 3 shows the results. The best

performing algorithm is GA by optimally solving 11 instances out of 12 instances. SA finds

optimal solutions of 9 instances.

4.2.Evaluation on large-sized instances

After having investigated the general performance of the metaheuristics, we intend to further

compare the proposed algorithms against a set of large instances. We consider the following

combinations of 𝑛 and 𝑚.

{(5,5), (10,10), (15,15), (20,20)}
For each combination, we generate 10 random instances by producing random processing

times from a uniform distribution over (1, 99). We use the RPD measure to compare the

algorithms. Table 4 summarizes the results of the experiments averaged for each combination

of 𝑛 and 𝑚. GA still is the best performing algorithm with RPD of 1.58%. SA yields average

RPD of 2.86%.

Table 3. Algorithm’ results on small instances

𝑛 × 𝑚
Algorithm (gap)

GA SA

3×3 0.00 0.00

3×4 0.00 0.00

4×3 0.00 0.00

4×4 0.00 0.96

5×3 1.04 3.41

5×4 0.00 2.42

Average 0.17 1.13

Table 4. Algorithm’ results on small instances

𝑛 × 𝑚
Algorithm (gap)

GA SA

5×5 0.81 1.37

10×10 1.96 2.73

15×15 2.18 3.61

20×20 1.39 4.05

Average 1.58 2.94

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 65

To further statistically analyze the results, we carry out an analysis of variance test or

ANOVA. The results demonstrate that there are significant differences between the

algorithms with p-value very close to 0. Figure 4 shows the means plot and least significant

difference or LSD intervals at 95% confidence level for the different algorithms.

Figure 4. The average RPD and LSD interval of the algorithms

It is also interesting to plot the performance of the algorithms versus the problem size. Figure

5 shows the means obtained by the algorithms in the different problem sizes. In all the four

problem sizes, GA outperforms SA. The performance of SA and GA are almost the same in

the smallest size of 𝑛 = 𝑚 = 5. There is a clear trend that GA works better in larger sizes.

Figure 5. The average RPD of the algorithms versus the problem size.

5. Conclusion and future study

This paper considered no-idle open shop problems. Under no-idle restriction, no idle time on

machine is allowed. Therefore, when a machine starts its processing, it has to process job

continuously from the first to the last. Since this problem was not studied in the literature,

there is no mathematical model for the problem. We first formulated the problem by three

0.5

1

1.5

2

2.5

3

3.5

R
P

D

GA SA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20

GA

SAR
P

D

Problem size (n=m)

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 66

mathematical models. The models were in the form of mixed integer linear programs. The

problems up to 𝑛 = 5 and 𝑚 = 4 are solved to optimality.

Since the problem is NP-hard, larger problems cannot be solved by the models. In this case,

we developed two metaheuristics based on simulated annealing and genetic algorithm. Two

computational experiments were conducted to evaluate the performances of models and

metaheuristics. In the first experiment, we used small instances by which we compared the

mathematical models and evaluated general performance of the proposed metaheuristics. In

the second experiment, two metaheuristics were compared on large instances. All the results

supported that the models and metaheuristics effectively solve the no-idle open shop problem.

The results showed that genetic algorithm outperformed simulated annealing.

One interesting future research direction is to develop other metaheuristics for this problem.

In real cases, some machines, not all, have the no-idle constraint. Hence, it is also worthy to

consider mixed no idle open shops. Moreover, it is impressive to study the multi-objective

version of the problem under consideration.

References

Abdelmaguid, T.F., Shalaby, M.A., Awwad, M.A., (2014). A tabu search approach

forproportionate multiprocessor open shop scheduling. Computational Optimization and

Applications, Vol. 58(1), pp. 187-203.

Andresen, M., Bräsel, H., Mörig, M., Tusch, J., Werner, F., Willenius, P., (2008). Simulated

annealing and genetic algorithms for minimizing mean flow time in an open shop.

Mathematical and Computer Modelling, Vol. 48, pp. 1279-1293.

Baraz, D., Mosheiov, G., (2008). A note on a greedy heuristic for flow-shop makespan

minimization with no machine idle-time. European Journal of Operational Research, Vol.

184, pp. 810–813.

Balakrishnan, J., Cheng, C.H., Conway, D.G., Lau, C.M., (2003). A hybrid genetic algorithm

for the dynamic plant layout problem. International Journal of Production Economics, Vol.

86, pp. 107–20.

Chen, Y., Zhang, A., Chen, G., Dong, J., (2013). Approximation algorithms for parallel open

shop scheduling. Information Processing Letters, Vol. 113(7), pp. 220-224.

Chernykh, I., Kononova, A., Sevastyanova, S., (2013). Efficient approximation algorithms for

the routing open shop problem. Computers and Operations Research, Vol. 40(3), pp. 841-

847.

Dai, M., Tang, D., Giret, A., Salido, M.A., Lid, W.D., (2013). Energy-efficient scheduling for

a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and

Computer-Integrated Manufacturing, Vol. 29(5), pp. 418-429.

DengG., Gu, X., (2012). A hybrid discrete differential evolution algorithm for the no-idle

permutation flow shop scheduling problem with makespan criterion. Computers and

Operations Research, Vol. 39, pp. 2152–2160.

http://link.springer.com/search?facet-author=%22Tamer+F.+Abdelmaguid%22
http://link.springer.com/search?facet-author=%22Mohamed+A.+Shalaby%22
http://link.springer.com/search?facet-author=%22Mohamed+A.+Awwad%22
http://link.springer.com/journal/10589
http://link.springer.com/journal/10589
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://www.sciencedirect.com/science/journal/08957177
http://www.sciencedirect.com/science/journal/08957177/48/7
http://www.sciencedirect.com/science/article/pii/S002001901300015X
http://www.sciencedirect.com/science/article/pii/S002001901300015X
http://www.sciencedirect.com/science/article/pii/S002001901300015X
http://www.sciencedirect.com/science/article/pii/S002001901300015X
http://www.sciencedirect.com/science/journal/00200190
http://www.sciencedirect.com/science/journal/00200190/113/7
http://www.sciencedirect.com/science/article/pii/S0305054812000184
http://www.sciencedirect.com/science/article/pii/S0305054812000184
http://www.sciencedirect.com/science/article/pii/S0305054812000184
http://www.sciencedirect.com/science/article/pii/S0305054812000184
http://www.sciencedirect.com/science/article/pii/S0305054812000184
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/40/3
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/article/pii/S0736584513000318
http://www.sciencedirect.com/science/journal/07365845
http://www.sciencedirect.com/science/journal/07365845
http://www.sciencedirect.com/science/journal/07365845/29/5

No-idle time scheduling of open shops: modeling and meta-heuristic solution methods

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 67

Dong, J., Zhang, A., Chen, Y., Yang, Q., (2013). Approximation algorithms for two-machine

open shop scheduling with batch and delivery coordination. Theoretical Computer Science,

Vol. 491, pp. 94-102.

El Houda Saadani, N., Guinet, A., Moall, M., (2005). A travelling salesman approach to solve

the F/no-idle/Cmax problem. European Journal of Operational Research, Vol. 161, pp. 11–

20.

Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Buyukdagli, O., (2013). A variable iterated

greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling

problem. Computers and Operations Research, Vol. 40, pp. 1729-1743.

Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Oner, A., (2003). A discrete artificial bee

colony algorithm for the no-idle permutation flowshop scheduling problem with the total

tardiness criterion. Applied Mathematical Modelling, Vol. 37, pp. 6758–6779.

Goldansaz, S.M., Jolai, F., Zahedi Anaraki, A.H., (2013). A hybrid imperialist competitive

algorithm for minimizing makespan in a multi-processor open shop. Applied Mathematical

Modelling, Vol. 37(23), pp. 9603-9616.

Goncharov, Y., Sevastyanov, S., (2009). The flow shop problem with no-idle constraints: A

review and approximation. European Journal of Operational Research, Vol. 196, pp. 450–

456.

Kalczynski, P.J., Kamburowski, J., (2005). A heuristic for minimizing the makespan in no-

idle permutation flow shops. Computers and Industrial Engineering, Vol. 49, pp. 146–154.

Kolon, M., (1999). Some new results on simulated annealing applied to the job shop

scheduling problem. European Journal of Operational Research, Vol. 113, pp. 123–136.

Naderi, B., Zandieh, M., Balagh, A.K.G., Roshanaei, V., (2009a). An improved simulated

annealing for hybrid flowshops with sequence-dependent setup and transportation times to

minimize total completion time and total tardiness. Expert Systems with Applications, Vol. 36,

pp. 9625–9633.

Naderi, B., Zandieh, M., Fatemi Ghomi, S.M.T., (2009b). A study on integrating sequence

dependent setup time flexible flow lines and preventive maintenance scheduling. Journal of

Intelligent Manufacturing, Vol. 20, pp. 683–694.

Pan, Q.K., Ruiz, R., (2014). An effective iterated greedy algorithm for the mixed no-

idle permutation flowshop scheduling problem. Omega, Vol. 44, pp. 41-50.

Pan, Q.K., Wang, L., (2008). No-idle permutation flow shop scheduling based on a hybrid

discrete particle swarm optimization algorithm. International Journal of Advanced

Manufacturing Technology, Vol. 39, pp. 796–807.

http://www.sciencedirect.com/science/article/pii/S0304397513003332
http://www.sciencedirect.com/science/article/pii/S0304397513003332
http://www.sciencedirect.com/science/article/pii/S0304397513003332
http://www.sciencedirect.com/science/article/pii/S0304397513003332
http://www.sciencedirect.com/science/article/pii/S0304397513003332
http://www.sciencedirect.com/science/journal/03043975
http://www.sciencedirect.com/science/journal/03043975/491/supp/C
http://www.sciencedirect.com/science/article/pii/S0305054813000130
http://www.sciencedirect.com/science/article/pii/S0305054813000130
http://www.sciencedirect.com/science/article/pii/S0305054813000130
http://www.sciencedirect.com/science/article/pii/S0307904X13003090
http://www.sciencedirect.com/science/article/pii/S0307904X13003090
http://www.sciencedirect.com/science/article/pii/S0307904X13003090
http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X/37/23
http://www.sciencedirect.com/science/article/pii/S0305048313000984
http://www.sciencedirect.com/science/article/pii/S0305048313000984

Naderi and Roshanaei

Int J Supply Oper Manage (IJSOM), Vol.1, No.1 68

Toledo, C.F.M., Oliveira, R.R.R., Franca, P.M., (2013). A hybrid multi-population genetic

algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging.

Computers and Operations Research, Vol. 40, pp. 910-919.

Wang, Y.Z., (2002). An application of genetic algorithm methods for teacher assignment

problems. Expert Systems with Applications, Vol. 22, pp. 295–302.

Zhang, D., Liu, Y., M’Hallah, R., Leung, S.C.H., (2010). A simulated annealing with a new

neighborhood structure based algorithm for high school timetabling problems. European

Journal of Operational Research, Vol. 203, pp. 550–558.

